Synthesis of Quinolinone Alkaloids via Aryne Insertions into Unsymmetric Imides in Flow

Johannes Schwan, Merlin Kleoff, Bence Hartmayer, Philipp Heretsch* and Mathias Christmann*

Freie Universität Berlin, Institut für Chemie und Biochemie, Takustraße 3, 14195 Berlin, Germany

Supporting Information

\qquadGeneral MethodsS2
Synthesis of Compounds S4
References S25
Appendix S26

General Methods

Analytical data were obtained with the help of the following equipment:
NMR spectroscopy: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were acquired on a JEOL ECX 400 (400 MHz), JEOL ECP 500 (500 MHz) and a Bruker Avance 700 (700 MHZ) in the reported deuterated solvents. The chemical shifts were reported relative to the deuterated solvents' residual shifts. The multiplicities of the signals are reported using the following abbreviations: $s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quartet, p = quintet, $\mathrm{br}=$ broad.
The spectra were processed with the software MestRec 9.0.
Mass spectra were obtained on a ESI-FTICR-MS: Ionspec QFT-7 (Agilent/Varian), or a HR-EI-MS: Autospec Premier (Waters).

GC-MS were recorded on a GC system Agilent Technologies 7890-A series/Mass selective detector, Agilent Technologies 5975 C (column: HP-5MS (J\&W Scientific, Agilent); $30 \mathrm{~m}, 0.250 \mathrm{~mm}$ i.D., Film 0.25 $\mu \mathrm{m})$.

IR spectroscopy: IR Spectra were recorded on a JASCO FT/IR-4100 spectrometer. Characteristic absorption bands are reported in wavelengths $\tilde{\mathrm{v}}$ in cm^{-1} and were analyzed with the software Spectral Manager from JASCO.

Melting points were measured on a Thermovar (Reichert) and are not corrected.
Chromatography: Reaction progress was monitored by thin layer chromatography (silica gel 60 F 254 , E. Merck) using UV light ($\lambda=254 \mathrm{~nm}$) for visualization or vanillin staining agent (170 mL methanol, 20.0 ml conc. acetic acid, 10.0 mL conc. sulfuric acid, 1.0 g vanillin).
Flash column chromatography was performed using silica gel M60 from Macherey \& Nagel (particle size: $40-63 \mu \mathrm{~m})$.

HPLC was conducted on a modular Knauer HPLC system with a UV detector at 254 nm and differential refractometer on a $4 \times 250 \mathrm{~mm}$ column packed with Nucleosil 50-5 from Machery-Nagel.

Flow Reactions: Flow reactions were performed in $1 / 16$ inch PTFE tubing with an inner diameter of 1.0 mm . The tubing was embedded in an aluminum block from ThalesNano and heated with an IKA stirring plate. A stainless steel T-piece from Vici or a static mixer from Upchurch Scientific was used for mixing. Fittings were either coned 10/32 stainless steel fittings from Upchurch scientific or flat bottom 1/4-28 gripper fittings from Dibafit. A kdScientific syringe pump (model no. KDS 200CE) was used to pump the reagents through the reactor.

Reagents and Solvents: Reactions with air or moisture sensitive substances were carried out under an argon atmosphere with the help of the Schlenk technique. All other reagents and solvents were used as purchased from commercial suppliers unless otherwise noted. Anhydrous solvents were purified with the solvent purification system MB-SPS-800 (Braun). Dry acetonitrile was purchased from Acros Organics in AcroSeal ${ }^{\ominus}$-bottles under argon atmosphere with molecular sieves ($4 \AA$). HPLC-grade acetonitrile was purchased from Fischer Scientific. The solvents used for column chromatography (ethyl acetate, pentane) and work up were purified from commercially available technical grade solvents by
distillation under reduced pressure with the help of rotatory evaporators (Heidolph or IKA) at $40^{\circ} \mathrm{C}$ bath temperature.

Benzamides, ${ }^{1}$ benzyloxy acetic acid, ${ }^{2}$ benzyloxyacetyl chloride ${ }^{3}$ and 3-hydroxy-2-(trimethylsilyl)phenyl triflate ${ }^{4}$ were prepared according to literature procedures.
Compound names are derived from Chemdraw and are not necessarily identical with the IUPAC nomenclature.

Room temperature refers to $23^{\circ} \mathrm{C}$.

Synthesis of Compounds

N-(2-Methoxyacetyl)-benzamide (4a)

Benzamide ($2.00 \mathrm{~g}, 16.5 \mathrm{mmol}, 1$ equiv.) was dissolved in anhydrous pyridine (26 mL) and 2methoxyacetyl chloride ($3.01 \mathrm{~mL}, 33.0 \mathrm{mmol}, 2$ equiv.) was added in one portion at room temperature. The yellow mixture was stirred in a sealed tube at $80^{\circ} \mathrm{C}$ for 2 hours. After cooling to room temperature, the mixture was concentrated under reduced pressure to $1 / 4$ of its original volume and diluted with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq., 50 mL) and EtOAc (50 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq., $3 \times$ 150 mL) and NaCl (sat. aq., 100 mL), dried (MgSO_{4}), filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, n-pentane/EtOAc $=1: 1$) affording the title compound ($4 \mathbf{a}, 1.77 \mathrm{~g}, 9.17 \mathrm{mmol}, 56 \%$) as a colorless solid.
$\mathbf{R}_{\mathrm{f}}=0.41$ (n-pentane/EtOAc $=1: 1$); m.p.: $103^{\circ} \mathbf{C}-105^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.44(\mathrm{~s}, 1 \mathrm{H})$, 7.86 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl3): $\delta=171.1,165.2,133.4,132.5,129.0,127.9,73.1,59.5 \mathrm{ppm}$; IR (neat): \tilde{v} = 3378, 3280, 3168, 3071, 2990, 2963, 2938, 2920, 2825, 2748, 2600, 1909, 1771, 1709, 1685, 1636, 1602, 1584, 1555, 1508, 1465, 1448, 1396, 1384, 1346, 1327, 1310, 1287, 1250, 1239, 1196, 1169, 1120, 1090, 1069, 1031, 1012, 1002, 973, 933, 907, 842, 818, 805, 751, $701 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NNaO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 216.0631 ; found: 216.0641.

4-Methoxybenzamide ($2.00 \mathrm{~g}, 13.2 \mathrm{mmol}, 1$ equiv.) was dissolved in anhydrous pyridine (20 mL) and 2methoxyacetyl chloride ($1.50 \mathrm{~mL}, 16.5 \mathrm{mmol}, 2$ equiv.) was added at room temperature. The orange mixture was stirred in a sealed tube at $60^{\circ} \mathrm{C}$ for 2 hours. After cooling to room temperature, the solvent was removed under reduced pressure. The residue was suspended in NaHCO_{3} (sat. aq., 250 mL) and EtOAc (250 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with NaCl (sat. aq., $2 \times 400 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. The crude product was recrystallized from hot EtOAc affording the title compound ($\mathbf{4 b}, 1.45 \mathrm{~g}, 6.48 \mathrm{mmol}, 49 \%$) as a colorless solid.
$\mathbf{R}_{f}=0.42$ (n-pentane/EtOAc $=1: 2$); m.p.: $153^{\circ} \mathrm{C}-156^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta=11.00$ (s, 1 H), 7.94 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.03 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), $4.44(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta=172.9,165.7,163.0,130.7,124.6,113.8,72.8,58.5,55.6 \mathrm{ppm} ;$ IR (neat):
$\tilde{v}=3390,3291,3169,3094,3080,3014,2970,2942,2843,1769,1710,1685,1645,1618,1607,1574$, 1517, 1458, 1422, 1394, 1311, 1254, 1182, 1146, 1124, 1025, 849, 809, $764 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NNaO}_{4}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right):$246.0737; found 246.0738.

