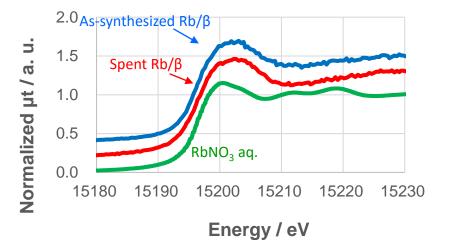
Supporting Information

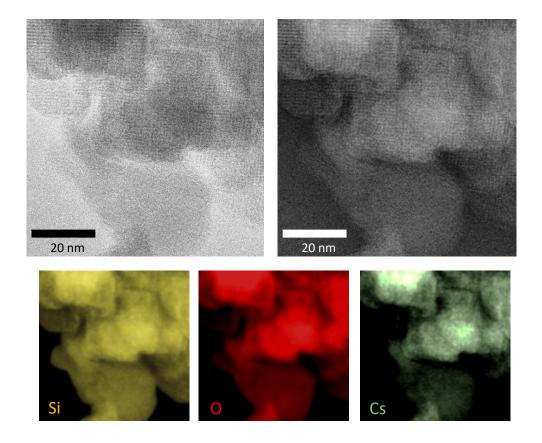
Confined Single Alkali Metal Ion Platform in Zeolite Pore for

Concerted Benzene C–H Activation-to-Phenol Catalysis

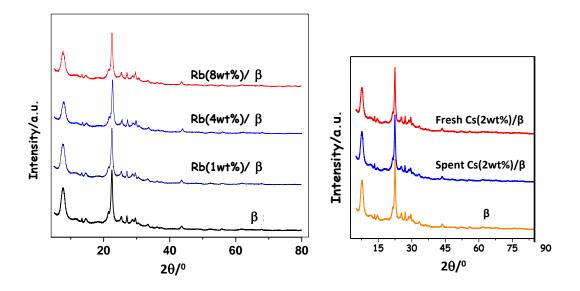
Shankha S. Acharyya^a, Shilpi Ghosh^a, Takuma Kaneko^a, Kotaro Higashi^a, Yusuke Yoshida^a, Takehiko Sasaki^b and Yasuhiro Iwasawa^{*a,c}

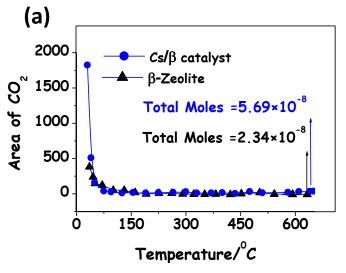

^a Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan ^b Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan

^a Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan


*Corresponding author's e-mail: iwasawa@pc.uec.ac.jp

Catalyst	Oxidant	Reaction Condition	Benz	Phenol	Reference	
			Conv	Select		
			(%)	(%)		
Fe/ ZSM5 catalysts	N ₂ O	Temperature= 350°C- 400°C	20-30	99	Appl. Catal. A: Gen, 1992 , 82,31	
Cu/ZSM-5 catalyst	02	Temperature= 400 °C	2.0	60	J. Mol. Catal. A 2002 , 178, 89.	
FeAlPO-5	N ₂ O	Temperature= 380°C	13.4	97	Chem. Commun. 2006 , 4955	
Interstitial-N/Re Cluster/Zeolite	O ₂ +NH ₃	Temperature= 280°C	0.8	88	Angew. Chem. 2006, 45, 448	
VxOy@C-0.195–120	0 ₂	Temperature= 80 °C Pressure(O ₂)= 3.0 MPa	13.0	93.8	Green Chem. 2013 ,15, 1150-1154	
10% Pd-VOx Nanoparticles	0 ₂	Temperature= 140 °C Pressure= 2.0 MPa	4.5	99	ChemPlusChem 2014, 79, 680	
Pt-Re/ZSM-5	$O_2 + NH_3$	Temperature= 260°C	13	78	ChemCatChem 2013 , 5, 2203	
Ir/β	$O_2 + NH_3$	Temperature= 300°C	12	70	ChemCatChem 2015 , 7, 3248	
Cu(II)/CuCr ₂ O ₄ Nanoparticles	Air	Temperature= 350 °C Pressure (air)= 3.5 MPa	36	78	ACS Catal. 2015 , <i>5,</i> 2850	
Fe/ZSM-5 nanosheet	N ₂ O	Temperature=350°C	27.9	99	ACS Catal. 2017 , <i>7,</i> 2709	
Meso-Fe-ZSM-5	N ₂ O	Temperature=320°C Pressure= 101 kPa.	22.1	100	Catal. Sci. Technol., 2011 , 1, 1250	
Cs/β zeolite	$O_2 + NH_3$	Temperature=320°C	5.9	83.4	This Work	
Rb/β zeolite	N ₂ O	Temperature=300°C	25.5	99.9	This Work	


