The cost of long catalytic loops in folding and stability of the ALS-associated protein SOD1

Fan Yang ¹, Huabing Wang ¹, Derek T. Logan ², Xin Mu ¹, Jens Danielsson ¹ and Mikael Oliveberg ^{1 \star}

Fitting of chevron plots including curved unfolding limb. From the chevron data of apoSOD1⁶⁶⁺³² it is apparent that protein shifts between and early and late transition-state $(\ddagger' \rightarrow \ddagger'')$ at high urea concentration, yielding a downward kink of the unfolding limb, $\log k_{\mu}^{\text{H}_2\text{O}} + m_{\mu}[\text{urea}]$ in manuscript Eq. 5 was expanded to ¹

$$\log k_{\rm u, \, obs} = \log k_{\rm u}^{\rm H_2O} + m_{\rm u'}[{\rm urea}] - \log(1 + K_{\rm part} 10^{m''[{\rm urea}]}), \qquad ({\rm Eq. \ S1})$$

where $K_{\text{part}} = [\ddagger] / [\ddagger]'$ is the equilibrium constant between the two transition-states \ddagger' and \ddagger'' , respectively, and

$$\log K_{\text{part}} = (\log k_{\text{u}} - \log k_{\text{u}"}), \qquad (\text{Eq. S2})$$

where $\log k_u = \log k_u^{H_2O} + m_u[urea]$ (c.f. Eq. 3) and $\log k_{u''} = \log k_{u''}^{H_2O} + m_{u''}[urea]$ are the rate constants for unfolding over ‡' and ‡'', respectively, and $m'' = m_u - m_{u''}$. Notably, $\log k_u$ is here equivalent to $\log k_u$ in manuscript Eq. 5, i.e. unfolding over the dominant ‡', captured by a v-shaped fit. The parameters for apoSOD1⁶⁶⁺³² yielded by Eq. S2 are given in manuscript Table 1.

Fitting of folding rates of low stability proteins. For $\phi \Box$ value mutations where low unfolding midpoints prevents accurate fitting of the chevron refolding limb, i.e. L117A and V119A of apoSOD³³⁺¹⁶, k_f was estimated from k_u and the unfolding amplitudes by the following relationship: $K_{D-N} = k_u/k_f = [D]/[N]$, where [D] and [N] were derived from the sigmoidal plots of the unfolding amplitudes vs. [urea] in the unfolding transition region ².

SI Tables

Table S1. Statistics of crystallographic data, processing and refinement. Values in parentheses are for the highest resolution shell, and R_{free} was calculated with 5.1 % of the reflections excluded in refinement.

Data processing	
Space Group	H32
Cell dimensions	
a, b, c (Å)	83.21, 83.21, 133.48
α, β, γ (°)	90.0, 90.0, 120.0
Resolution (Å)	63.41-1.79 (1.83-1.79)
Unique reflections	16779 (810)
Completeness (%)	98.7 (80.6)
Multiplicity	9.6 (6.6)
Ι/σΙ	20.1 (2.4)
R _{merge}	0.081 (0.746)
Refinement	
Resolution (Å)	63.41-1.79 (1.84-1.79)
R _{work}	0.177 (0.272)
R _{free}	0.203 (0.262)
Protein atoms	837
Water atoms	61
Glycerol atoms	6
Sulfate ion	5
R.m.s. deviation	
Bond lengths (Å)	0.025
Angles (°)	2.411
Mean <i>B</i> value (Å ²)	31.4
Ramachandran plot	
Most favoured (%)	96.5
Allowed (%)	3.5

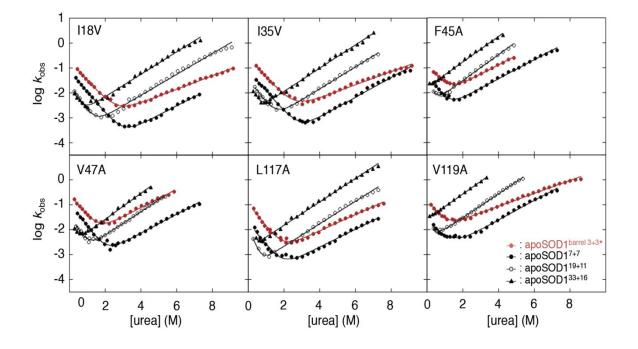

Disallowed (%)
--------------	----

Table S2. Parameters ($c^{\text{Eq.}}$ and $c^{\text{kin.}}$) from linear fits of data Figure S3, plot shown in Figure 7B.

	$c^{\mathrm{Eq.}}$	c ^{kin.}	
I18V	1.41±0.02	1.02±0.15	
I35V	1.14±0.05	0.96 ± 0.02	
F45A	1.34±0.19	1.88 ± 0.051	
V47A	1.07±0.05	1.24 ± 0.10	
L117A	1.08 ± 0.20	0.89 ± 0.18	
V119A	1.15 ± 0.22	0.70 ± 0.24	

Table S3. Parameters ($c^{Eq.*}$, $c^{kin.*}$ and α -value) from linear fits of data Figure S4.