4-Bromobenzamide ($150 \mathrm{mg}, 0.992 \mathrm{mmol}, 1$ equiv.) was dissolved in anhydrous pyridine (1.6 mL) and 2-methoxyacetyl chloride ($0.181 \mathrm{~mL}, 1.99 \mathrm{mmol}, 2$ equiv.) was added at room temperature. The orange mixture was stirred in a sealed tube at $60^{\circ} \mathrm{C}$ for 2 hours. After cooling to room temperature, the solvent was removed under reduced pressure. The residue was suspended in NaHCO_{3} (sat. aq., 20 mL) and EtOAc (20 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{NaCl}(\mathrm{sat} . \mathrm{aq} ., 2 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, n-pentane/EtOAc 2:1) to afford the title compound ($\mathbf{4 c}, 74.0 \mathrm{mg}, 0.332 \mathrm{mmol}$, 34%) as a colorless solid.
$\mathbf{R}_{\mathbf{f}}=0.30$ (n-pentane/EtOAc = 1:2); m.p.: $139^{\circ} \mathrm{C}-141^{\circ} \mathrm{C} ; \mathbf{1}^{\mathbf{H}} \mathbf{H} \mathbf{N M}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.37(\mathrm{~s}, 1 \mathrm{H})$, 7.73 (d, J = 8.1 Hz, 2H), $7.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=170.7,164.5,132.4,131.5,129.5,128.6,73.0,59.6 \mathrm{ppm}$; IR (neat): $\tilde{v}=3240,3196,3160$, 2970, 2952, 2926, 2823, 1731, 16696, 1591, 1524, 1502, 1479, 1400, 1386, 1257, 1232, 1202, 1136, 1110, 1069, 1012, 939, 907, 840, 818, 772, 763, 744, 717, 684, $661 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrNO}_{3} \mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 293.9736; found: 293.9745.

N-(2-(Benzyloxy)acetyl)benzamide (4d)

Benzamide ($800 \mathrm{mg}, 6.60 \mathrm{mmol}$, 1 equiv.) was dissolved in anhydrous pyridine (11 mL). Benzyloxyacetyl chloride ($2.44 \mathrm{~g}, 13.2 \mathrm{mmol}, 2$ equiv.) was added and the mixture was stirred in a sealed tube at $60^{\circ} \mathrm{C}$ for 2 hours. After cooling to room temperature, the solvent was removed under reduced pressure. The residue was dissolved in $\mathrm{EtOAc}\left(10 \mathrm{~mL}\right.$) and NaHCO_{3} (sat. aq., 10 mL), the layers were separated, and the aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with NaCl (sat. aq., $2 \times 10 \mathrm{~mL}$) and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvents were removed under reduced pressure. The crude product was recrystallized from boiling EtOAc affording the title compound (4d, $300 \mathrm{mg}, 1.10 \mathrm{mmol}, 17 \%$) as colorless crystals.
m.p.: $109{ }^{\circ} \mathrm{C}-113^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.32(\mathrm{~s}, 1 \mathrm{H}), 7.82-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{td}, \mathrm{J}=$ $7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~s}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 1 \mathrm{H}), 4.70$ (s, 2H), 4.43 (s, 2H) ppm; ${ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl_{3}) $\delta=170.5,165.0,136.8,133.5,132.6,129.2$, 128.8, 128.5, 128.2, 127.8, 73.9, 70.5 ppm; IR (neat): $\tilde{v}=3284,2951,2922,2868,1712,1688,1599$, $1582,1500,1469,1406,1390,1373,1324,1304,1244,1216,1115,1102,1072,1028,1001,975,949$, 933, 908, 872, 862, 841, 822, 800, 785, 757, 702, $657 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NNaO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right):$292.0944; found: 292.0951 .

3-(Benzyloxy)-2-(trimethylsilyl)phenyl trifluoromethanesulfonate (3b)

3-Hydroxy-2-(trimethylsilyl)phenyl trifluoromethanesulfonate ($500 \mathrm{mg}, 1.59 \mathrm{mmol}, 1$ equiv.) was suspended in water (15 mL) and benzyl bromide ($0.472 \mathrm{~mL}, 3.98 \mathrm{mmol}$, 2.5 equiv.), tetrabutylammonium bromide ($513 \mathrm{mg}, 1.59 \mathrm{mmol}$, 1 equiv.) and $\mathrm{K}_{3} \mathrm{PO}_{4}(1.01 \mathrm{~g}, 4.77 \mathrm{mmol}$, 3 equiv.) were added at room temperature. The suspension was stirred vigorously for 2 hours, diluted with water, and extracted with EtOAc (3 $\times 50 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, npentane $/ E t O A c=20: 1$) to afford the title compound ($\mathbf{3 b}, 555 \mathrm{mg}, 1.37 \mathrm{mmol}, 86 \%$) as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=0.83$ (n-pentane/EtOAc $=10: 1$); ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.41(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 2 \mathrm{H})$, $6.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 0.34(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=164.8,154.9,136.2,131.7,128.8,128.4,127.9,121.2,118.8(\mathrm{q}, J=320.6 \mathrm{~Hz}), 113.1,110.6$, 71.1, $1.1 \mathrm{ppm} ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-73.98 \mathrm{ppm}$; IR (neat): $\tilde{v}=3067,3036,2954,2901,2876$, 1594, 1565, 1434, 1417, 1247, 1207, 1160, 1137, 1116, 1024, 934, 842, 826, 785, $735 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{SSiK}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$: 443.0357, found 443.0378.

3-(Allyloxy)-2-(trimethylsilyl)phenyl trifluoromethanesulfonate (3c)

3-Hydroxy-2-(trimethylsilyl)phenyl trifluoromethanesulfonate ($1.47 \mathrm{~g}, 4.66 \mathrm{mmol}, 1$ equiv.) was suspended in water (150 mL). Allyl bromide ($2.42 \mathrm{~mL}, 28.0 \mathrm{mmol}, 6.0$ equiv.), tetrabutylammonium bromide ($1.50 \mathrm{~g}, 4.66 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{K}_{3} \mathrm{PO}_{4}(2.97 \mathrm{~g}, 14.0 \mathrm{mmol}, 3$ equiv.) were added at room temperature. The suspension was stirred vigorously for 1 hour, diluted with water (50 mL), and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, n pentane) to afford the title compound (3c, $1.12 \mathrm{~g}, 3.16 \mathrm{mmol}, 68 \%$) as a colorless oil.
$\mathbf{R}_{\mathrm{f}}=0.65$ (n-pentane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.34(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.09-5.98(\mathrm{~m}, 1 \mathrm{H}), 5.45-5.35(\mathrm{~m}, 1 \mathrm{H}), 5.34-5.30(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=5.4$ $\mathrm{Hz}, 2 \mathrm{H}), 0.38(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=164.6,154.8,132.7,131.7,121.2,118.8$ (q, $J=320.6 \mathrm{~Hz}), 118.5,113.0,110.6,69.7,1.1 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-72.77 \mathrm{ppm}$; IR (neat): $\tilde{v}=3089,2988,2955,2901,2865,1595,1565,1436,1420,1362,1247,1206,1160,1140,1117,1057$, 1034, 996, 939, 924, 894, 837, 787, 769, 738, 712, 693, $668 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{SSiNa}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 377.0461, found: 377.0461.

General Procedure for the Optimization of the Aryne Insertion in Flow

A stock solution of $\mathbf{3 a}$ and $\mathbf{4 a}$ at the indicated concentrations was loaded onto a 1 mL sample loop. A second stock solution of tetrabutylammonium difluorotriphenylsilicate at the indicated concentration was loaded on a second 1 mL sample loop. Both loops were connected to two syringes in a syringe pump and the stock solutions were combined at a T-piece or static mixer, as indicated in table S1. The reaction was pushed through a 4 mL reaction coil at the reported flow rate and temperature and collected afterwards. The results are summarized in Table S1.

