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SI. Theory and Data Analysis. 

 This section relates the solution to the problem of rotational Brownian motion of a 

completely asymmetric rigid body, as originally treated by Favro,1 to the measurements 

presented in this work.  

 
A. Rotational Diffusion of an Asymmetric Rotor: Theory. 

 As shown by Favro,1 if the molecules in an ensemble rotate in a random fashion through 

infinitesimally small angular steps, the probability of finding a randomly chosen member of the 

ensemble with orientation   at time t , ( , )P t , obeys the diffusion equation 

 ( ) ( , ) ( ) ( , ),t P t P t     L D L        (S1) 

where L  is the quantum mechanical angular momentum operator and D  is the rotational 

diffusion tensor. Here,   is the orientation of some molecule fixed coordinate system with 

respect to the laboratory fixed system. For example, the orientation,  , can be identified in 

terms of the three Euler angles ( , ,   ) which rotate the laboratory fixed system into the 

molecule fixed system.2  

It is convenient to choose the molecule fixed coordinate system that diagonalizes D . 

With this choice, Eq. (S1) reduces to 

 ( ) ( , ) ( , ),t P t P t             (S2) 

where 2
i i

i

D L  and the summation runs over the i principal axes. With the simple 

substitution 2 2i iD I  , the operator   can be identified with the quantum mechanical 



S2 
 

Hamiltonian operator for an asymmetric rigid rotor, where iI  are the principal moments of 

inertia. As will be seen shortly, the solution to Eq. (S2) can be expressed in terms of the 

eigenfunctions and eigenvalues of a rigid rotor. This solution can be written in the form1 

 0 0 0( , ) ( ) ( ) ,P t P G t d              (S3) 

where 0( )P   is the probability that a molecule has orientation 
0

  at 0t  , and the Green’s 

function, 0( )G t  , is the conditional probability that the molecule will be found with 

orientation   at time t , provided that it was initially oriented at 
0

 . The Green’s function can 

be expanded in the complete set of eigenfunctions ( )n   of  1 

 *
0 0( ) ( ) ( ) ,nE

n

t
n nG et               (S4) 

where nE  is the eigenvalue corresponding to the state ( )n   and the initial condition is 

0 0( ) ( , )G      . Therefore, in Favro’s formalism, the solution to Eq. (S2) is reduced to 

the problem of finding the eigenvalues and eigenfunctions of a rigid rotor. 

 The eigenfunctions of  are linear combinations of symmetric top eigenfunctions, 

( )
, ( )l

K M  ,1-2 

( ) ( ) ( )
, , ,( ) ( ) ( ),

l
l l l

n M K K M
K l

a   


            (S5) 

where ( )
,
l
Ka  are the expansion coefficients. The expansion coefficients and eigenvalues, (2)E ,1, 3-5 

are tabulated in Table S1 for 2l  . 

 
B. Rotational Diffusion of an Asymmetric Rotor: Connection to the Single Molecule 

Orientational Correlation Function. 

 Several authors have incorporated Favro’s results into the theoretical framework of time-

dependent fluorescence depolarization experiments.4, 6-7 The mathematical development is 

identical for IR depolarization experiments, i.e. PSPP spectroscopy. However, the derivations 

and results have been cast into different forms, and some have been subject to algebraic errors.4 

For clarity, we outline the derivation originally presented by Tao,4 which leads to a general 

expression for the anisotropy of a completely asymmetric rotor in the form used here. However, 
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we note that in that same work, the spherical harmonics of order l  = 2 were improperly 

expressed in terms of the Cartesian components of the transition dipole moment unit vector, 

e , 

affecting the final result. Explicit expressions are provided below for clarity in Table S2. 

 Tao noted that if 

e  is an arbitrary unit vector fixed in the molecule, then for every 

orientation ( , )   of 

e  in the laboratory, there is a corresponding orientation,  , of the molecule 

fixed axes in the laboratory. Then if 0 0( , )P    and ( , )f    are, respectively, the initial 

distribution of the orientation of 

e  in the laboratory frame and some arbitrary function of the 

orientation of 

e , a corresponding initial distribution, 0( )P  , and function, (f  , exist for the 

orientation of the molecule fixed axes. The ensemble averages of the function f  can be written 

 2 2
, 0 0 0 0 0( , ) ( , ) ( , , , ),f d f d P G t                       (S6) 

and  

3 3
0 0 0( ) ( ) ( ),f d f d P G t                    (S7) 

where 2 sin d dd     and 3 sind d dd     . The same result must be obtained whether 

one averages f  over ( , )   or over  : 

 , .f f                 (S8)  