Table S1: Performances of catalysts for the gas-phase hydroxylation of benzene to phenol in the literature


Figure S1. *In situ* Rb K-edge XANES spectra. Blue: fresh (as-synthesized) Rb/ β catalyst. Red: spent Rb/ β catalyst. Green: RbNO₃ reference. RbNO₃ aq. from A. Mihelič, A. Kodre, I. Arčon, J. P. Gomilšek, *Acta Chim. Slov.* 51, 33 (2004).

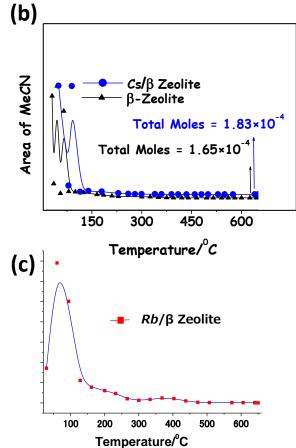

Figure S2. Bright and dark fields STEM images and elements (Si, O and Cs) mapping for Cs(2 wt%)/ β . The bright and dark fields STEM images reveal no images except for the β zeolite lattice.

Figure S3. XRD patterns for Rb/ β and Cs/ β catalysts. They are similar to XRD pattern of β . There are neither Rb oxides nor Cs oxides.

Figure S4. Temperature programmed desorption (TPD) of CO₂ (a) and CH₃CN (b) on Cs/ β (2.1 wt%; 0.2 g) and CH₃CN on Rb/ β (1.0 wt%; 0.4 g). Heating rate: 10 K min⁻¹. Desorbed CO₂ and CH₃CN were analyzed by TCD and FID GC, respectively every 3 min. (a, b): Cs= 3.16x10⁻⁵ mol; (c): Rb=4.68x10⁻⁵ mol. Desorbed amounts/Cs and /Rb (the amounts on Cs/ β and Rb/ β – the amount on β): CO2 < 1%; CH₃CN=57% of Cs and 75% of Rb.

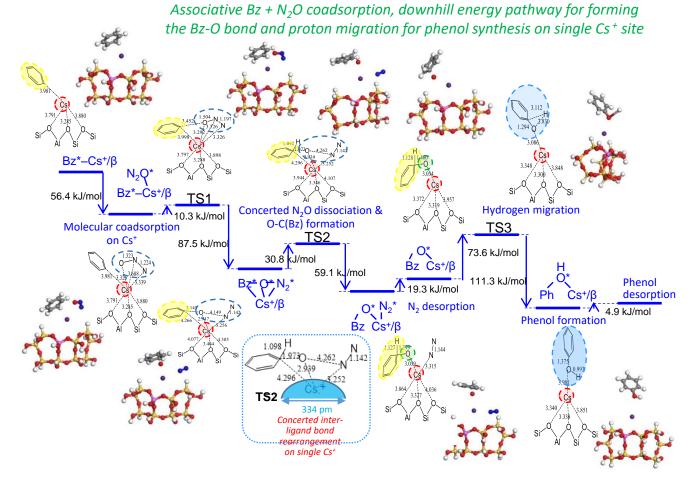
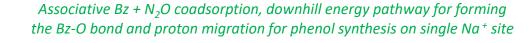
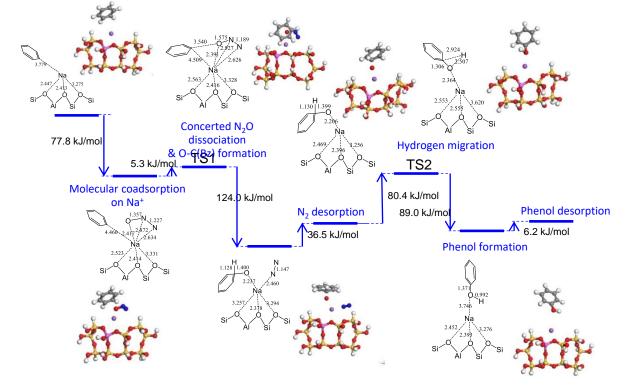
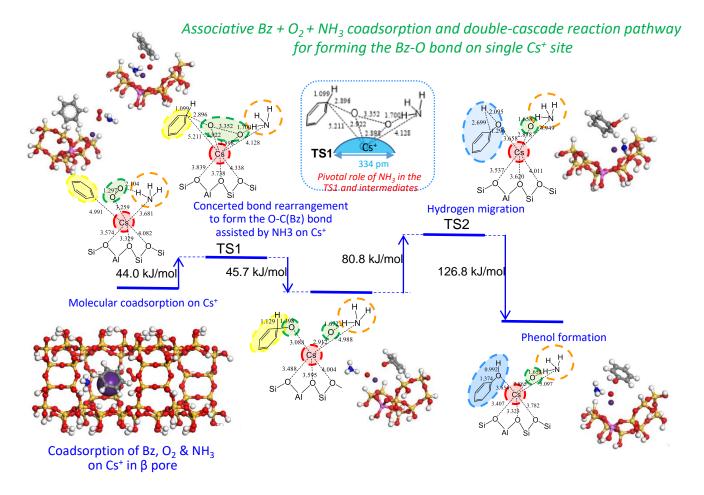





Figure S5. A computational downhill-energy reaction profile for the concerted inter-ligand reaction mechanism involving coadsorption and transition states for the selective oxidation of benzene to phenol with N₂O on the Cs⁺/ β cluster by DFT calculations. Asterisks(*) imply direct interaction with Cs⁺.

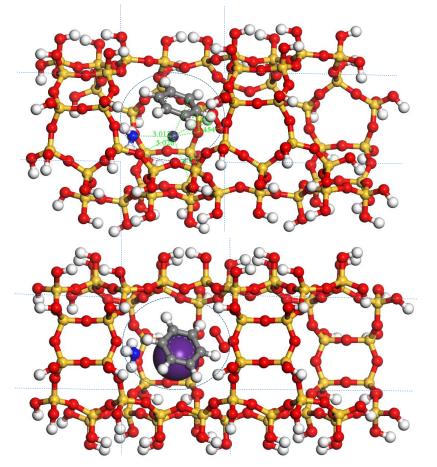


Figure S6. A computational downhill-energy reaction profile for the concerted inter-ligand reaction mechanism involving coadsorption and transition states for the selective oxidation of benzene to phenol with N_2O on the Na^+/β cluster by DFT calculations. Asterisks(*) imply direct interaction with Na^+ .

Figure S7. A computational reaction profile for the concerted inter-ligand reaction mechanism involving coadsorption states and transition states for the selective oxidation of benzene to phenol with O_2 regulated by NH₃ on the Cs⁺/ β cluster by DFT calculations. Cs: dark purple, O: red, C: gray, H: white, N: blue, Si: yellow, AI: pink.

Cs-N(NH₃) 0.3012 nm Cs-O(O₂) 0.3278 nm, 0.3454 nm O-O 0.1282 nm Cs-C(benzene) 0.3513 nm

Figure S8. Computanional coadsorption arrangement on a Cs⁺ ion incoorporated in β pore for benzene, O₂ and NH₃ by DFT calculations. Cs⁺ ion has a large ion diameter of 0.334 nm, which provides a reaction platform.

Catalyst	Benzene conv./%	Phenol selec./%	TOF/h ⁻¹	NH ₃] _{reacted} / [Phenol] _{produced}
V (2 wt%)/β	1.0	6.85	0.125	1450
Cr (2 wt%)/β	1.64	3.4	0.204	1050
Mn (2 wt%)/β	2.1	0.5	0.260	12400
Fe (2 wt%)/β	0.83	10.6	0.0704	124
Co (2 wt%)/β	0.1	35.8	0.0122	1610
Ni (2 wt%)/β	4.9	1.83	0.414	1420
Cu (2 wt%)/β	0.4	4.33	0.052	3410
Ir (2 wt%)/β	1.01	30.3	0.125	428
Ag (2 wt%)/β	0.14	54.7	0.018	992

Table S2. Performances (conversion and selectivity) of various transition and precious metal ions/ β zeolite catalysts for the selective oxidation of benzene to phenol with O₂+NH₃ at 593 K^[†]

^[†] The catalysts were pretreated with benzene/O₂/NH₃/He=0.5/0.5/1.8/4 mL min⁻¹ at 673 K for 0.5 h. Cat. = 0.6 g; Performance values: averaged during 30-180 min time-on-stream. Benzene/O₂/NH₃/He = 0.5/0.5/1.8/4.0 mL min⁻¹.

 $[NH_3]_{reacted}/[Phenol]_{produced}$: reacted NH_3 amount/produced phenol amount. TOF is defined as reacted benzene(mol)/total metal(mol)/h. Zeolite β was purchased from JGC C&C.