Table S1. Analysis of main parameters for the synthesis of benzophenone 5a and acetophenone 7a

Entry	$\begin{gathered} \mathrm{V} \\ {[\mathrm{ml} / \mathrm{min}]} \end{gathered}$	Residence time [min]	Lewis acid	$\begin{gathered} \mathrm{Clmid} \\ {[\mathrm{~mol} / \mathrm{L}]} \end{gathered}$	$\begin{gathered} \mathrm{C}_{\text {Arin }} \\ {[\mathrm{mol} / \mathrm{L}]} \end{gathered}$	$\begin{gathered} \mathrm{C}_{\text {TBAT }} \\ {[\mathrm{mol} / \mathrm{L}]} \end{gathered}$	T [${ }^{\circ} \mathrm{C}$]	5a: 7a ${ }^{\text {a }}$	Solvent/cond.	$\begin{aligned} & 5 a^{a} \\ & {[\%]} \end{aligned}$
1	0.5	4	none	0.05	0.06	0.10	55	-	no workup	32
2	0.5	4	none	0.05	0.06	0.10	55	-	aq. workup	42
3	0.5	4	none	0.05	0.06	0.10	55	-	wet MeCN, no workup, static mixer	31
4	0.5	4	none	0.05	0.06	0.10	55	-	static mixer, dry MeCN	36
5	0.2	10	none	0.05	0.06	0.10	55	-	wet MeCN, no workup, static	32
6	0.2	10	none	0.05	0.06	0.10	65	-	wet MeCN, no workup, static mixer	32
7	0.2	10	none	0.05	0.08	0.10	55	-	wet MeCN, no workup, static mixer	26

aThe ratio of $5 \mathrm{a}: 7 \mathrm{a}$ as well as the yield of 5 a were determined via GC-MS with acetanilide as standard. An aliquot of the reactor output ($100 \mu \mathrm{~L}$ or $500 \mu \mathrm{~L}$) was taken, diluted to yield a volume of $900 \mu \mathrm{~L}$, and treated with a solution of acetanilide ($100 \mu \mathrm{~L}, 0.05 \mathrm{M}$). ${ }^{\text {b }}$ Determined by ${ }^{1} \mathrm{H}$ NMR integration. ${ }^{\text {c Isolated }}$ yield. ${ }^{\mathrm{d}} \mathrm{BPR}$: back pressure regulator.

General Procedure for the Aryne Insertion in Flow (GP1)

A stock solution of aryne precursor (3a-c, 0.150 M in acetonitrile, 1.5 equiv.) and imide (4a-d, 0.100 M in acetonitrile, 1.0 equiv.) were pumped simultaneously with a stock solution of tetrabutylammonium difluorotriphenylsilicate (0.180 M in acetonitrile, 1.8 equiv.), both at a rate of $0.5 \mathrm{~mL} / \mathrm{min}$. The stock solutions were combined at a T-piece to react in a 4.0 mL PTFE coil, preheated to $65^{\circ} \mathrm{C}$. The reaction mixture was collected, concentrated under reduced pressure, and purified by column chromatography to afford the ortho-aminobenzophenones 5a-h. The constitutional isomer ratio was deduced by ${ }^{1} \mathrm{H}$ NMR integration of the crude reaction product.

N -(2-Benzoylphenyl)-2-methoxyacetamide (5a)

5a $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{3}(269.30)$

7a $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{3}(269.30)$

Compound 5a was prepared according to GP1 starting from 3 a ($127 \mathrm{mg}, 0.427 \mathrm{mmol}, 1.5$ equiv.) and $4 \mathbf{a}(55.0 \mathrm{mg}, 0.285 \mathrm{mmol}, 1$ equiv.). Column chromatography (silica gel, n-pentane/EtOAc $=4: 1$) afforded the title compound ($5 \mathbf{5}, 40.0 \mathrm{mg}, 0.148 \mathrm{mmol}, 52 \%$) as a colorless oil that solidified in the fridge and compound 7 ($14.5 \mathrm{mg}, 0.054 \mathrm{mmol}, 19 \%$) as a colorless solid. The isomeric ratio was determined as 2.9:1 (5a:7a).

5a:
$\mathbf{R}_{\mathbf{f}}=0.40$ (n-pentane/EtOAc $=3: 1$); ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.39(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.73-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.47(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ (td, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.04 (s, 2H), 3.55 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl_{3}): $\delta 199.1,169.2,139.4,138.7,134.1,133.5$, 132.5, 130.0, 128.4, 124.3, 122.6, 121.7, 72.7, 59.8 ppm; IR (neat): $\tilde{v}=3286,3060,3033,2996,2934$, 2828, 2756, 2249, 1832, 1692, 1639, 1598, 1577, 1515, 1446, 1432, 1362, 1317, 1293, 1263, 1196, 1180, 1158, 1114, 1076, 1048, 1028, 987, 959, 935, 917, 880, 852, 805, 752, $728 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NNaO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 292.0944; found: 292.0959

7a:
$\mathbf{R}_{\mathbf{f}}=0.35$ (n-pentane/EtOAc $=3: 1$); m.p.: $138-139^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.57(\mathrm{~s}, 1 \mathrm{H})$, 9.02 (dd, J = 8.6, 1.1 Hz, 1H), 8.12-8.08 (m, 2H), 7.82 (dd, J = 8.0, 1.4 Hz, 1H), 7.64 (ddd, J = 8.7, $7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 3.55(\mathrm{~s}$, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=200.2,166.2,141.8,135.9,134.6,132.2,129.6,129.0,127.7$, 122.6, 121.3, 119.7, 75.5, 59.7 ppm ; IR (neat): $\tilde{v}=3268,3236,3130,3062,2995,2942,2829,1672$, 1653, 1610, 1585, 1559, 1537, 1507, 1496, 1448, 1368, 1322, 1311, 1258, 1216, 1196, 1139, 1120, 1029, $978,925,699,661 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NNaO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 292.0944$; found: 292.0944.

2-Methoxy- N-(2-(4-methoxybenzoyl)phenyl)acetamide (5b)

5b
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4}(299.33)$

7b
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4}(299.33)$

Compound 5b was prepared according to GP1 starting from $\mathbf{3 a}$ ($90.4 \mathrm{mg}, 0.303 \mathrm{mmol}, 1.5$ equiv., 0.015 m) and $\mathbf{4 b}(45.0 \mathrm{mg}, 0.202 \mathrm{mmol}, 1$ equiv., 0.010 m). Column chromatography (silica gel, n pentane/EtOAc $=3: 1$) afforded the title compound ($5 \mathbf{5}, 32.8 \mathrm{mg}, 0.122 \mathrm{mmol}, 60 \%$) as a slightly yellow oil. The isomeric ratio was determined as 4.6:1 (5b:7b).

5b:

$\mathbf{R}_{\mathbf{f}}=0.21$ (n-pentane/EtOAc = 3:1); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.09(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{dt}, J=8.1$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.93(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{~s}$, $2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=197.3,169.1,163.5,138.8,133.4$, 132.8, 132.7, 131.1, 125.3, 122.7, 121.9, 113.7, 72.7, 59.8, 55.7 ppm; IR (neat): $\tilde{v}=3310,3006,2931$, 2840, 1687, 1633, 1597, 1578, 1510, 1447, 1419, 1315, 1306, 1293, 1253, 1196, 1172, 1154, 1110, 1026, $986,925,844,788,760,739,696 \mathrm{~cm}^{-1} ;$ HRMS (ESI): m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NNaO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 322.1050; found: 322.1062.

N-(2-(4-Bromobenzoyl)phenyl)-2-methoxyacetamide (5c)

5c
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrNO}_{3}$ (348.20)

7c
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrNO}_{3}(348.20)$

Compound 5c was prepared according to GP1 starting from $\mathbf{3 a}(44.8 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.5$ equiv.) 4c ($27.2 \mathrm{mg}, 0.100 \mathrm{mmol}$, 1 equiv.). Column chromatography (silica gel, n-pentane/EtOAc $3: 1$) afforded the title compound ($5 \mathbf{c}, 8.10 \mathrm{mg}, 0.023 \mathrm{mmol}, 23 \%$) as a slightly yellow oil. The isomeric ratio was determined as 4.5:1 (5c:7c).

