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Catalyst Oxidant Reaction Condition Benz 
Conv 
(%)

Phenol 
Select 

(%)

Reference

Fe/ ZSM5 catalysts N2O Temperature= 350°C-
400°C

20-30 99 Appl. Catal. A: Gen, 1992, 82,31

Cu/ZSM-5 catalyst O2 Temperature= 400 0C 2.0 60 J. Mol. Catal. A 2002, 178, 89.

FeAlPO-5 N2O Temperature= 380°C 13.4 97 Chem. Commun. 2006, 4955

Interstitial-N/Re 
Cluster/Zeolite 

O2 +NH3 Temperature= 280°C 0.8 88 Angew. Chem. 2006, 45, 448 

VxOy@C-0.195–120 O2 Temperature= 80 °C
Pressure(O2)= 3.0 MPa 

13.0 93.8 Green Chem. 2013,15, 1150-1154

10% Pd-VOx Nanoparticles O2 Temperature= 140 °C 
Pressure= 2.0 MPa

4.5 99 ChemPlusChem 2014, 79, 680

Pt-Re/ZSM-5 O2 +NH3 Temperature=  260°C 13 78 ChemCatChem 2013, 5, 2203
Ir/β O2 +NH3 Temperature= 300°C 12 70 ChemCatChem 2015, 7, 3248 
Cu(II)/CuCr2O4 

Nanoparticles
Air Temperature= 350 °C

Pressure (air)= 3.5 MPa
36 78 ACS Catal. 2015, 5, 2850

Fe/ZSM-5 nanosheet N2O Temperature=350°C 27.9 99 ACS Catal. 2017, 7, 2709
Meso-Fe-ZSM-5 N2O Temperature=320°C

Pressure= 101 kPa.
22.1 100 Catal. Sci. Technol., 2011, 1, 1250

Cs/β zeolite O2 +NH3 Temperature=320°C 5.9 83.4 This Work
Rb/β zeolite N2O Temperature=300°C 25.5 99.9 This Work

Table S1:  Performances of catalysts for the gas-phase hydroxylation of benzene to phenol in the literature



Figure S1. In situ Rb K-edge XANES spectra. Blue: fresh (as-synthesized) Rb/β catalyst.
Red: spent Rb/β catalyst. Green: RbNO3 reference. RbNO3 aq. from A. Mihelič, A. Kodre,
I. Arčon, J. P. Gomilšek, Acta Chim. Slov. 51, 33 (2004).
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Si O Cs

20 nm

Figure S2. Bright and dark fields STEM images and elements (Si, O and Cs) mapping for Cs(2 wt%)/β.
The bright and dark fields STEM images reveal no images except for the β zeolite lattice.
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Figure S3. XRD patterns for Rb/β and Cs/β catalysts. They are similar to XRD pattern of β.
There are neither Rb oxides nor Cs oxides.
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Figure S4. Temperature programmed desorption (TPD)
of CO2 (a) and CH3CN (b) on Cs/β (2.1 wt%; 0.2 g) and
CH3CN on Rb/β (1.0 wt%; 0.4 g). Heating rate: 10 K min-1.
Desorbed CO2 and CH3CN were analyzed by TCD and FID
GC, respectively every 3 min. (a, b): Cs= 3.16x10-5 mol;
(c): Rb=4.68x10-5 mol. Desorbed amounts/Cs and /Rb
(the amounts on Cs/β and Rb/β – the amount on β): CO2
< 1%; CH3CN=57% of Cs and 75% of Rb.
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Molecular coadsorption
on Cs+

Figure S5. A computational downhill-energy reaction profile for the concerted inter-ligand reaction mechanism involving

coadsorption and transition states for the selective oxidation of benzene to phenol with N2O on the Cs+/β cluster by DFT

calculations. Asterisks(*) imply direct interaction with Cs+.
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Molecular coadsorption
on Na+

Figure S6. A computational downhill-energy reaction profile for the concerted inter-ligand reaction mechanism involving

coadsorption and transition states for the selective oxidation of benzene to phenol with N2O on the Na+/β cluster by DFT

calculations. Asterisks(*) imply direct interaction with Na+.
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Concerted bond rearrangement
to form the O-C(Bz) bond 

assisted by NH3 on Cs+

Figure S7. A computational reaction profile for the concerted inter-ligand reaction mechanism involving coadsorption states

and transition states for the selective oxidation of benzene to phenol with O2 regulated by NH3 on the Cs+/β cluster by DFT

calculations. Cs: dark purple, O: red, C: gray, H: white, N: blue, Si: yellow, Al: pink.
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Cs-N(NH3) 0.3012 nm        

Cs-O(O2)  0.3278 nm,      

0.3454 nm

O-O  0.1282 nm          

Cs-C(benzene)  0.3513 nm   

Figure S8. Computanional coadsorption arrangement on a Cs+ ion incoorporated in β pore for benzene, O2

and NH3 by DFT calculations. Cs+ ion has a large ion diameter of 0.334 nm, which provides a reaction
platform.
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Catalyst Benzene conv./% Phenol selec./% TOF/h-1
NH3]reacted/

[Phenol]produced

V (2 wt%)/β 1.0 6.85 0.125 1450

Cr (2 wt%)/β 1.64 3.4 0.204 1050

Mn (2 wt%)/β 2.1 0.5 0.260 12400

Fe (2 wt%)/β 0.83 10.6 0.0704 124

Co (2 wt%)/β 0.1 35.8 0.0122 1610

Ni (2 wt%)/β 4.9 1.83 0.414 1420

Cu (2 wt%)/β 0.4 4.33 0.052 3410

Ir (2 wt%)/β 1.01 30.3 0.125 428

Ag (2 wt%)/β 0.14 54.7 0.018 992
[†] The catalysts were pretreated with benzene/O2/NH3/He=0.5/0.5/1.8/4 mL min-1 at 673 K for 0.5 h. Cat. = 0.6 g; Performance 
values: averaged during 30-180 min time-on-stream. Benzene/O2/NH3/He = 0.5/0.5/1.8/4.0 mL min-1. 
[NH3]reacted/[Phenol]produced: reacted NH3 amount/produced phenol amount. TOF is defined as reacted benzene(mol)/total 
metal(mol)/h.  Zeolite β was purchased from JGC C&C.

Table S2. Performances (conversion and selectivity) of various transition and precious metal
ions/β zeolite catalysts for the selective oxidation of benzene to phenol with O2+NH3 at 593 K [†]


