Polymer-MOF Hybrid Composites with High Porosity and Stability through Surface-Selective Ligand Exchange

Vincent J. Pastore, Timothy R. Cook*, Javid Rzayev*

University at Buffalo, the State University of New York, Buffalo, NY 14260-3000, United States

Supporting Information Contents

Figure S1. PXRD diffractograms of MOF-5, PAA, MOF-5/PAA, and MOF-5/PI	Page 2
Figure S2. PXRD diffractograms of ZIF-8 and ZIF-8/MOF-5 composites	Page 2
Figure S3. PXRD diffractograms of UiO-66	Page 2
Figure S4. ¹ H NMR spectrum of PAA	Page 3
Figure S5. ¹ H NMR spectrum of MEPA	Page 3
Figure S6. ¹ H NMR spectrum of PVBA	Page 4
Figure S7. GPC traces of PAA-high, PAA-low, and MEPA	Page 4
Table S1. Polymer molecular weight data	Page 4
Figure S8. SEM images of free polymer-coated MOF-5	Page 5
Figure S9. FT-IR spectra of PAA and PI	Page 5
Figure S10. FT-IR spectra of MOF-5/PAA and MOF-5/PI	Page 5
Figure S11. TGA curves of microcrystalline MOF-5, PAA, and microcrystalline MOF-5/PAA	Page 6
Figure S12. TGA curves of nanocrystalline MOF-5, PAA, and nanocrystalline MOF-5/PAA	Page 6
Figure S13. TGA curves of ZIF-8, PAA, and ZIF-8/PAA	Page 7
Figure S14. DSC curves of PAA, microcrystalline MOF-5/PAA, nanocrystalline MOF-5/PAA,	Ū.
and ZIF-8/PAA	Page 7
Figure S15. N ₂ adsorption-desorption isotherms of ZIF-8 and ZIF-8/PAA	Page 8
Figure S16. N ₂ adsorption-desorption isotherms of nanocrystalline MOF-5 and nanocrystalline	-
MOF-5/PAA	Page 8

Figure S1. PXRD diffractograms of PAA (a), MOF-5 simulated (b, CCDC no. 256965¹), microcrystalline MOF-5 experimental (c), nanocrystalline MOF-5 experimental (d) MOF-5/PAA (e) and MOF-5/PI (f)

Figure S2. PXRD diffractograms of ZIF-8 simulated (bottom, CCDC no. 602542²) and experimental (top)

Figure S3. PXRD diffractograms of UiO-66 simulated (bottom, CCDC no. 733458³) and experimental (top)

Figure S7. GPC traces of PAA high (a), PAA low (b), and MEPA (c)

Polymer	M _n / Da	M _w / Da	M_w/M_n
PAA high	239,500	500,500	2.09
PAA low	4,600	7,500	1.63
MEPA	5,500	15,000	2.73

Table S1. Polymer molecular weight information^a

^aMolecular weights and distributions were obtained from GPC relative to linear PEO calibration.

Figure S8. SEM images of polymer-coated MOF-5 isolated prior to crosslinking

Figure S9. FT-IR spectra of PAA (top) and PI (bottom)

Figure S10. FT-IR spectra of MOF-5/PAA (top) and MOF-5/PI (bottom)

Figure S11. TGA curves of microcrystalline MOF-5 (black), PAA (red, dashed), and microcrystalline 77% MOF-5/PAA (blue, dotted).

Figure S12. TGA curves of nanocrystalline MOF-5 (black), PAA (red, dashed), and nanocrystalline 50% MOF-5/PAA (blue, dotted).

Figure S13. TGA curves of ZIF-8 (black), PAA (red, dashed), and 50% ZIF-8/PAA (blue, dotted).

Figure S14. DSC cooling curves of (a) PAA (T_g = 399°C), (b) microcrystalline 77% MOF-5/PAA (T_g = 396°C), (c) nanocrystalline 50% MOF-5/PAA (T_g = 399°C), and (d) 50% ZIF-8/PAA (T_g = 399°C).

Figure S15. N₂ adsorption-desorption isotherms of ZIF-8 (top) and 69% ZIF-8/PAA (bottom).

Figure S16. N₂ adsorption-desorption isotherms of nanocrystalline MOF-5 (top) and nanocrystalline 50% MOF-5/PAA (bottom).