5c:
$\mathbf{R}_{\mathrm{f}}=0.33$ (n-pentane/EtOAc $=3: 1$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=11.31$ (s, 1 H), 8.68 (dd, $J=8.4$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.54(\mathrm{~m}, 5 \mathrm{H}), 7.52(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 3.56$ (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta=197.9,169.2,139.5,137.5,134.4,133.2,131.8,131.6$, 127.7, 124.0, 122.8, 121.9, 72.7, 59.9 ppm; IR (neat): $\tilde{v}=3298,3081,3033,2995,2932,2827,1692$, 1641, 1601, 1577, 1515, 1483, 1446, 1432, 1394, 1361, 1314, 1293, 1262, 1196, 1178, 1167, 1157, 1114, 1068, 1051, 1010, 987, 959, 921, 880, 841, 783, 758, 725, 675, $654 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrNNaO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 370.0049; found: 370.0063.

N-(2-Benzoyl-3-(benzyloxy)phenyl)-2-methoxyacetamide (5d)

Compound 5d was prepared according to GP1 starting from 3b ($273 \mathrm{mg}, 0.675 \mathrm{mmol}, 1.5$ equiv.) and $4 \mathbf{a}$ ($87.0 \mathrm{mg}, 0.450 \mathrm{mmol}, 1$ equiv.). Column chromatography (silica gel, n-pentane/EtOAc $=4: 1$) afforded the title compound ($5 \mathbf{d}$, $59.0 \mathrm{mg}, 0.082 \mathrm{mmol}, 35 \%$) as a slightly yellow oil. Additionally, 7d ($14.6 \mathrm{mg}, 0.038 \mathrm{mmol}, 9 \%$) was isolated as a colorless oil. The isomeric ratio was determined as 4.9:1 (5d:7d).

5d:
$\mathbf{R}_{\mathrm{f}}=0.24$ (n-pentane/EtOAc $=4: 1$); ${ }^{1} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.51(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{dd}, \mathrm{J}=8.4,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.80-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{tt}, J=8.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H})$, $7.16-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{dd}, J=8.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H})$, 3.41 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl_{3}): $\delta=197.1,168.6,157.4,139.4,137.1,136.1,133.1$,
132.5, 129.4, 128.5, 128.4, 127.8, 126.8, 118.8, 115.2, 108.5, 72.4, 70.4, 59.6 ppm; IR (neat): $\tilde{v}=3359$, 3061, 3031, 3003, 2929, 2829, 1802, 1693, 1646, 1597, 1581, 1523, 1497, 1466, 1460, 1450, 1428, $1381,1313,1275,1256,1196,1178,1146,1112,1087,1071,1028,986,925,875,865,846,807,782$, $739 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NNaO}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 398.1363$; found: 398.1367.

7d:
$\mathbf{R}_{\mathbf{f}}=0.37$ (n-pentane/EtOAc $=4: 1$); ${ }^{1} \mathrm{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.22(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{dd}, \mathrm{J}=8.5,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 8.07-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.38$ (m, 1H), $6.80(\mathrm{dd}, J=8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (176 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=202.6,166.2,160.2,142.1,135.5,135.3,134.8,132.2,129.0,128.9,128.9,128.3,127.7$, 114.5, 113.3, 107.2, 80.3, 71.6, 59.2 ppm; IR (neat): $\tilde{v}=3065,3031,2925,2822,1680,1648,1604$, $1579,1525,1492,1458,1408,1382,1271,1187,1124,1098,1053,1024,1001,986,910,847,787$, $741 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NNaO}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 398.1363$; found: 398.1382.

N-(3-(Benzyloxy)-2-(4-methoxybenzoyl)phenyl)-2-methoxyacetamide (5e)

5e $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{5}(405.45)$

7e
$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{5}(405.45)$

Compound $5 \mathbf{e}$ was prepared according to GP1 starting from $\mathbf{3 b}(571 \mathrm{mg}, 1.41 \mathrm{mmol}, 1.5$ equiv., 0.015 M) and 4b (210 mg, $0.941 \mathrm{mmol}, 1$ equiv., 0.010 M). Column chromatography (silica gel, n-pentane/EtOAc = 3:1) afforded the title compound ($5 \mathrm{e}, 90.6 \mathrm{mg}, 0.122 \mathrm{mmol}, 24 \%$) as a slightly yellow oil. Additionally, 7 e ($38.1 \mathrm{mg}, 0.094 \mathrm{mmol}, 10 \%$) was isolated as a colorless oil. The isomeric ratio was determined as 2.8:1 (5e:7e).

5e:
$\mathbf{R}_{\mathbf{f}}=0.18$ (n-pentane/EtOAc $=3: 1$); ${ }^{1} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=8.96(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=8.3,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.76-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.99-6.96(\mathrm{~m}, 3 \mathrm{H}), 6.95-$ $6.93(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (176 MHz, CD 3 CN$)$: $\delta=195.8,169.1,165.2,157.6,137.4,137.3,132.6,132.5,132.2,129.2,128.7,128.1,120.7,115.9$, 114.9, 109.8, 72.7, 71.1, 59.7, 56.4 ppm; IR (neat): $\tilde{v}=3360,3062,3034,3009,2935,2840,1691$, 1645, 1593, 1509, 1461, 1382, 1280, 1254, 1173, 1145, 1111, 1070, 1028, 986, 927, 844, 793, 735, 696, $668 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NNaO}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 428.1468$; found: 428.1461.

7e:
$\mathbf{R}_{\mathrm{f}}=0.30$ (n-pentane/EtOAc $=5: 2$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.16(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.03(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{td}, J=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.00-6.96(\mathrm{~m}, 2 \mathrm{H})$,
6.78 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.31(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=202.6,165.7,162.8,160.2,142.4,135.5,135.3,129.6,129.0$, 128.9, 128.3, 127.1, 114.4, 114.1, 111.6, 106.8, 80.3, $71.6,59.2,55.6 \mathrm{ppm}$; IR (neat): $\tilde{v}=3194,2953$, 2925, 2844, 2818, 1675, 1647, 1604, 1579, 1531, 1507, 1457, 1420, 1404, 1380, 1308, 1253, 1174, 1124, 1052, 1027, 983, 907, 844, 787, 760, $744 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NNaO}_{5}{ }^{+}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 428.1468$; found: 428.1476 .

N-(2-Benzoylphenyl)-2-(benzyloxy)acetamide (5f)

$5 f$ $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{3}(345.40)$

$7 f$
$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{3}(345.40)$

Compound 5 f was prepared according to GP1 starting from 3a ($199 \mathrm{mg}, 0.668 \mathrm{mmol}, 1.5$ equiv.) and 4d ($120 \mathrm{mg}, 0.446 \mathrm{mmol}, 1$ equiv.). Column chromatography (silica gel, n-pentane/EtOAc $6: 1$) afforded the title compound ($\mathbf{5 f}, 63.0 \mathrm{mg}, 0.180 \mathrm{mmol}, 40 \%$) as a colorless oil. Additionally, compound 7f $(19.1 \mathrm{mg}, 0.058 \mathrm{mmol}, 13 \%)$ was isolated as colorless oil. The isomer ratio was determined as 4.3:1 (5f:7f).

5f:

$\mathbf{R}_{\mathbf{f}}=0.23$ (n-pentane/EtOAc $=6: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=11.46(\mathrm{~s}, 1 \mathrm{H}), 8.67(\mathrm{dd}, \mathrm{J}=8.4,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.77-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28$ ($\mathrm{m}, 1 \mathrm{H}$), $7.15-7.10(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.8$, 169.2, 139.3, 138.7, 136.9, 134.0, 133.3, 132.6, 130.2, 128.7, 128.4, 128.2, 128.1, 124.6, 122.7, 121.8, 73.8, 69.8 ppm ; IR (neat): $\tilde{v}=3300,3061,3029,2955,2924,2867,1694,1641,1599,1578,1519$, 1447, 1397, 1373, 1317, 1293, 1265, 1207, 1163, 1099, 1027, 1000, 974, 936, 921, 852, 805, $75 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NNaO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 368.1257$; found: 368.1263.