With the choices 

 2
0 0 0 2,0 0 0

3 1
, ) cos [1 4 ( , )],

4 4
(

5
P Y

    
 

         (S9) 

and 

*
2,0( , ) ( , ),f Y              (S10) 

and recalling that the Green’s function, expanded in terms of the spherical harmonics, is given 

by4, 8 

0 0 0 0
*
, ,

0

( , ) ( ), , ,, ( ,( ) )
l

l l m l m
l m l

G t C t Y Y       


 

      (S11) 

Eq. (S6) becomes 

, 2

1
( )

5
f C t  
            (S12) 

Eq. (S9) is the normalized, initial excited state distribution obtained from an isotropic ensemble 

when the incident pump pulse polarization is defined to lie along the z  axis in the laboratory 
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frame, as the probability that a given molecule is excited is proportional to 
2

k


e . We note that, 

in Eq. (S9), Tao omitted the factor of 4 5  in front of 2,0 0 0( , )Y   , but it has no effect on the 

final result for 2 ( )C t . The next step is to calculate f   by writing 0( )P  , (f  , and 

0( )G t   in terms of the ( )
, ( )l

K M  . This is accomplished with the following relationships from 

the theory of angular momentum:2, 4 

 ( )*
, , ', ) ( , )( ( ,

l
l

m m
m

m l m
l

lY YD   


           (S13) 

and 

 ( )
, '

( )* 2 1/2
', ( / (2 1)] (l
m mm

l
mD l             (S14) 

where ( , )    refer to the orientation of 

e  in the body-fixed axes, and ( )

', (l
m mD   are the elements 

of the Wigner rotation matrix that rotate the laboratory-fixed axes by the angles    into the 

body-fixed axes. Using Eqs. (S13) and (S14) to rewrite Eq. (S9) and (S10), one obtains: 

 3 (2)
2

0, ' 0 2,
2

2
0 (

4
( ) ) ( ,(1/ 8 1 8 )) ,

5 m m
m

YP     


    
        (S15) 

and 

 (2)*
0

2
2 *

2, ,
2

( 8 / 5 ( .( , )) m
m

mf Y     


         (S16) 

Substituting Eqs. (S15), (S16), (S4), and (S5) into Eq. (S7), and using the orthonormality of the 

( )
, ( )l

K M   to simplify the expression, one obtains: 

 
( 2)

22 2
(2)
, 2,

2 2

4
( , ) .

5 5
E t

m m
m

f e a Y




  

 

             (S17) 

Finally, using the identity Eq. (S8), an expression for the orientational correlation function, 2 ( )C t

, is obtained: 

 
( 2)

22
(2)
, 2,

2 2

2

2 ( ) ( , )4 .( 5) E t
m m

m

ae YC t 




 






         (S18) 

The (2)
,ma  and (2)E  are found in Table S1. The 2, ( , )mY    , expressed in terms of the Cartesian 

components of 

e ,  
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cos

e sin sin

e cos ,

e sinx

y

z

 
 



 

 







         (S19) 

are provided in Table S2. Substituting these various quantities into Eq. (S18), the expression for 

2 ( )C t  is: 

2
(2) (2)

2
2

( ) exp[ ( )]C t c E t


 






           (S20) 

2 2(2)
2 3 eex yc   

2 2(2)
1 3e ex zc   

       2 2(2) 2 2 2 2
0 2

2 22 23
3 2 3 3e 1 e e e e e1 3

12 z x x yz yc b ab a
N

       

2(2)
1

23e ey zc    

       2 2(2) 2 2 2 2
2 2

2 22 23
3 2 3 3e 1 e e e .e

12
e1 3z yz x x yc a ab b

N
       

 We note that Eq. (S20) is identical to Eq. (3.23) of Ehrenberg and Rigler6 if the angle 

between the absorption and emission transition dipole unit vectors is taken to be zero, which was 

the assumption made here. For benzonitrile, we have e 0x  , e 0y  , and e 1z  . The general 

expression for ( )r t  is then substantially reduced to the following biexponential form, 

  2
2

2

2( ) 0.4 ( )

2
exp[ (6 2 ) ] exp[ (6 2 ) ] ,

5

r t C t

a D t b D t
N



       
                (S21) 

where the various quantities are defined in Table S1. Thus, the theory predicts that, in the most 

general situation, the maximum number of exponential decays that can be observed is two. If the 

data present as a biexponential decay, the average diffusion constant, D , and   can be 

determined straightforwardly from the exponential time constants. The parameters a  and b  can 

be obtained from the amplitudes. The three components of the diffusion tensor can then be 

determined: 

 
1 3

3 2 2xx

a b
D D

 
      

 
        (S22) 
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1 3

3 2 2yy

a b
D D

 
      

 
 

  1
2 .

3zzD D b     

This procedure was used to analyze the data in Fig. 4. However, no physically meaningful set of 

diffusion coefficients could be determined that fit the biexponential ( )r t . One diffusion 

coefficient was consistently found to be unreasonably small or negative in some cases, implying 

an exceedingly large time constant for rotation about the corresponding principal axis of 

benzonitrile. This problem motivated a different analysis of the data. In the near symmetric-top 

limit, i.e. xx yyD D D  , Eq. (S21) further simplifies to 

 ( ) 0.4exp[ 6 ].r t D t           (S23) 

In this limit, the ( )r t is single-exponential, with the time constant related to the diffusion 

coefficient for rotation perpendicular to the symmetry axis of the symmetric-top. This analysis 

requires a distinct physical interpretation of the additional time constant observed in the 

experimentally measured ( )r t  (Fig. 4). This is discussed in greater detail in the main text. 

 
C. Rotational Diffusion of an Asymmetric Rotor: Connection to the OHD-OKE Signal. 

 Berne and Pecora have incorporated Favro’s solution to the asymmetric diffusor problem 

into the formalism of depolarized Rayleigh scattering experiments.9 They treat the problem in the 

limit of no orientational pair correlations. Depolarized Rayleigh scattering and the OHD-OKE 

signal are frequency-time analogues and are related through a Fourier Transform.10-12 Both 

experiments measure the polarizability anisotropy TCF. The mathematical treatment is similar to 

that in the case of fluorescence/IR depolarization. As mentioned in the main text, benzonitrile 

has sufficient symmetry that the body-fixed axis system is a principal axis system for both the 

polarizability tensor,  ,  and rotational diffusion tensor, D . In this case, the following result9 is 

obtained for the long-time OHD-OKE signal: 
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 , ,2

1

1

211 2 2

( ) ( ) ( )

15
( )

( ) exp[ / ] ( )exp[ /

(

],

0)

RR MM
xy xy

N

i xy y
i

i x

R t t t
t t

t
t N

A t A t

 


   

 



 
 

 


 


 



   

      (S24) 

with 

 

2
2

1

2

2

2
2

2

1
( )]

2

1
[ ( )]( )

23

[ ]

1

3

2

[ zz xx yy

zz xx yy xx yy

xx yy

ab

N

b

N

a
A

N
  

    

 


 



   

 

  
 

  

 1 1 (6 2 )D     

 2 1 (6 2 ) ,D     

and where 2A  is identical to 1A  except that a  and b  are interchanged and the ab  term has a 

negative sign. Therefore, in the general case, one expects to observe a maximum of two 

exponential components in the OHD-OKE signal. The time constants of Eq. (S24) are identical 

to those in Eq. (S21). In the near symmetric-top limit, i.e. xx yy    , zz   , and 

xx yyD D D  , Eq. (S24) further simplifies to 

 2] exp[ 6 ]2 [ ,( ) D tR t D             (S25) 

which shows that, in this limit, the anisotropy (Eq. (S23)) and long-time OHD-OKE signal (Eq. 

(S25), derived in the absence of orientational pair correlations) of benzonitrile decay as a single 

exponential with time constant 1 6D  .  
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Table S1. Expansion Coefficients and Eigenvalues for the Asymmetric Rigid Rotator 
Eigenfunctions ( 2l  ). 

(2)
,Ka  (2)E   

  K  = 2 K  = 1 K  = 0 K  = -1 K  = -2 

2 2b N   0 a N  0 2b N  6 2D     

1 0 1 2  0 1 2  0 3( )xxD D  

0 2a N  0 b N  0 2a N  6 2D     

-1 0 1 2  0 1 2  0 3( )yyD D  

-2 1 2  0 0 0 1 2  3( )zzD D  

3( )xx yya D D   ;  

2 2zz xx yyb D D D      ; 1/22( )N b   ;  
2 1/2[( ) ( )( )]xx yy zz xx zz yyD D D D D D       ;  

( ) / 3xx yy zzD D D D    

 

Table S2. Representation of Spherical Harmonics ( 2l  ) in Terms of the Cartesian 
Components of 


e . 

Spherical Harmonic Representation in terms of components of 

e

2,2 ,( )Y      2 21 15
e e 2 e e

4 2 x yy xi


   

2,1 ,( )Y      1 15
e e e e

2 2 x z y zi


  

2,0 ,( )Y     21 5
3e 1

4 z
  

2, 1 , )(Y       e e e
5

2
e

1 1

2 x z y zi


  

2, 2 , )(Y       2 21 15
e e

4
e2 e

2 x yy xi


   
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