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A. Generation of the Gauss-Hermite Quadrature Grid Points

Let {qﬁj (QS )} be the set of harmonic oscillator wave functions for the normal coordinate Q, . For each

Q,, there exists a harmonic frequency Vv . The explicit form of ¢; (QS) can be written as*

#(Q)=N,H, (ast)exp( 23 ]
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Where w, is the angular frequency for normal mode Q, , and # is the reduced Planck constant. Let Q, be

(S.1)

the matrix representation of Q. in the {¢55(QS )} basis. For this case, the matrix elements (Qs)i,- is

n

expressible in closed form.?

The diagonal elements are given by

(Q.), =(#71Q.]¢)

= NN, [ HS (2,Q,)QH; (2.Q,) exp(-a?Q?)dQ, (S.2)
=0



The product H? (,Q,)H{ (e,Q,) exp(—anf) will always be an even function, while Qis an odd

function. Therefore, the above integrand is odd, and the integral vanishes. Meanwhile, the off-diagonal

elements are given by

(Q.), =(#1Ql¢7)
= N|Nljj: Hi5 (ast)QsH?(a5Q5) exp(_aszQsz)dQs

The above integral is simplified thru the use of the following recursion equation.*
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The integral in Eq (S.3) then becomes,
NN i
(@ =] TR M1 6)+ S (6) | e(-£7) a2
NN, |23 R (ML (8) exp(-¢7)de +
a2 (L (€) exm(-£7)de

Recall that for Hermite polynomials, the following orthogonality condition holds.

J“mH;(‘f)Hr;(cf)eXp(—gz)dg&Z{znn(!)\/; n=m
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Hence the integral in Eq (S.5) vanishes unless i = j+1 or i = j—1. Thus, Q, is a tridiagonal matrix. The

principal diagonal is zero, and the upper and lower adjacent diagonals are non-zero. The non-zero matrix

elements are then determined as follows.

For the case of i = j+1 we the have
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Where the definition of ¢ in Eq (S.1) has been used.
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B. Exact Fitting Procedure for the components of the 1MR intrinsic potential

Determining the a, coefficients can be done thru standard methods of linear algebra. To
elaborate this idea, let {ys,i Vs (ysli )} be the set of data points obtained thru direct-dynamics of

the system. Using Eq (17) from the main text, a system of linear equations is formed.

<
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Vs(ysii)z a,ye;, i=1toM (S.9)
n=0
or in matrix form.
Vs = YA,
\is(ys‘l) yso,l Ye1 y52,1 yshflf1 a,
Vs(ys,z) _ yg,z Ys2 ysz,z ysflz_1 Ch (S.lO)
\75(ySVM) ysO,M ys,M ysz,M ys’\,/lvv;l Ay 1

Provided that the matrix Y is non-singular (i.e. detY, =0 ), Y, isan invertible matrix. Operating

the matrix inverse Y*yields the column vector containing the fitting coefficients.

A = =YV (S.11)
aM -1

Summing all the polynomials in the form of Eq (S.9) for all desired normal modes gives the 1-

mode intrinsic potential \7(1) .



C. Optimized Geometry of (CH3OH).H" at MP2/aug-cc-pVDZ

The Cartesian coordinate in units of Bohr radius for the optimized geometry of MA conformer of

(CH3OH),H" obtained at MP2/aug-cc-pVDZ level of theory and basis.

Charge = +1 Multiplicity = 1
X (ao) Y (ao) Z (ao)
H 2.61373866 -1.86752298 -2.045006273
H -2.613738736 1.867521761 -2.045006814
H -4.696089687 -1.948449331 -0.70140699
H 5.569979836 -0.784249238 1.17772582
H 4.696089713 1.948449154 -0.701407123
H 3.189853018 1.366605719 2.312004597
H -3.189852968 -1.366605819 2.312004673
H -5.569979764 0.784249148 1.177725852
H -0.000000048 -0.000000085 -0.705627562
C 2.016142905 -1.026576965 -0.526571687
C -2.016142984 1.026576871 -0.526571855
O 4.046099926 0.506576621 0.637012369
O -4.046099871 -0.506576746 0.637012433



D. Grid Reduction in MULTIMODE via Symmetry Consideration

Here we describe in detail how the implementations in MULTIMODE significantly reduces the required number of grid points in
constructing a 4MR potential for (CH3OH),H". We begin by describing the construction of the 1-mode intrinsic potential grids.

» 1-mode intrinsic potential grids

Mode Syrlrr?q(iitry I—,?Ieor.moiieGF?cL)JiSIft-s Symmetry Considerations

Q A 16 16

Q, B 16 8

Q, B 16 8

Q, B 16 8

Total no. of grids 64 40

» 2-mode intrinsic potential grids
ode | MO pomsper | NO.UHEGIIS | Symnety g hois
Mode 2-mode pair

Q &Q, A&B 10*10 100 10*10/2 50
Q &Q, A&B 10*10 100 10*10/2 50
Q &Q, A&B 10*10 100 10*10/2 50
Q, &Q;, B&B 10*10 100 10*10/2 50
Q,&Q, B&B 10*10 100 10*10/2 50
Q; &Q, B&B 10*10 100 10*10/2 50
Total no. of grids 600 300




