Supporting Information for

Multilevel Approach for Direct VSCF/VCI

MULTIMODE Calculations with Applications to

Large "Zundel" Cations

Jake A. Tan* and Jer-Lai Kuo*

Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1 Roosevelt Road, Section 4, Taipei 10617, Taiwan (ROC)

AUTHOR INFORMATION

Corresponding Authors

* E-mails: jaketan@gate.sinica.edu.tw and jlkuo@pub.iams.sinica.edu.tw

Table of Contents

A. Generation of Gauss-Hermite Quadrature Points ... 2
B. Exact Fitting Procedure for the components of the 1 MR intrinsic potential 5
C. Optimized Geometry of $\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2} \mathrm{H}^{+}$.. 6
D. Grid Reductions in MULTIMODE ... 7
E. Root Mean Square Fitting Error for 4MR-S $\alpha-F G(\alpha=1,2) \ldots \ldots$
F. Investigating the Idea of Using a Sparser Grid ... 10
G. Convergence of the VSCF-VCI frequencies with the nMR representation 11

A. Generation of the Gauss-Hermite Quadrature Grid Points

Let $\left\{\phi_{n}^{s}\left(Q_{s}\right)\right\}$ be the set of harmonic oscillator wave functions for the normal coordinate Q_{s}. For each
Q_{s}, there exists a harmonic frequency v_{s}. The explicit form of $\phi_{n}^{s}\left(Q_{s}\right)$ can be written as ${ }^{1}$

$$
\begin{align*}
& \phi_{n}^{s}\left(Q_{s}\right)=N_{n} H_{n}\left(\alpha_{s} Q_{s}\right) \exp \left(\frac{-\alpha_{s}^{2} Q_{s}^{2}}{2}\right) \\
& N_{n}=\sqrt{\frac{\alpha_{s}}{2^{n} n!\sqrt{\pi}}}, \quad \alpha_{s}=\left(\frac{\omega_{s}}{\hbar}\right)^{\frac{1}{2}} \tag{S.1}
\end{align*}
$$

Where ω_{s} is the angular frequency for normal mode Q_{s}, and \hbar is the reduced Planck constant. Let \mathbf{Q}_{s} be the matrix representation of Q_{s} in the $\left\{\phi_{n}^{s}\left(Q_{s}\right)\right\}$ basis. For this case, the matrix elements $\left(\mathbf{Q}_{s}\right)_{i j}$ is expressible in closed form. ${ }^{2}$

The diagonal elements are given by

$$
\begin{align*}
& \left(\mathbf{Q}_{\mathrm{s}}\right)_{i i}=\left\langle\phi_{i}^{s}\right| Q_{s}\left|\phi_{i}^{s}\right\rangle \\
& =N_{i} N_{i} \int_{-\infty}^{+\infty} H_{i}^{s}\left(\alpha_{s} Q_{s}\right) Q_{s} H_{i}^{s}\left(\alpha_{s} Q_{s}\right) \exp \left(-\alpha_{s}^{2} Q_{s}^{2}\right) d Q_{s} \tag{S.2}\\
& =0
\end{align*}
$$

The product $H_{i}^{s}\left(\alpha_{s} Q_{s}\right) H_{i}^{s}\left(\alpha_{s} Q_{s}\right) \exp \left(-\alpha_{s}^{2} Q_{s}^{2}\right)$ will always be an even function, while Q_{s} is an odd function. Therefore, the above integrand is odd, and the integral vanishes. Meanwhile, the off-diagonal elements are given by

$$
\begin{align*}
& \left(\mathbf{Q}_{s}\right)_{i j}=\left\langle\phi_{i}^{s}\right| Q_{s}\left|\phi_{j}^{s}\right\rangle \tag{S.3}\\
& =N_{i} N_{j} \int_{-\infty}^{+\infty} H_{i}^{s}\left(\alpha_{s} Q_{s}\right) Q_{s} H_{j}^{s}\left(\alpha_{s} Q_{s}\right) \exp \left(-\alpha_{s}^{2} Q_{s}^{2}\right) d Q_{s}
\end{align*}
$$

The above integral is simplified thru the use of the following recursion equation. ${ }^{1}$

$$
\begin{equation*}
\xi H_{j}^{s}(\xi)=j H_{j-1}^{s}(\xi)+\frac{1}{2} H_{j+1}^{s}(\xi), \quad \xi \equiv \alpha_{s} Q_{s} \tag{S.4}
\end{equation*}
$$