7f:
$\mathbf{R}_{\mathbf{f}}=0.25$ (n-pentane/EtOAc $=6: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.51(\mathrm{~s}, 1 \mathrm{H}), 9.02-9.00(\mathrm{~m}, 1 \mathrm{H})$, $8.13-8.09(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 2 \mathrm{H})$, $7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{ddd}, J=8.0,7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.82$ (s, 2H), $4.75-4.72(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=200.3,166.3,141.8,137.1,135.8$, 134.8, 132.2, 130.0, 129.0, 128.8, 128.3, 128.2, 127.7, 122.6, 121.3, 120.0, $73.8,73.0 \mathrm{ppm}$; IR (neat): $\tilde{v}=3276,3243,3062,3030,2925,2857,1664,1607,1583,1525,1496,1450,1365,1305,1256,1213$, 1188, 1168, 1144, 1121, 1094, 1053, 1028, 976, 946, 896, 869, 798, $751 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NNaO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 368.1257; found: 368.1260.

N -(3-(Allyloxy)-2-benzoylphenyl)-2-methoxyacetamide (5g)

Compound 5 g was prepared according to GP1 starting from $\mathbf{3 c}(107 \mathrm{mg}, 0.303 \mathrm{mmol}, 1.5$ equiv.) and 4 a $(45.0 \mathrm{mg}, 0.202 \mathrm{mmol}, 1$ equiv.). Column chromatography (silica gel, n-pentane/EtOAc $=3: 1$) afforded the title compound ($\mathbf{5 g}, 12.0 \mathrm{mg}, 0.0371 \mathrm{mmol}, 18 \%$) as a slightly yellow oil. The isomeric ratio was determined as 3.0:1 (5g:7g).

5 g :

$\mathbf{R}_{\mathbf{f}}=0.29$ (n-pentane/EtOAc $=3: 1$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.52(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{dd}, \mathrm{J}=8.4,0.8$ Hz, 1H), $7.80-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 3 \mathrm{H}), 6.73(\mathrm{dd}, J=8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, 5.53 (ddt, $J=17.2,10.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dq}, J=10.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{dq}, J=17.3,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.35 (dt, $J=5.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), $3.93(\mathrm{~s}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=197.1$, 168.6, 157.4, 139.3, 137.1, 133.1, 132.5, 132.1, 129.3, 128.4, 118.6, 117.1, 115.1, 108.6, 72.4, 69.3, 59.6 ppm ; IR (neat): $\tilde{v}=3356,3066,2951,2922,2850,1696,1648,1597,1584,1522,1468,1422$, 1370, 1362, 1314, 1277, 1197, 1178, 1145, 1114, 1076, 986, 926, 853, 808, 782, 746, 718, 702, 671, $661 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NNaO}_{4^{+}}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 348.1206; found: 348.1207.

N-(3-(Allyloxy)-2-(4-methoxybenzoyl)phenyl)-2-methoxyacetamide (5h)

5h
$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{5}$ (355.39)

7h
$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{5}(355.39)$

Compound 5 h was prepared according to GP1 starting from $\mathbf{3 c}(198 \mathrm{mg}, 0.555 \mathrm{mmol}, 1.5$ equiv., 0.015 m) and 4 b ($83.0 \mathrm{mg}, 0.370 \mathrm{mmol}, 1$ equiv., 0.010 m). Column chromatography (silica gel, npentane/EtOAc = 2:1) afforded the title compound ($5 \mathrm{~h}, 39.3 \mathrm{mg}, 0.111 \mathrm{mmol}, 30 \%$) as a slightly yellow oil. The isomeric ratio was determined as 4.2:1 (5h:7h).

5h:
$\mathbf{R}_{\mathrm{f}}=0.32$ (n-pentane/EtOAc $=2: 1$); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.25(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.65 (ddt, $J=17.2,10.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dq}, J=10.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dq}, J=17.3,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.40(\mathrm{dt}, J=4.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl$\left.)_{3}\right):$
$\delta=195.1,168.5,164.0,156.8,136.5,132.4,132.0,131.8,131.6,119.5,117.1,115.2,113.7,108.7$, 72.3, 69.3, 59.6, 55.7 ppm ; IR (neat): $\tilde{v}=3359,3075,2931,2840,1810,1693,1646,1594,1522,1509$, 1467, 1421, 1382, 1362, 1315, 1281, 1256, 1196, 1173, 1146, 1113, 1073, 1026, 986, 929, 880, 846, 817, 792, 768, 734, 709, 693, 672, $663 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NNaO}_{5}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 378.1312; found: 378.1331.

General Procedure for the Aldol Reaction (GP2)

The ortho-aminobenzophenone (5a-h, 1 equiv.) was dissolved in anhydrous THF ($50 \mathrm{~mL} / \mathrm{mmol}$ substrate) and a solution of KOtBu (7 equiv., 1 m in THF) was added dropwise at $0^{\circ} \mathrm{C}$. Upon addition of $\mathrm{KO}^{\text {hu }}$, the solution turned bright yellow. After stirring at $0{ }^{\circ} \mathrm{C}$ for 1.5 hours, water ($50 \mathrm{~mL} / \mathrm{mmol}$ substrate) was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with EtOAc ($3 \times 50 \mathrm{~mL} / \mathrm{mmol}$ substrate). The combined organic layers were dried (MgSO_{4}), filtered, and concentrated under reduced pressure. The crude products were purified by column chromatography to afford the quinolinones $\mathbf{6 a - g}$.
(\pm)-6-Deoxyaflaquinolone E (6a)

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{3}(269.30)$

6-Deoxyaflaquinolone E was prepared according to GP2 starting from 5 a ($20 \mathrm{mg}, 0.075 \mathrm{mmol}, 1$ equiv.) and $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}$ ($59 \mathrm{mg}, 0.53 \mathrm{mmol}, 7$ equiv.). The crude product was purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=100: 3$) to afford the title compound ($\mathbf{6 a}, 18 \mathrm{mg}, 0.068 \mathrm{mmol}, 92 \%$) as a colorless solid.
$\mathbf{R}_{\boldsymbol{f}}=0.21$ (n-pentane/EtOAc = 1:1); m.p.: $160-165^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (700 MHz, DMSO- d_{6}): $\delta=10.21(\mathrm{~s}, 1 \mathrm{H})$, $7.33(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{dt}, J=8.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{dd}, J=7.5$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.81 (s, 1H), 4.18 (s, 1H), $3.34(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (176 MHz , DMSO-d): $\delta=168.4$, 142.3, 136.8, 129.2, 128.7, 127.8, 127.5, 127.3, 126.7, 122.1, 115.1, 83.9, 76.7, 59.1 ppm ; IR (neat): $\tilde{v}=3446,3361,3211,3085,3022,2993,2931,2845,2831,1681,1609,1593,1559,1486,1446,1433$, 1397, 1318, 1285, 1263, 1246, 1226, 1203, 1181, 1157, 1142, 1119, 1097, 1069, 1048, 1020, 1001, 953, 940, 910, 871, 858, 824, 791, 762, 752, 704, 674, $658 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NNaO}_{3^{+}}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 292.0944$; found: 292.0945. The NMR data match those reported for 6deoxyaflaquinolone E. ${ }^{5}$

(\pm)-Quinolinone A (6b)

Quinolinone A was prepared according to GP2 starting from 5 ($20 \mathrm{mg}, 0.067 \mathrm{mmol}, 1$ equiv.) and $\mathrm{KO}^{t} \mathrm{Bu}$ ($53 \mathrm{mg}, 0.47 \mathrm{mmol}, 7$ equiv.). The crude product was purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=100: 3$) to afford the title compound ($6 \mathbf{6}, 16.7 \mathrm{mg}, 0.056 \mathrm{mmol}, 84 \%$) as a colorless solid.
$\mathbf{R}_{\mathbf{f}}=0.22$ (n-pentane/EtOAc = 1:1); m.p.: 172-175 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, acetone- d_{6}): $\delta=9.29(\mathrm{~s}, 1 \mathrm{H})$, $7.35-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.07-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.81(\mathrm{~m}, 2 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, 3.45 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (126 MHz, acetone- d_{6}): $\delta=168.2,160.3,137.6,134.5,129.6,129.0,128.4$, 123.6, 115.9, 115.9, 114.2, 85.7, 77.3, 59.4, 55.5 ppm ; IR (neat): $\tilde{v}=3249,3081,3002,2931,2836$, $1687,1611,1595,1512,1483,1463,1379,1306,1252,1173,1146,1106,1081,1033,991,942,903$, 860, 833, 812, $757 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NNaO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 322.1050$; found: 322.1047. The NMR data match those reported for Quinolinone A. ${ }^{6}$

cis-4-(4-Bromophenyl)-4-hydroxy-3-methoxy-3,4-dihydroquinolin-2(1H)-one (6c)