	$c^{\mathrm{Eq.*}}$	$c^{\text{kin.}*}$	α	
pwt	0.061±0.003	0.021±0.002	0.34±0.02	
I18V	0.070 ± 0.007	0.019 ± 0.004	0.28 ± 0.03	
I35V	0.056 ± 0.004	0.018 ± 0.001	0.32 ± 0.01	
F45A	0.068 ± 0.002	0.036 ± 0.001	0.53 ± 0.03	
V47A	0.053 ± 0.004	0.023 ± 0.003	$0.44{\pm}0.03$	
L117A	0.056 ± 0.003	0.017 ± 0.002	0.31±0.02	
V119A	0.059 ± 0.004	0.014 ± 0.004	$0.24{\pm}0.05$	

SI Figures and Legends

Figure S1. The folding and unfolding kinetics of the apoSOD1 ϕ -value mutations, where k_{obs} is in units of s⁻¹. The parameters obtained by fitting of manuscript Eq. 5 are shown in manuscript Table 4.

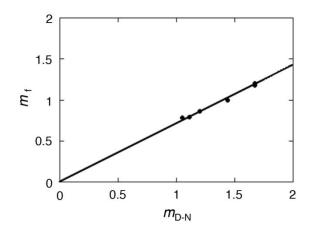


Figure S2. The plot of $m_{\rm f}$ vs. $m_{\rm D-N}$ shows a linear relationship with $\beta^{\ddagger} = m_{\rm f} / m_{\rm D-N} = 0.71$, and suggests no transition-state movement following loop extension. Values are from Table 1.

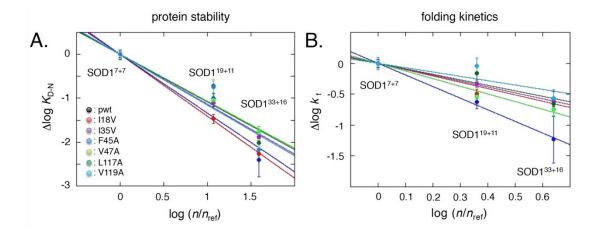


Figure S3. Effects on the apoSOD1 ϕ -value mutations on stability ($\log K_{D-N}$, Eq. 2) and refolding kinetics ($\log k_f$, Eq. 3) upon loop-length alteration ($\log n/n_{ref}$, Eq. 4). The slopes $c^{Eq.}$ and $c^{kin.}$ are shown in Figure 7B and Table S3. A. Effects on protein stability. B. Effects on refolding kinetics.

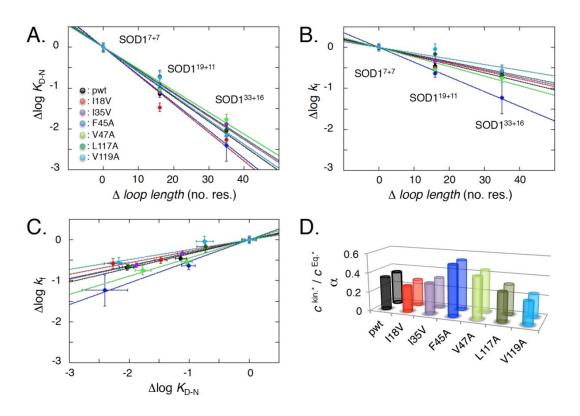


Figure S4. Mutational effects on the apoSOD1 loop-length titration, and derivation of Leffler α . Loop lengths are plotted in linear scale to allow with results in previous studies. Colour coding as in Panel D. A. $\Delta \log K_{\text{D-N}}$ vs. $\Delta loop length$, i.e. number of residues, where the slopes denote $c^{\text{kin.*}}$. B. $\Delta \log k_{\text{f}}$ vs. $\Delta loop length$, where the slopes denote $c^{\text{kin.*}}$. C. $\Delta \log k_{\text{f}}$ vs. $\Delta \log K_{\text{D-N}}$ plots, where the slopes represent the Leffler α values ³. D. Comparison of the values of $c^{\text{kin.*}} / c^{\text{Eq.*}}$ derived from panels A and B (front bars), and the Leffler α values derived from panel D (rear bars). Values are shown in Table S3.

SI References

Wang, H.; Lang, L.; Logan, D. T.; Danielsson, J.;
Oliveberg, M., Tricking a Protein To Swap Strands. Journal of the American Chemical Society 2016, 138 (48), 15571-15579.
Nordlund, A.; Oliveberg, M., Folding of Cu/Zn superoxide dismutase suggests structural hotspots for gain of neurotoxic function in ALS: parallels to precursors in

amyloid disease. Proceedings of the National Academy of Sciences of the United States of America 2006, 103 (27), 10218-23. 3. Sanchez, I. E., Protein folding transition states probed by loop extension. Protein science : a publication of the Protein Society 2008, 17 (1), 183-6.