» 3-mode intrinsic potential grids

Mode No. of HEG No. of HEG points Svmmetr Reduced no. of Further reduction
Mode Svmmetr Points per ef 3-mode prou Con)gi derati)(;ns HEG points per | using every other
y y Mode P group 3-mode group HEG grids
Q&Q,&Q, | A&B&B 10*10*10 1,000 (10*10*10)/2 500 (6*6*6)/2
Q&0Q,&Q, | A&B&B 10*10*10 1,000 (10*10*10)/2 500 (6*6*6)/2
Q&Q&Q, | A&B&B 10*10*10 1,000 (10*10*10)/2 500 (6*6*6)/2
Q,&0Q,&Q, | B&B&B 10*10*10 1,000 (10*10*10)/2 500 (6*6*6)/2
Total no. of grids 4,000 2,000 432
» 4-mode intrinsic potential grids
No. of HEG No. of HEG points per Symmetr Reduced no. of Further reduction
Mode Mode Symmetry Points per ' 4-mode prou P Con);i derati)(;ns HEG points per using every other
Mode group 4-mode group HEG grids
Q&0Q,&Q,&Q, | A&B&B&B | 10*10*10*10 10,000 (10*10*10*10)/2 5,000 (6*6*6*6)/2
Total no. of grids 10,000 5,000 648




E.Root Mean Square Error (RMSE) for the fits for AMR-Sa-FG (o =1, 2)

The least squares fits were only performed for the components of the two-mode, three-mode,
and four-mode intrinsic potentials. The RMSE in cm™ are tabulated below.

Components of the 2MR intrinsic potential

Two-mode grid AMR-S1-FG AMR-S1-FG
Qzand Q1 5.36 5.38
Qs and Q1 8.68 x 1072 9.06 x 10
Qs and Q2 5.24 5.25
Qs and Q1 0.10 8.54 x 1072
Qsand Q2 5.19 5.21
Qs and Q3 0.10 8.78 x 1072

Components of the 3MR intrinsic potential
Three-mode grid

Qs3, Q2, and Q1 2.96 2.43
Qs, Q2,and Q1 2.18 2.19
Q4, Qs3, and Q1 5.42 x 107 0.67
Qs, Q3,and Q2 1.89 2.22

Components of the 4MR intrinsic potential
Four-mode grid
Qs, Q3, Q2, and Q1 10.54 6.63




F. Investigating the Idea of Using a Sparser Grid

The least squares fits were only performed for the components of the two-mode, three-mode,
and four-mode intrinsic potentials. The RMS fitting error in cm for the sparser grids are tabulated

below.

Components of the 3MR intrinsic potential

(Sparser Grid)
Three-mode grid 3MR-S1-SGB 3MR-S2-SGB
Q3, Q2, and Q1 21.68 21.71
Q4, Q2, and Q1 5.01 5.04
Q4, Q3, and Q1 0.11 0.11
Qs, Qs3, and Q2 4.70 4.71
Components of the 4MR intrinsic potential
(Sparser Grid)
Four-mode grid 4MR-S1-SGB 4MR-S2-SGB
Qs, Q3, Q2, and Q1 13.50 13.53

The 3MR and 4MR VSCF/VCI frequencies for the sets of potentials defined in Table 3, which are
used to investigate the strategy of picking every other HEG grids. These potentials were built at
the CCSD(T)/aug-cc-pVDZ//MP2/aug-cc-pVVDZ level of theory and basis.

3MR-S2 AMR-S2
Mode
FG sG* FG SGA® SGB®
Intermolecular O-O 558.15 559.00 557.92 557.84 558.68
stretch
IHB stretch 863.88 864.05 863.97 863.83 863.79
Out-of-phase C-O 992.97 995.84 992.73 992.56 995.39
stretch
_ Out-of-phase 1097.14 1098.23 1095.86 109593 1096.77
in-plane CH3 rock
Total number of grid 2340 772 7,340 2,988 1,420

points used

8Every other HEG points were used for the 3-mode intrinsic potential.
bEvery other HEG points were used for the 4-mode intrinsic potential.
‘Every other HEG points were used for the both 3-mode and 4-mode intrinsic potentials.
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G. Convergence of the VSCF/VCI frequencies with the nMR representation
The (CH3sOH);H* MP2/aug-cc-pVDZ harmonic frequencies (in cm™) and MULTIMODE VSCF/VCI
fundamental frequencies (in cm™) for 1 to 4MR using the PES from cases S1-SGB and S2-SGB. It is
evident that convergence is achieved at 3MR.
S1-SGB MP2/aug-cc-pVDZ
Description Harmonic | 1-MR | 2-MR | 3-MR | 4-MR | Expt.?
Q1 | Intermolecular O-O stretch 57737 | 577.72| 575.47 | 56354 | 563.27
Q2 IHB stretch 702.85 | 1060.99 | 848.94 | 896.25| 895.85 868
Qs Out-of-phase C-O stretch 960.26 | 970.23 | 1045.68 | 1010.06 | 1010.15 985
Qa Out-of-phase 1092.34 | 1101.20 | 1153.24 | 1117.20 | 1115.53 | 1107
in-plane CHs rock
S2-SGB CCSD(T)/aug-cc-pVDZ/IMP2/aug-cc-pVDZ
Description Harmonic | 1-MR | 2-MR | 3-MR | 4-MR | Expt.?
Q1 | Intermolecular O-O stretch - 575.66 | 571.33 | 559.00 | 558.68
Q2 IHB stretch - 1021.42 | 815.27 | 864.05| 863.79 868
Qs Out-of-phase C-O stretch - 969.12 | 1037.24 | 995.84 | 995.39 | 985
Qa Out-of-phase - 1086.04 | 1132.21 | 1098.23 | 1096.77 | 1107
in-plane CHs rock

Note: The experimental values were taken from ref. 3 (see below). They are the highest peaks
corresponding to each band in the triplet signature in the region 800-1200 cm™,
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