Compound 6c was prepared according to GP2 starting from $5 \mathbf{c}(8.0 \mathrm{mg}, 0.021 \mathrm{mmol}, 1$ equiv.) and $\mathrm{KO}^{t} \mathrm{Bu}$ ($16 \mathrm{mg}, 0.15 \mathrm{mmol}, 7$ equiv.). The crude product was purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=100: 3$) to afford the title compound ($6 \mathbf{c}, 7.2 \mathrm{mg}, 0.019 \mathrm{mmol}, 90 \%$) as a colorless oil.
$\mathbf{R}_{\mathrm{f}}=0.21$ (n-pentane/EtOAc = 1:1); ${ }^{1} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=7.51$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.36-$ $7.33(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{ddd}, J=8.0,5.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{dt}, J=7.9,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.23(\mathrm{~s}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.9,142.4,138.0,132.2,130.5,130.2$, 129.7, 129.1, 124.3, 122.7, 116.8, 85.4, 78.4, 60.6 ppm; IR (neat): $\tilde{v}=3241,3069,2954,2927,2853$, 2358, 1685, 1607, 1592, 1488, 1467, 1394, 1309, 1205, 1173, 1143, 989, 802, $759 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrNO}_{3} \mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 370.0049; found: 370.0051.
cis-5-(Benzyloxy)-4-hydroxy-3-methoxy-4-phenyl-3,4-dihydroquinolin-2(1H)-one (6d)

Compound 6d was prepared according to GP2 starting from $5 \mathbf{d}$ ($28 \mathrm{mg}, 0.075 \mathrm{mmol}, 1$ equiv.) and $K^{t}{ }^{t} B u(59 \mathrm{mg}, 0.53 \mathrm{mmol}, 7$ equiv.). The crude product was purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=100: 2$) to afford the title compound ($6 \mathbf{d}, 23 \mathrm{mg}, 0.062 \mathrm{mmol}, 84 \%$) as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=0.25$ (n-pentane/EtOAc =1:1); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.58(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 9 \mathrm{H})$, 7.07 (dd, $J=7.6,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.73$ (dd, $J=8.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=8.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H})$, $5.05(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.0,158.0,142.0,137.2,135.7,130.1,128.7,128.7,128.4,128.3,127.5$, 126.2, 115.2, 109.6, 108.8, 85.0, 78.4, 71.1, 59.8 ppm ; IR (neat): $\tilde{v}=3503,3232,3062,3031,2930$, 2829, 2248, 1691, 1595, 1498, 1471, 1448, 1383, 1315, 1277, 1259, 1222, 1176, 1138, 1102, 1059, 1028, 993, 910, 846, 783, 730, 697, $654 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NNaO}_{4}^{+}\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right)\right.$: 398.1363; found: 398.1368.
cis-5-(benzyloxy)-4-hydroxy-3-methoxy-4-(4-methoxyphenyl)-3,4-dihydroquinolin-2(1H)-one (6e)

Compound 6 e was prepared according to GP2 starting from 5 e ($30 \mathrm{mg}, 0.080 \mathrm{mmol}, 1$ equiv.) and $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}$ ($63 \mathrm{mg}, 0.56 \mathrm{mmol}, 7$ equiv.). The crude product was purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=100: 3$) to afford the title compound ($\mathbf{6 e}, 25 \mathrm{mg}, 0.067 \mathrm{mmol}, 84 \%$) as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=0.25$ (n-pentane/EtOAc =1:1); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.33(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 3 \mathrm{H})$, $7.21(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.0,159.7,158.1$, $137.1,135.7,133.6,129.9,128.8,128.4,127.6,127.5,115.4,114.1,109.5,108.8,85.2,78.2,71.1$, 59.7, 55.4 ppm ; IR (neat): $\tilde{v}=3502,3237,3066,3034,2999,2930,2834,1693,1596,1508,1471$, $1388,1302,1280,1253,1231,1172,1103,1061,1031,993,913,895,834,778,734,698,656 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NNaO}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 428.1468; found: 428.1467.

cis-3-(Benzyloxy)-4-hydroxy-4-phenyl-3,4-dihydroquinolin-2(1H)-one (6f)

$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{3}$ (345.40)

Compound $\mathbf{6 f}$ was prepared according to GP2 starting from $\mathbf{5 f}(14 \mathrm{mg}, 0.043 \mathrm{mmol}, 1$ equiv.) and KOtBu ($34 \mathrm{mg}, 0.30 \mathrm{mmol}, 7$ equiv.). The crude product was purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=100: 3$) to afford the title compound ($6 \mathbf{f}, 12 \mathrm{mg}, 0.031 \mathrm{mmol}, 72 \%$) as a colorless oil.
$\mathbf{R}_{\mathrm{f}}=0.23$ (Pentane/EtOAc = 1:1); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=7.40-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.27$ (ddd, $\mathrm{J}=$ $7.9,6.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.93(\mathrm{~m}, 3 \mathrm{H}), 4.81(\mathrm{~d}, \mathrm{~J}=11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.5,140.7$, 136.7, 135.7, 129.7, 128.8, 128.6, 128.6, 128.5, 128.5, 128.2, 128.1, 126.8, 124.1, 115.5, 81.1, 73.8 ppm; IR (neat): $\tilde{v}=3263,3087,3060,3029,2923,2854,1692,1610,1595,1485,1448,1375,1296$, 1265, 1241, 1211, 1174, 1143, 1125, 1096, 1070, 1044, 1028, 989, 936, 907, 853, 811, $753 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~K}^{+}\left(\left[\mathrm{M}+\mathrm{K}^{+}\right]\right): 384.0997$; found: 384.1002.

cis-5-(Allyloxy)-4-hydroxy-3-methoxy-4-phenyl-3,4-dihydroquinolin-2(1H)-one (6g)

$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4}(325.36)$

Compound $\mathbf{6 g}$ was prepared according to GP2 starting from $\mathbf{5 g}$ ($35 \mathrm{mg}, 0.11 \mathrm{mmol}, 1$ equiv.) and $\mathrm{KO}^{t} \mathrm{Bu}$ ($86 \mathrm{mg}, 0.77 \mathrm{mmol}, 7$ equiv.). The crude product was purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=100: 2$) to afford the title compound ($6 \mathbf{g}, 27 \mathrm{mg}, 0.072 \mathrm{mmol}, 67 \%$) as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=0.23$ (n-pentane/EtOAc =1:1); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.07(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 5 \mathrm{H})$, $7.22(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=8.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.78$ (ddt, $J=17.2$, $10.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 5.21-5.15(\mathrm{~m}, 2 \mathrm{H}), 4.52-4.41(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.58$ (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.7,158.0,141.9,137.2,132.1,130.0,128.7,128.5$, 126.1, 118.8, 115.0, 109.4, 108.7, 85.1, 78.4, 69.8, 59.8 ppm; IR (neat): $\tilde{v}=3494,3249,3235,3083$, 3002, 2928, 2829, 1692, 1596, 1502, 1473, 1447, 1421, 1391, 1324, 1313, 1278, 1259, 1224, 1179, 1103, 1059, 1028, 992, 930, 887, 824, 784, 750, 731, 699, 674, 665, $654 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 348.1206; found: 348.1195.
cis-5-(Allyloxy)-4-hydroxy-3-methoxy-4-(4-methoxyphenyl)-3,4-dihydroquinolin-2(1H)-one (6h)

