Supporting Information

In silico screening of comprehensive two-dimensional centrifugal partition chromatography x liquid chromatography for multiple compounds isolation

Léa Marlot¹, Magali Batteau¹, Dalene De Beer^{2,3}, Karine Faure^{1,*}

¹Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 VILLEURBANNE, France

² Plant Bioactives Group, Post-Harvest & Agro-Processing Technologies, Agricultural Research Council Infruitec-Nietvoorbij, Private Bag X5026, 7599 Stellenbosch, South Africa

³ Department of Food Science, University of Stellenbosch, Private Bag X1, 7602 Matieland (Stellenbosch), South Africa

*corresponding author karine.faure@isa-lyon.fr

Table of contents for supporting information

Figure S1: HPLC chromatograms of the plant extract	p S-2
Table S1: Operating conditions for CPC methods	p S-3
Table S2: K_D -value measurements of compounds in the selected CPC systems	p S-3
Equations: calculation of the harmonic mean \overline{H} and the arithmetic mean \overline{A} of the near distances	est-neighbor p S-3
Figure S2: 2D-contour plots of CPC1xLC1 separations at different sample loads	p S-4
Figure S3. Evolution of (a) system homogeneity, (b) minimal distance between peaks in stationary phase retention rate	function of p S-4

Figure S1: HPLC chromatograms of the plant extract (a) LC1: CSH Phenylhexyl column (150 x 4.6 mm i.d., 5 μ m), flow-rate at 2 ml/min, gradient elution from 3% to 25% of organic solvent in 17.6 min, detection at 288 nm. (b) LC2: Gemini-NX C18 column (150 x 4.6 mm i.d., 3 μ m), flow-rate at 1.5 ml/min, gradient elution from 3% to 25% of organic solvent in 24.2 min, detection at 288 nm.

	CPC1	CPC2	CPC3	CPC4
Solvent system	1- Butanol/Water 50/50 (v/v)	1- Butanol/Water 50/50 (v/v)	Ethanol/Ammonium sulfate/Water 22/21/57 (w/w)	Acetonitrile/Sucrose/Water 50/13.3/36.7 (w/w)
Mode	Descending	Ascending	Descending	Ascending
Rotation (rpm)	2500	2500	1500	2300
Flow-rate (ml/min)	8	5	5	3
Temperature	20°C	20°C	15°C	30°C
Stationary phase ratio (<i>Sf</i>)	75%	66%	28%	58%
Collection time (min)	0.5	1.0	1.0	1.0
Number of fraction (volume in ml)	45 (4)	36 (5)	36 (5)	60 (3)
Total duration time (min)	22.5	36	36	60

Table S1: Operating conditions for CPC methods

Table S2: K_D-value measurements of compounds in the selected CPC systems.

	Solvent system	Mode	Predictive K _D							
	Solvent system	WIDUE	Α	В	С	D	E	F	G	н
CPC1	1-Butanol/water 50/50 (v/v)	Descending	0.1	0.6	1.6	4.1	3.9	0.8	2.7	2.5
CPC2	1-Butanol/water 50/50 (v/v)	Ascending	8.9	1.8	0.6	0.2	0.3	1.2	0.4	0.4
CPC3	Ethanol/Ammonium sulfate/Water 22/21/57 (w/w)	Descending	2.0	2.8	4.7	6.9	6.5	5.2	9.3	15.7
CPC4	Acetonitrile/Sucrose/Water 50/13.3/36.7 (w/w)	Ascending	8.6	2.9	1.6	2.3	1.9	7.8	2.4	1.1

Here can be found the ternary diagram of CPC 3 and CPC4: Liu et al., Journal of chromatography A, 1356 (2014) 157-162; de Brito Cardoso, Separation and purification technology, 104 (2013) 106-113.

Equations: calculation of the harmonic mean \overline{H} and the arithmetic mean \overline{A} of the nearest-neighbor distances

$$\overline{H} = \frac{n-1}{\sum_{i=1}^{n-1} \frac{1}{di}}$$
Equation 1
$$\overline{A} = \frac{\sum_{i=1}^{n-1} di}{n-1}$$
Equation 2

with n number of components and di nearest-neighbor distance for compound *i*

Figure S2: 2D-contour plots of off-line comprehensive CPC1xLC1 separations (system #1) at different sample loads. (a) Injection of 350 μ l of a sample extract at a concentration of 27 mg/ml; (b) Injection of 1.5 ml of a sample extract at a concentration of 27 mg/ml. To be compared with Figure 4a in manuscript.

Figure S3: Evolution of (a) system homogeneity, (b) minimal distance between peaks in function of stationary phase retention rate in ¹D-CPC for the 2D systems using LC1 method as second dimension.