The integral in Eq (S.3) then becomes,

$$
\begin{align*}
& \left(\mathbf{Q}_{\mathrm{s}}\right)_{i j}=\frac{N_{i} N_{j}}{\alpha_{s}^{2}} \int_{-\infty}^{+\infty} H_{i}^{s}(\xi)\left[j H_{j-1}^{s}(\xi)+\frac{1}{2} H_{j+1}^{s}(\xi)\right] \exp \left(-\xi^{2}\right) d \xi \\
& =\frac{N_{i} N_{j}}{\alpha_{s}^{2}}\left\{\begin{array}{l}
2 j \int_{-\infty}^{+\infty} H_{i}^{s}(\xi) H_{j-1}^{s}(\xi) \exp \left(-\xi^{2}\right) d \xi+ \\
\frac{1}{2} \int_{-\infty}^{+\infty} H_{i}^{s}(\xi) H_{j+1}^{s}(\xi) \exp \left(-\xi^{2}\right) d \xi
\end{array}\right\} \tag{S.5}
\end{align*}
$$

Recall that for Hermite polynomials, the following orthogonality condition holds. ${ }^{1}$

$$
\int_{-\infty}^{+\infty} H_{n}^{s}(\xi) H_{m}^{s}(\xi) \exp \left(-\xi^{2}\right) d \xi=\left\{\begin{array}{cc}
2^{n} n!\sqrt{\pi} & n=m \tag{S.6}\\
0 & n \neq m
\end{array}\right.
$$

Hence the integral in Eq (S.5) vanishes unless $i=j+1$ or $i=j-1$. Thus, \mathbf{Q}_{s} is a tridiagonal matrix. The principal diagonal is zero, and the upper and lower adjacent diagonals are non-zero. The non-zero matrix elements are then determined as follows.

For the case of $i=j+1$ we the have

$$
\begin{align*}
\left(\mathbf{Q}_{\mathrm{s}}\right)_{j+1, j} & =\frac{N_{j+1} N_{j}}{\alpha_{s}^{2}}\left\{\begin{array}{l}
2 j \int_{-\infty}^{+\infty} H_{j+1}^{s}(\xi) H_{j-1}^{s}(\xi) \exp \left(-\xi^{2}\right) d \xi+ \\
\frac{1}{2} \int_{-\infty}^{+\infty} H_{j+1}^{s}(\xi) H_{j+1}^{s}(\xi) \exp \left(-\xi^{2}\right) d \xi
\end{array}\right\} \\
& =\frac{N_{j+1} N_{j+1}}{2 \alpha_{s}^{2}}\left[2^{j+1}(j+1)!\sqrt{\pi}\right] \tag{S.7}\\
& =\frac{1}{\alpha_{s}} \sqrt{\frac{j+1}{2}} \\
& =\sqrt{\frac{\hbar(j+1)}{2 \omega_{s}}}
\end{align*}
$$

Similarly, for the case of $i=j-1$

$$
\begin{align*}
\left(\mathbf{Q}_{\mathrm{s}}\right)_{j-1, j} & =\frac{N_{j-1} N_{j}}{2 \alpha_{s}^{2}}\left\{\begin{array}{l}
2 j \int_{-\infty}^{+\infty} H_{j-1}^{s}(\xi) H_{j-1}^{s}(\xi) \exp \left(-\xi^{2}\right) d \xi+ \\
\frac{1}{2} \int_{-\infty}^{+\infty} H_{j-1}^{s}(\xi) H_{j+1}^{s}(\xi) \exp \left(-\xi^{2}\right) d \xi
\end{array}\right\} \\
& =\frac{N_{j-1} N_{j}}{2 \alpha_{s}^{2}}(2 j)\left[2^{j-1}(j-1)!\sqrt{\pi}\right] \tag{S.8}\\
& =\frac{1}{\alpha_{s}} \sqrt{\frac{j}{2}} \\
& =\sqrt{\frac{\hbar j}{2 \omega_{s}}}
\end{align*}
$$

Where the definition of α_{s} in Eq (S.1) has been used.

B. Exact Fitting Procedure for the components of the 1MR intrinsic potential

Determining the a_{n} coefficients can be done thru standard methods of linear algebra. To elaborate this idea, let $\left\{y_{s, i}, \bar{V}_{s}\left(y_{s, i}\right)\right\}$ be the set of data points obtained thru direct-dynamics of the system. Using Eq (17) from the main text, a system of linear equations is formed.

$$
\begin{equation*}
\bar{V}_{s}\left(y_{s, i}\right)=\sum_{n=0}^{M-1} a_{n} y_{s, i}^{n}, \quad i=1 \text { to } M \tag{S.9}
\end{equation*}
$$

or in matrix form.

$$
\begin{gather*}
\overline{\mathbf{V}}_{\mathbf{s}}=\mathbf{Y}_{s} \mathbf{A}_{\mathbf{s}} \\
{\left[\begin{array}{c}
\bar{V}_{s}\left(y_{s, 1}\right) \\
\bar{V}_{s}\left(y_{s, 2}\right) \\
\vdots \\
\bar{V}_{s}\left(y_{s, M}\right)
\end{array}\right]=\left[\begin{array}{ccccc}
y_{s, 1}^{0} & y_{s, 1} & y_{s, 1}^{2} & \cdots & y_{s, 1}^{M-1} \\
y_{s, 2}^{0} & y_{s, 2} & y_{s, 2}^{2} & \cdots & y_{s, 2}^{M-1} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
y_{s, M}^{0} & y_{s, M} & y_{s, M}^{2} & \cdots & y_{s, M}^{M-1}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{M-1}
\end{array}\right]} \tag{S.10}
\end{gather*}
$$

Provided that the matrix \mathbf{Y}_{s} is non-singular (i.e. $\operatorname{det} \mathbf{Y}_{\mathrm{s}} \neq 0$), \mathbf{Y}_{s} is an invertible matrix. Operating the matrix inverse $\mathbf{Y}_{\mathbf{s}}^{-1}$ yields the column vector containing the fitting coefficients.

$$
\mathbf{A}_{\mathrm{s}}=\left[\begin{array}{c}
a_{0} \tag{S.11}\\
a_{1} \\
\vdots \\
a_{M-1}
\end{array}\right]=\mathbf{Y}_{\mathrm{s}}^{-1} \overline{\mathbf{V}}_{\mathbf{s}}
$$

Summing all the polynomials in the form of Eq (S.9) for all desired normal modes gives the 1 mode intrinsic potential $\bar{V}^{(1)}$.

C. Optimized Geometry of $\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2} \mathrm{H}^{+}$at MP2/aug-cc-pVDZ

The Cartesian coordinate in units of Bohr radius for the optimized geometry of MA conformer of $\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2} \mathrm{H}^{+}$obtained at MP2/aug-cc-pVDZ level of theory and basis.

Charge $=+1$	Multiplicity $=1$ $\mathrm{X}\left(\mathrm{a}_{0}\right)$	$\mathrm{Y}\left(\mathrm{a}_{0}\right)$	$\mathrm{Z}\left(\mathrm{a}_{0}\right)$
H	2.61373866	-1.86752298	-2.045006273
H	-2.613738736	1.867521761	-2.045006814
H	-4.696089687	-1.948449331	-0.70140699
H	5.569979836	-0.784249238	1.17772582
H	4.696089713	1.948449154	-0.701407123
H	3.189853018	1.366605719	2.312004597
H	-3.189852968	-1.366605819	2.312004673
H	-5.569979764	0.784249148	1.177725852
H	-0.000000048	-0.000000085	-0.705627562
C	2.016142905	-1.026576965	-0.526571687
C	-2.016142984	1.026576871	-0.526571855
O	4.046099926	0.506576621	0.637012369
O	-4.046099871	-0.506576746	0.637012433

D. Grid Reduction in MULTIMODE via Symmetry Consideration

Here we describe in detail how the implementations in MULTIMODE significantly reduces the required number of grid points in constructing a 4 MR potential for $\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2} \mathrm{H}^{+}$. We begin by describing the construction of the 1 -mode intrinsic potential grids.
> 1-mode intrinsic potential grids

Mode	Mode Symmertry	No. of Gauss- Hermite Points	Symmetry Considerations
Q_{1}	A	16	16
Q_{2}	B	16	8
Q_{3}	B	16	8
Q_{4}	B	16	8
Total no. of grids		$\mathbf{6 4}$	$\mathbf{4 0}$

> 2-mode intrinsic potential grids

Mode	Mode Symmetry	No. of HEG Points per Mode	No. of HEG points per 2-mode pair	Symmetry Considerations	Reduced no. of HEG points per 2-mode pair
$Q_{1} \& Q_{2}$	A \& B	$10 * 10$	100	$10 * 10 / 2$	50
$Q_{1} \& Q_{3}$	A \& B	$10 * 10$	100	$10 * 10 / 2$	50
$Q_{1} \& Q_{4}$	A \& B	$10 * 10$	100	$10 * 10 / 2$	50
$Q_{2} \& Q_{3}$	B \& B	$10 * 10$	100	$10 * 10 / 2$	50
$Q_{2} \& Q_{4}$	B \& B	$10 * 10$	100	$10 * 10 / 2$	50
$Q_{3} \& Q_{4}$	B \& B	$10 * 10$	100	$10 * 10 / 2$	50
Total no. of grids					

$>$
3-mode intrinsic potential grids

Mode	Mode Symmetry	No. of HEG Points per Mode	No. of HEG points per 3-mode group	Symmetry Considerations	Reduced no. of HEG points per 3-mode group	Further reduction using every other HEG grids
$Q_{1} \& Q_{2} \& Q_{3}$	A \& B \& B	10*10*10	1,000	$(10 * 10 * 10) / 2$	500	$(6 * 6 * 6) / 2$
$Q_{1} \& Q_{2} \& Q_{4}$	A \& B \& B	$10 * 10 * 10$	1,000	$(10 * 10 * 10) / 2$	500	$(6 * 6 * 6) / 2$
$Q_{1} \& Q_{3} \& Q_{4}$	A \& B \& B	$10 * 10 * 10$	1,000	$(10 * 10 * 10) / 2$	500	$(6 * 6 * 6) / 2$
$Q_{2} \& Q_{3} \& Q_{4}$	B \& B \& B	10*10*10	1,000	$(10 * 10 * 10) / 2$	500	$(6 * 6 * 6) / 2$
Total no. of grids			4,000		2,000	432

> 4-mode intrinsic potential grids

Mode	Mode Symmetry	No. of HEG Points per Mode	No. of HEG points per 4-mode group	Symmetry Considerations	Reduced no. of HEG points per 4-mode group	Further reduction using every other HEG grids
$Q_{1} \& Q_{2} \& Q_{3} \& Q_{4}$	A \& B \& B \& B	$10 * 10^{*} 10^{*} 10$	10,000	$\left(10^{*} 10 * 10 * 10\right) / 2$	5,000	
Total no. of grids						$\mathbf{1 0 , 0 0 0}$
$(6 * 6 * 6 * 6) / 2$						

E. Root Mean Square Error (RMSE) for the fits for 4MR-S $\alpha-F G(\alpha=1,2)$

The least squares fits were only performed for the components of the two-mode, three-mode, and four-mode intrinsic potentials. The RMSE in cm^{-1} are tabulated below.

Components of the 2MR intrinsic potential		
Two-mode grid	4MR-S1-FG	4MR-S1-FG
Q_{2} and Q_{1}	5.36	5.38
Q_{3} and Q_{1}	8.68×10^{-2}	9.06×10^{-2}
Q_{3} and Q_{2}	5.24	5.25
Q_{4} and Q_{1}	0.10	8.54×10^{-2}
Q_{4} and Q_{2}	5.19	5.21
Q_{4} and Q_{3}	0.10	8.78×10^{-2}
Components of the 3MR intrinsic potential		
Three-mode grid		
$\mathrm{Q}_{3}, \mathrm{Q}_{2}$, and Q_{1}	2.96	2.43
$\mathrm{Q}_{4}, \mathrm{Q}_{2}$, and Q_{1}	2.18	2.19
$\mathrm{Q}_{4}, \mathrm{Q}_{3}$, and Q_{1}	5.42×10^{-2}	0.67
$\mathrm{Q}_{4}, \mathrm{Q}_{3}$, and Q_{2}	1.89	2.22
Components of the 4MR intrinsic potential		
Four-mode grid		
$\mathrm{Q}_{4}, \mathrm{Q}_{3}, \mathrm{Q}_{2}$, and Q_{1}	10.54	6.63

F. Investigating the Idea of Using a Sparser Grid

The least squares fits were only performed for the components of the two-mode, three-mode, and four-mode intrinsic potentials. The RMS fitting error in cm^{-1} for the sparser grids are tabulated below.

Components of the 3MR intrinsic potential (Sparser Grid)		
Three-mode grid	3MR-S1-SGB	3MR-S2-SGB
$\mathrm{Q}_{3}, \mathrm{Q}_{2}$, and Q1	21.68	21.71
$\mathrm{Q}_{4}, \mathrm{Q}_{2}$, and Q1	5.01	5.04
$\mathrm{Q}_{4}, \mathrm{Q}_{3}$, and Q1	0.11	0.11
$\mathrm{Q}_{4}, \mathrm{Q}_{3}$, and Q2	4.70	4.71
Components of the 4MR intrinsic potential		
(Sparser Grid)		

The 3MR and 4MR VSCF/VCI frequencies for the sets of potentials defined in Table 3, which are used to investigate the strategy of picking every other HEG grids. These potentials were built at the CCSD(T)/aug-cc-pVDZ//MP2/aug-cc-pVDZ level of theory and basis.

Mode	3MR-S2		4MR-S2		
	FG	SG $^{\mathbf{a}}$	FG	SGA $^{\mathbf{b}}$	SGB
Intermolecular O-O stretch	558.15	559.00	557.92	557.84	558.68
IHB stretch	863.88	864.05	863.97	863.83	863.79
Out-of-phase C-O stretch	992.97	995.84	992.73	992.56	995.39
Out-of-phase in-plane CH3 rock	1097.14	1098.23	1095.86	1095.93	1096.77
Total number of grid points used	$\mathbf{2 , 3 4 0}$	$\mathbf{7 7 2}$	$\mathbf{7 , 3 4 0}$	$\mathbf{2 , 9 8 8}$	$\mathbf{1 , 4 2 0}$

${ }^{\text {a }}$ Every other HEG points were used for the 3-mode intrinsic potential.
${ }^{\text {b }}$ Every other HEG points were used for the 4-mode intrinsic potential.
${ }^{\text {c }}$ Every other HEG points were used for the both 3-mode and 4-mode intrinsic potentials.

G. Convergence of the VSCF/VCI frequencies with the nMR representation

The $\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2} \mathrm{H}^{+}$MP2/aug-cc-pVDZ harmonic frequencies (in cm^{-1}) and MULTIMODE VSCF/VCI fundamental frequencies (in cm^{-1}) for 1 to 4MR using the PES from cases S1-SGB and S2-SGB. It is evident that convergence is achieved at 3MR.

S1-SGB	MP2/aug-cc-pVDZ						
Description	Harmonic	1-MR	2-MR	3-MR	4-MR	Expt. 3	
Q1	Intermolecular O-O stretch	577.37	577.72	575.47	563.54	563.27	---
Q2 2	IHB stretch	702.85	1060.99	848.94	896.25	895.85	868
Q3	Out-of-phase C-O stretch	960.26	970.23	1045.68	1010.06	1010.15	985
Q4	Out-of-phase	1092.34	1101.20	1153.24	1117.20	1115.53	1107
	in-plane CH3 rock						

	S2-SGB	CCSD(T)/aug-cc-pVDZ//MP2/aug-cc-pVDZ					
	Description	Harmonic	1-MR	2-MR	3-MR	4-MR	Expt. ${ }^{3}$
Q1	Intermolecular O-O stretch	-	575.66	571.33	559.00	558.68	---
Q2	IHB stretch	-	1021.42	815.27	864.05	863.79	868
Q3	Out-of-phase C-O stretch	-	969.12	1037.24	995.84	995.39	985
Q4	Out-of-phase in-plane CH_{3} rock	-	1086.04	1132.21	1098.23	1096.77	1107

Note: The experimental values were taken from ref. 3 (see below). They are the highest peaks corresponding to each band in the triplet signature in the region $800-1200 \mathrm{~cm}^{-1}$.

References

(1) Pauling, L.; Wilson, E. B. Introduction to Quantum Mechanics; McGraw-Hill, 1935.
(2) Atkins, P. W.; Friedman, R. S. Molecular Quantum Mechanics, 4th ed.; Oxford University Press: New York, 2005.
(3) Roscioli, J. R.; McCunn, L. R.; Johnson, M. A. Quantum Structure of the Intermolecular Proton Bond. Science 2007, 316 (5822), 249-254.