Compound $\mathbf{6}$ h was prepared according to GP2 starting from $\mathbf{5 h}\left(43 \mathrm{mg}, 0.12 \mathrm{mmol}, 1\right.$ equiv.) and $\mathrm{KO}^{t} \mathrm{Bu}$ ($94 \mathrm{mg}, 0.84 \mathrm{mmol}, 7$ equiv.). The crude product was purified by column chromatography (silica gel $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=100: 3$) to afford the title compound ($6 \mathbf{h}, 25 \mathrm{mg}, 0.070 \mathrm{mmol}, 58 \%$) as a colorless oil.
$\mathbf{R}_{\mathrm{f}}=0.23(n$-pentane $/ E t O A c=1: 1) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.34(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.18-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.83$ (ddt, $J=17.0,10.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 5.25-5.16(\mathrm{~m}, 2 \mathrm{H}), 4.54-4.44(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.74 (s, 3H), 3.59 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.9,159.7,158.0,137.0$, 133.6, 132.1, 129.8, 127.5, 118.8, 115.2, 114.1, 109.5, 108.7, 85.2, 78.2, 69.8, 59.6, 55.3 ppm ; IR (neat): $\tilde{v}=3697,3251,3237,3196,3101,30873039,2997,2932,2833,2246,1691,1595,1508,1471,1442$, 1417, 1392, 1303, 1280, 1251, 1224, 1172, 1101, 993, 928, 912, 893, 833, 809, 779, 729, 693, 670, $661 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NNaO}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 378.1312; found: 378.1317.
(\pm)-Aflaquinolone E (9)

To a solution of $\mathbf{6 d}(23 \mathrm{mg}, 0.060 \mathrm{mmol}$, 1 equiv.) in EtOH/EtOAc ($1: 1,1 \mathrm{~mL}$) was added $\mathrm{Pd} / \mathrm{C}(6.4 \mathrm{mg}$, $0.0061 \mathrm{mmol}, 10 \mathrm{w} \% \mathrm{Pd}, 10 \mathrm{~mol} \%$) and the atmosphere was changed from Ar to H_{2} by short evacuation and backfilling with H_{2}. The reaction mixture was then stirred vigorously at room temperature for 2 hours under an atmosphere of H_{2}. The reaction mixture was then filtered through a short pad of Celite ${ }^{\circledR}$ and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=50: 1$) to afford the title compound ($9,15 \mathrm{mg}, 0.051 \mathrm{mmol}, 85 \%$) as a colorless solid.
$\mathbf{R}_{\mathrm{f}}=0.21$ (n-pentane/EtOAc = 3:1); m.p.: $143-148^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=7.32-7.29(\mathrm{~m}$, 3H), $7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{dd}, J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.46$ (dd, $J=8.0,1.1$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.66 (s, 1H), 3.53 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=169.1,159.1,140.9,138.1$, 131.0, 129.8, 129.6, 127.5, 113.2, 113.0, 108.2, 86.3, 79.9, 59.2 ppm ; IR (neat): $\tilde{v}=3281,3061,2998$, 2935, 2832, 1681, 1620, 1595, 1475, 1448, 1387, 1243, 1207, 1169, 1099, 1021, 879, 791, 745, 725, $698,659 \mathrm{~cm}^{-1} ;$ HRMS (ESI): m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NNaO}_{4^{+}}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 308.0893; found: 308.0900. The NMR data match those reported for Aflaquinolone E. ${ }^{7}$
(\pm)-Quinolinone B(10)

To a solution of $6 \mathbf{e}(12 \mathrm{mg}, 0.028 \mathrm{mmol}, 1$ equiv.) in EtOAc/EtOH (1:1, 1 mL) was added $\mathrm{Pd} / \mathrm{C}(3.0 \mathrm{mg}$, $0.0029 \mathrm{mmol}, 10 \mathrm{w} \% \mathrm{Pd}, 10 \mathrm{~mol} \%$) and the atmosphere was changed from Ar to H_{2} by short evacuation and backfilling with H_{2}. The reaction mixture was then stirred vigorously at room temperature for 2 hours under an atmosphere of H_{2}. The reaction mixture was then filtered through a short pad of Celite ${ }^{\circledR}$ and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=50: 1$) to afford the title compound ($\mathbf{1 0}, 8.8 \mathrm{mg}, 0.028 \mathrm{mmol}, 98 \%$) as a colorless oil.
$\mathbf{R}_{\mathrm{f}}=0.60\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=50: 1\right)$; ${ }^{1} \mathrm{H}$ NMR (700 MHz , acetone- d_{6}): $\delta=9.28(\mathrm{~s}, 1 \mathrm{H}), 9.16(\mathrm{~s}, 1 \mathrm{H}), 7.22$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.16(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.49$ (dd, $J=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (176 MHz , acetone- d_{6}): $\delta=166.5,161.0,159.2,138.1,131.9,130.7,128.8,114.7,112.5,112.4,107.4$,
85.8, 79.6, 58.9, 55.5. ppm; IR (neat): $\tilde{v}=3294,3066,2993,2932,2837,1685,1626,1595,1510,1439$, 1379, 1305, 1253, 1207, 1170, 1103, 1076, 1051, 1025, 989, 936, 884, 834, 783, 756, $716 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NNaO}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 338.0999; found: 338.1006. The NMR data match those reported for Quinolinone B. ${ }^{6}$
(\pm)-Aflaquinolone F (11)

To a solution of $6 \mathbf{f}(12 \mathrm{mg}, 0.034 \mathrm{mmol}, 1$ equiv.) in $\mathrm{EtOAc} / \mathrm{EtOH}(1: 1,1 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(3.6 \mathrm{mg}$, $0.0031 \mathrm{mmol}, 10 \mathrm{w} \% \mathrm{Pd}, 10 \mathrm{~mol} \%$) and the atmosphere was changed from Ar to H_{2} by short evacuation and backfilling with H_{2}. The reaction mixture was then stirred vigorously at room temperature for 16 hours under an atmosphere of H_{2}. The reaction mixture was filtered through a short pad of Celite ${ }^{\circledR}$ and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=100: 3$) to afford the title compound (11, $8.7 \mathrm{mg}, 0.034 \mathrm{mmol}, 99 \%$) as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=0.30\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=50: 1\right) ;{ }^{1} \mathbf{H}$ NMR (700 MHz, CD $\left.{ }_{3} \mathrm{OD}\right): \delta=7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.34-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.26$ (td, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ (dd, $J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ (td, $J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (176 MHz, CD ${ }_{3} \mathrm{OD}$): $\delta=172.6$, 143.1, 138.3, 130.6, 130.1, 129.0, 128.4, 128.3, 124.0, 117.0, 78.6, 75.8 ppm ; IR (neat): $\tilde{v}=3294,2954$, 2922, 2853, 1727, 1707, 1606, 1464, 1376, 1282, 1248, 1116, 1031, 824, 762, $722 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NNaO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 278.0787; found: 278.0795. The NMR data match those reported for Aflaquinolone F. ${ }^{7}$

cis-6-Allyl-4,5-dihydroxy-3-methoxy-4-phenyl-3,4-dihydroquinolin-2(1H)-one (12a)

$6 \mathbf{g}(14 \mathrm{mg}, 0.040 \mathrm{mmol}, 1$ equiv.) was dissolved in 1,2-dichlorobenzene (1 mL) and heated in a microwave at $150{ }^{\circ} \mathrm{C}$ for 10 hours. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (silica gel, n-pentane/EtOAc $=1: 2$) to afford the title compound (12a, $9.9 \mathrm{mg}, 0.030 \mathrm{mmol}, 71 \%$) as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=0.32\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=50: 1\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.90(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H})$, $7.33-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.97$ (ddt, $J=16.8,10.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.31$ (qdt, $J=15.7,6.7,1.7 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.7,155.7,137.7,136.9,133.8$, 130.8, 129.3, 129.0, 126.5, 124.4, 115.7, 110.5, 106.5, 84.3, 79.1, 59.1, 33.7 ppm ; IR (neat): $\tilde{v}=3465$, 3290, 3074, 2954, 2924, 2869, 1683, 1638, 1622, 1602, 1505, 1493, 1463, 1449, 1421, 1378, 1346, 1272, 1223, 1174, 1102, 1077, 1036, 1027, 992, 947, 916, 892, 856, 846, 815, 754, 697, 673, $666 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NNaO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 348.1206$; found: 348.1216.
cis-6-Allyl-4,5-dihydroxy-3-methoxy-4-(4-methoxyphenyl)-3,4-dihydroquinolin-2(1H)-one (12b)

6h ($39 \mathrm{mg}, 0.11 \mathrm{mmol}, 1$ equiv.) was dissolved in 1,2-dichlorobenzene (1 mL) and heated in a microwave at $150^{\circ} \mathrm{C}$ for 10 hours. The solvent was removed under reduced pressure and the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-pentane/EtOAc $\left.=1: 2\right)$ to afford the title compound (12b, $25 \mathrm{mg}, 0.070 \mathrm{mmol}, 63 \%$) as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=0.32\left(n\right.$-Pentane/EtOAc = 1:1); ${ }^{1} \mathbf{H}$ NMR (400 MHz , acetone- d_{6}): $\delta=9.45(\mathrm{~s}, 1 \mathrm{H}), 9.25(\mathrm{~s}, 1 \mathrm{H}), 7.28$ $-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{dt}, J=8.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H})$, $6.01-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.00(\mathrm{~m}, 1 \mathrm{H}), 4.96$ (ddtd, $J=10.1,2.0,1.4,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.65$ (dd, $J=1.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.50(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.20(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 MHz, acetone- d_{6}): $\delta=$ $166.4,161.0,156.6,138.1,136.3,131.9,130.8,128.8,123.2,115.4,114.7,112.0,107.1,85.8,79.7$, 58.8, 55.5, 34.2. ppm; IR (neat): $\tilde{v}=3280,3069,2955,2924,2853,1683,1638,1623,1603,1509$, $1463,1418,1379,1306,1253,1224,1172,1103,1077,1028,993,944,909,891,860,830,812,798$, $765,754,730,709,701,687,681,666 \mathrm{~cm}^{-1}$; HMRS (ESI): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NNaO}_{5}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 378.1312; found: 378.1328.
(\pm)-Aniduquinolone C (13a)

12a ($9.9 \mathrm{mg}, 0.030 \mathrm{mmol}, 1$ equiv.) and Umicore M71 SIMes ($1.1 \mathrm{mg}, 0.0015 \mathrm{mmol}, 5 \mathrm{~mol} \%$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. 2-Methylbut-2-ene ($0.030 \mathrm{~mL}, 0.30 \mathrm{mmol}, 10$ equiv.) was added and the reaction mixture was heated to reflux for 5 hours in a sealed tube. After cooling to room temperature,
the reaction mixture was filtered through a short pad of silica gel. All volatiles were removed under reduced pressure and the crude product was purified by HPLC (EtOH $/ n$-pentane $=1: 10,1 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{r}}=$ 7.00 min) to afford the title compound ($\mathbf{1 3 a}, 8.0 \mathrm{mg}, 0.024 \mathrm{mmol}, 81 \%$) as a colorless oil.
$\mathbf{R}_{\mathrm{f}}=0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 50: 1\right)$; ${ }^{1} \mathrm{H}$ NMR (700 MHz , DMSO- d_{6}): $\delta=10.15(\mathrm{~s}, 1 \mathrm{H}), 9.59(\mathrm{~s}, 1 \mathrm{H}), 7.37-$ $7.28(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{dd}, J=5.8,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{dd}, J=15.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=15.4,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 1.68 (s, 3H), 1.65 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=166.1,155.0,140.0,135.0,131.3$, 129.2, 128.6, 126.2, 123.0, 122.8, 110.9, 106.3, 84.4, 78.7, 58.3, 27.5, 25.6, 17.7 ppm; IR (neat): $\tilde{v}=$ 3218, 3142, 3062, 2912, 2832, 2255, 1685, 1623, 1602, 1506, 1493, 1447, 1422, 1375, 1274, 1224, 1174, 1105, 1076, 1024, 1003, 943, 902, 867, 818, 767, $734 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NNaO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 376.1519$; found: 376.1513. The NMR data match those reported for Aniduquinolone C. ${ }^{5}$
(\pm)-Peniprequinolone (13b)

12b ($11 \mathrm{mg}, 0.030 \mathrm{mmol}, 1$ equiv.) and Umicore $\mathrm{M} 71 \mathrm{SIMes}(1.1 \mathrm{mg}, 0.0015 \mathrm{mmol}, 5 \mathrm{~mol} \%$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. 2-Methylbut-2-ene ($0.030 \mathrm{~mL}, 0.30 \mathrm{mmol}, 10$ equiv.) was added and the reaction mixture was heated to reflux for 5 hours in a sealed tube. After cooling to room temperature, the reaction mixture was filtered through a short pad of silica gel. All volatiles were removed under reduced pressure and the crude product was purified by HPLC (EtOH/n-pentane $=1: 10,1 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{r}}=$ 8.60 min) to afford the title compound ($\mathbf{1 3 b}, 9.0 \mathrm{mg}, 0.024 \mathrm{mmol}, 80 \%$) as a colorless solid.
$\mathbf{R}_{\mathrm{f}}=0.40\left(\mathrm{CH}_{2} \mathrm{Cl} / \mathrm{MeOH} 50: 1\right)$; m.p.: $55^{\circ} \mathbf{C}-59^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.91(\mathrm{~s}, 1 \mathrm{H}), 7.91$ (s, 1H), $7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.28(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30$ $-5.26(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{dd}, \mathrm{J}=16.0,7.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.20 (dd, J = 16.0, $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.74 (s, 3H), 1.68 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=166.0,160.3,155.7,133.3,132.8,130.1,129.5,128.0,125.8,122.4,114.4,110.5,106.4,84.5,78.9$, 59.0, 55.4, 27.8, 25.9, 17.9 ppm; IR (neat): $\tilde{v}=3277,3059,2954,2923,2869,2853,1684,1621,1603$, 1510, 1462, 1419, 1377, 1306, 1254, 1221, 1188, 1172, 1105, 1079, 1032, 989, 974, 940, 929, 903, 867, 829, 810, 767, 755, 734, 707, 698, 974, 661, $652 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NNaO}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 406.1625$; found: 406.1627. The NMR data match those reported for Peniprequinolone. ${ }^{6}$

References

(1) Kang, D.; Lee, J.; Lee, H.-Y. Org. Synth. 2012, 89, 66-72.
(2) Wulischleger, C. W.; Gertsch, J.; Altmann, K. H. Org. Lett. 2010, 12, 1120-1123.
(3) Mukaiyama, T.; Shiina, I.; Iwadare, H.; Saitoh, M.; Nishimura, T.; Ohkawa, N.; Sakoh, H.; Nishimura, K.; Tani, Y.; Hasegawa, M.; Yamada, K.; Saitoh, K. Chem. Eur. J. 1999, 5, 121-161.
(4) Suguru, Y.; Ken, S.; Takako, N.; Takamitsu, H. Chem. Lett. 2015, 44, 1324-1326.
(5) An, C.-Y.; Li, X.-M.; Luo, H.; Li, C.-S.; Wang, M.-H.; Xu, G.-M.; Wang, B.-G., J. Nat. Prod. 2013, 76, 1896-1901.
(6) Hayashi, H.; Nakatani, T.; Inoue, Y; Nakayama, M.; Nozake, H.; Biosci. Biotech. Biochem. 1997, 61, 914-916.
(7) Neff, S. A.; Lee, S. U.; Asami, Y.; Ahn, J. S.; Oh, H.; Baltrusaitis, J.; Gloer, J. B.; Wicklow, D. T.; J. Nat. Prod. 2012, 75, 464-472.

4d
${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]

${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(

${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

12b

13b
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^1]
[^0]: $\begin{array}{lllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^1]:

