Supporting Information

Boron-Doped TiO₂ for Efficient Electrocatalytic N₂ Fixation to NH₃ at Ambient Conditions

Yuan Wang,^{†,‡} Kun Jia,^{†,‡} Qi Pan,^{†,‡} Yadi Xu,[†] Qian Liu,[§] Guanwei Cui,[∥] Xiaodong Guo,^{*,†} Xuping Sun^{*,‡}

[†]Chemical Engineering Institute, Sichuan University, Chengdu 610065, Sichuan, China, [‡]Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China, [§]School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China, [¶]College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China ^{*}E-mail: xiaodong2009@163.com (X.G.); xpsun@uestc.edu.cn (X.S.)

Content

Experimental Section	
Rietveld refinement of XRD pattern	Figure S1
SEM images	Figure S2
UV-Vis absorption spectra and Calibration curve	Figure S3
UV-Vis absorption spectra and Calibration curve	Figure S4
LSV curves	Figure S5
Recycling tests	Figure S6
NH ₃ yields	Figure S7
NH ₃ production rates and FEs	Figure S8
¹⁵ N isotope labeling experiment	Figure S9
UV-Vis absorption spectra	Figure S10
Characterization after prolonged testing	Figure S11
Nyquist plots	Figure S12
CV curves	Figure S13
Rietveld refinement	Table S1
Comparison of NRR performance	Table S2

Experimental section

Materials: Tetrabutyl titanate was purchased from Aladdin Ltd. (Shanghai, China). H₃BO₄ was purchased from Chendu Chemical Corporation. Sodium salicylate (C₇H₅O₃Na), p-dimethylaminobenzaldehyde (C₉H₁₁NO), sodium citrate dehydrate (C₆H₅Na₃O₇·2H₂O), sodium hypochlorite solution (NaClO) were purchased from Beijing Chemical Corp. (China). Nafion (5 wt%) were purchased from Sigma-Aldrich Chemical Reagent Co., Ltd. All chemicals were used as received without further purification.

Synthesis of TiO_2 : a mixture solution with 10 mL Tetrabutyl titanate and 60 mL alcohol was added drop-wise into 100 mL alcohol with 10 mL distilled water. The resultant mixture was stirred at room temperature for 1 h and then age 4 h to obtain the ivory sol. The sol was heated at 60 °C for 18 h to get the dry bulk which was ground to the powder. Finally, the powder was calcined at 400 °C for 3h to obtain pure TiO₂.

Synthesis of B-TiO₂: In a typical procedure, 1 g H_3BO_4 and 10 mL distilled water was firstly dissolved into 100 mL alcohol under continuous stirring. Then, a mixture solution with 10 mL Tetrabutyl titanate and 60 mL alcohol was added drop-wise into above solution under mechanical stirring. The resultant mixture was stirred at room temperature for 1 h and then age 4 h to obtain the ivory sol. The sol was heated at 60 °C for 18 h to get the dry bulk which was ground to the powder. Finally, the powder was calcined at 400 °C for 3h to obtain the boron-doped TiO₂.

Characterization: XRD data were collected on X-ray diffractometer (Philip Company, Pw1730) equipped with a Cu K α radiation (λ =1.5418 Å). XPS data were collected on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the exciting source. SEM measurements were performed on a Hitachi S-4800 filed emission scanning electron microscope at an accelerating voltage of 20kV. TEM measurements were carried out on a Zeiss Libra 200FE transmission electron microscope operated at 200 kV.

Electrochemical measurement: N₂ reduction reaction tests were carried out in a two-compartment electrocatalytic cell separated by Nafion 211 membrane under ambient condition. The membrane was protonated by first boiling in ultrapure water for 1 h and treating in H₂O₂ (5%) aqueous solution at 80°C for 1 h. Then, the membrane was treaded in 0.1 M H₂SO₄ for 3 h at 80 °C and finally in water for 6 h. All the electrochemical measurements were tested using a CHI660E workstation (CH Instruments, China) in a typical three-electrode setup with an electrolyte solution of 0.1 M Na₂SO₄ (33 mL), a graphite rod as the counter electrode and Ag/AgCl as the reference electrode. The potentials reported in this work were converted to RHE scale via calibration with the following equation: *E* (vs RHE) =*E* (vs Ag/AgCl) + 0.197 + 0.059 × pH. Before the measurement, the Na₂SO₄ electrolyte was bubbled with N₂ for 30 min.

Determination of NH₃: The produced NH₃ was spectrophotometrically determined by indophenol blue method. In detail, 4 mL of post-tested solution was got from the electrochemical reaction vessel. Then, 50 uL of oxidation (contains 0.4 M sodium salicylate and 0.32 M sodium hydroxide), 500 uL of the colouring solution (sodium hypochlorite and 0.75 M sodium hydroxide) and 50 uL pf catalyst solution (0.1g sodium nitroferricyanide(III) dehydrate diluted to 10ml with deionized water) were added respectively to the sample solution. Absorbance measurments were performed after 2 h. The concentration of indophenol blue was determined using the absorbance at awavelength of 660 nm. The concentration-absorbance curve was calibrated using standard ammonia chloride solution with a serious of concentrations. The fitting curve (y = 0.709x + 0.017, $R^2 = 0.999$) shows good linear relation of absorbance value with NH₃ concentration by three times independent calibrations. The NH₃ concentration was calculated form the calibration curve, and the rate of NH₃ yield was calculated using the following equation:

$$R_{NH3} = (c_{NH3} \times V) / (t \times m_{cat.})$$

where c_{NH3} is the measured NH₃ concentration, V is the volume of electrolyte, t is the reduction reaction time and $m_{cat.}$ is the loaded mass of catalyst.

Calculation of Faradic efficiency (FE): Assuming three electrons were needed to produce one NH₃ molecule, the FE in 0.1 M Na₂SO₄ could be calculated as follows:

$$FE = 3F \times c_{NH3} \times V / 17 \times Q$$

Where F is the Faraday constant, Q is the quantity of applied electricity.

Determination of N₂H₄: The N₂H₄ presented in the electrolyte was estimated. A mixed solution of 5.99 g C₉H₁₁NO, 0.1 M Na₂SO₄ (30 mL) and 300 mL ethanol was used as a color reagent. Calibration curve was plotted as follow: First, preparing a series of reference solutions; second, adding 5 mL above prepared color reagent and stirring 20 min at room temperature; finally, the absorbance of the resulting solution was measured at 455 nm, and the yields of N₂H₄ were estimated from a standard curve using 5 mL residual electrolyte and 5 mL color reagent. Absolute calibration of this method was achieved using N₂H₄·H₂O solutions of known concentration as standards, and the fitting curve shows good linear relation of absorbance with N₂H₄·H₂O concentration (y = 1.149x + 0.035, R² = 0.999) by three times independent calibrations.

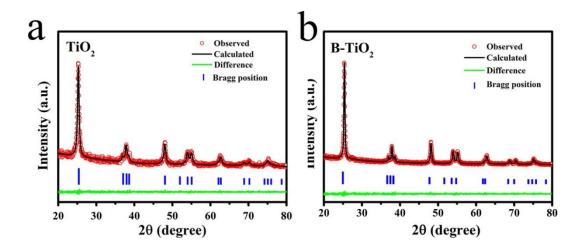


Figure S1. Powder XRD patterns as well as Rietveld refinements for (a) TiO_2 and (b) B-TiO_2.

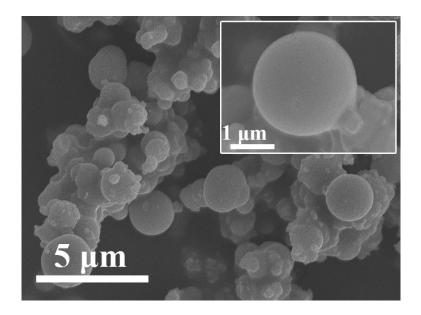


Figure S2. SEM images of pristine TiO₂ particles.

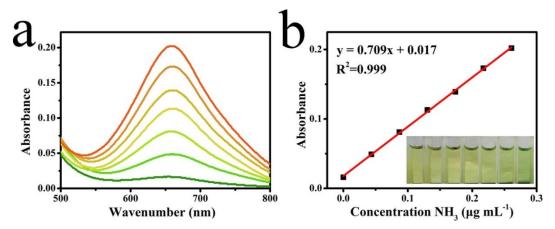
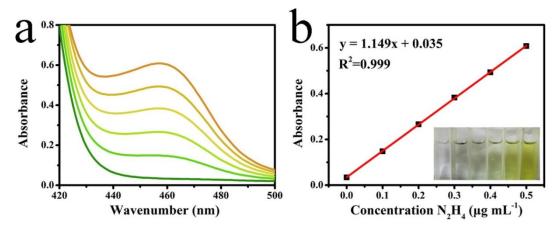



Figure S3. (a) UV-Vis absorption spectra of indophenol assays with NH_4^+ in 0.1 M Na_2SO_4 after incubated for 60 min at room temperature. (b) Calibration curve used for calculation of NH_3 concentration.

Figure S4. (a) UV-Vis absorption spectra of various N_2H_4 concentrations stained with p-C₉H₁₁NO indicator after incubated for 20 min at room temperature. (b) Calibration curve used for calculation of N_2H_4 concentration.

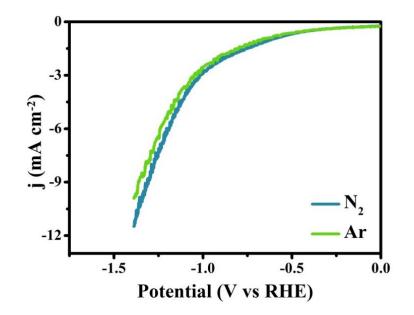


Figure S5. LSV curves of B-TiO₂/CPE in N_2 and Ar saturated 0.1 M Na_2SO_4 with a scan rate of 20 mV s⁻¹.

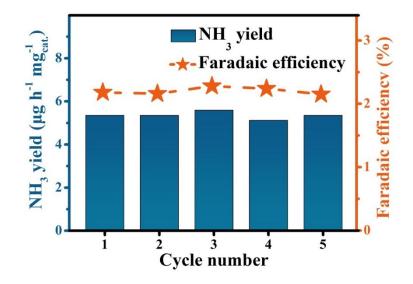


Figure S6. Recycling tests at potential of -0.80 V for TiO₂.

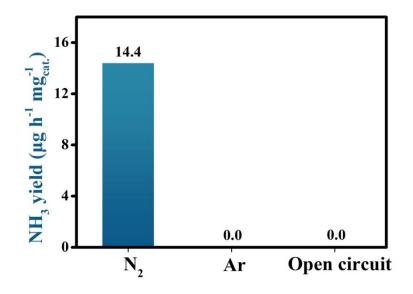


Figure S7. NH_3 yields at -0.80 V in N₂-saturated solution, and -0.80 V in Ar-saturated solution, and open circuit potential in N₂-saturated solution.

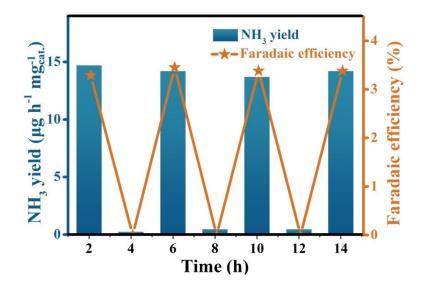
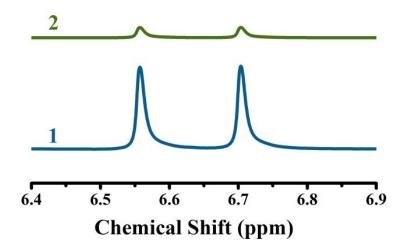
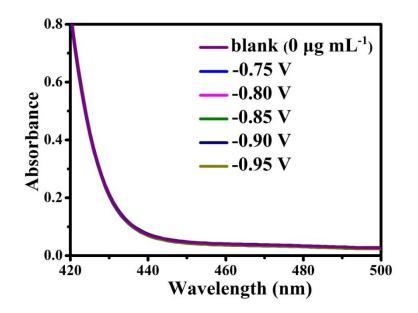




Figure S8. NH₃ production rates and FEs of B-TiO₂/CPE.

Figure S9. ¹H NMR spectra for ${}^{15}NH_4^+$ standard sample (curve 1) and the electrolysis product using ${}^{15}N_2$ as the feeding gas (curve 2).

Figure S10. UV-Vis absorption spectra of the electrolytes stained with $p-C_9H_{11}NO$ indicator after NRR electrolysis at a series of potentials.

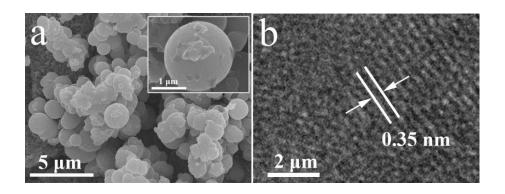
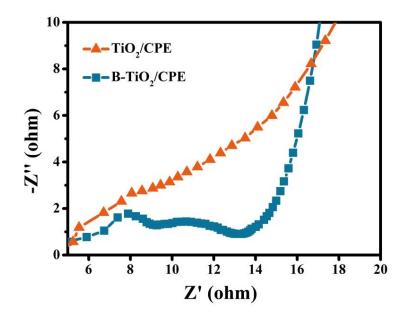



Figure S11. (a) SEM and (b) HRTEM images for B-TiO₂ after long-term NRR test.

Figure S12. Nyquist plots of B-TiO₂/CPE and TiO₂/CPE in the frequency range from 1000 kHz to 1Hz with a voltage amplitude of 5 mV, and all the three electrodes are in one compartment cell being full of 0.1 M Na₂SO₄ solution at room temperature (25 $^{\circ}$ C).

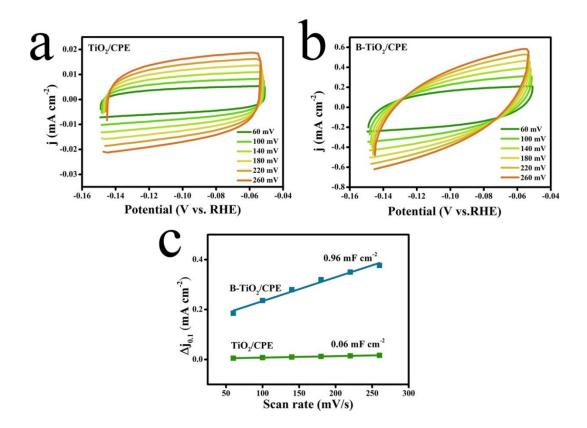


Figure S13. CV curves (a) TiO_2/CPE and (b) B-TiO_2/CPE. (c) The capacitive currents at -0.10 V as a function of scan rates for B-TiO_2/CPE and TiO_2/CPE.

Sample	Lattice parameter		Unit cell volume (Å ³)	R _{wp}	R _p	X ²	
	a-Axis	b-Axis	c-Axis				
TiO ₂	3.7870	3.7870	9.492	136.14	12.74	9.11	0.9337
B-TiO ₂	3.7844	3.7844	9.516	136.29	10.92	7.91	1.4314

Table S1. Rietveld refinement of XRD data for TiO_2 and B- TiO_2 .

Catalyst	Electrolyte	NH ₃ yield	FE(%)	Ref.
B-TiO ₂	0.1 M Na ₂ SO ₄	14.4 $\mu g h^{-1} m g^{-1}{}_{cat.}$	3.4	This work
TiO ₂ nanosheets array	0.1 M Na ₂ SO ₄	5.6 μ g h ⁻¹ cm ⁻²	2.5	(1)
TiO ₂ -rGO	0.1 M Na ₂ SO ₄	$15.13 \ \mu g \ h^{-1} \ mg^{-1}_{cat.}$	3.3	(2)
γ-Fe ₂ O ₃	0.1 M KOH	$0.212 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	1.9	(3)
Fe ₃ O ₄ /Ti	0.1 M Na ₂ SO ₄	$3.42 \ \mu g \ h^{-1} \ cm^{-2}$	2.6	(4)
Fe ₂ O ₃ nanorods	0.1 M Na ₂ SO ₄	15.9 μg h ⁻¹ mg ⁻¹ _{cat.}	0.94	(5)
MoS ₂ /CC	0.1 M Na ₂ SO ₄	4.94 μ g h ⁻¹ cm ⁻²	1.17	(6)
Pd _{0.2} Cu _{0.8} /rGO	0.1 M KOH	$.2.8 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	4.5	(7)
PEBCD/C	0.5 M Li ₂ SO ₄	$1.58 \ \mu g \ h^{-1} \ cm^{-2}$	2.85	(8)
Au nanorods	0.1 M KOH	$1.6 \ \mu g \ h^{-1} \ cm^{-2}$	3.88	(9)
Mn ₃ O ₄ nanocube	0.1 M Na ₂ SO ₄	$11.6 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	3.0	(10)
TiO ₂ -rGO	0.1 M Na ₂ SO ₄	15.13 μg h ⁻¹ mg ⁻¹ _{cat.}	3.3	(11)
hollow Cr ₂ O ₃ microspheres	0.1 M Na ₂ SO ₄	25.3 μ g h ⁻¹ mg ⁻¹ _{cat.}	6.78	(12)
β-FeOOH nanorod	0.5 M LiClO ₄	23.32 μ g h ⁻¹ mg ⁻¹ _{cat.}	6.7	(13)
SnO ₂	0.1 M Na ₂ SO ₄	$\begin{array}{c} 1.47 \times 10^{-10} \ mol \ s^{-1} \\ cm^{-2} \end{array}$	2.17	(14)

Table S2. Comparison of the NRR performances for $B-TiO_2$ with other

electrocatalysts in neutral media at ambient conditions.

References

- Zhang, R.; Ren, X.; Shi, X.; Xie, F.; Zheng, B.; Guo, X.; Sun, X. Enabing Effective Electrocatalytic N₂ Conversion to NH₃ by the TiO₂ Nanosheets Array under Ambient Conditions. *ACS Appl. Mater. Interfaces* 2018, 10(34), 28251– 28255, DOI: 10.1021/acsami.8b06647.
- (2) Zhang, X.; Liu, Q.; Shi, X.; Asiri, A. M.; Luo, Y.; Li, T.; Sun, X. TiO₂ Nanoparticles-Reduced Graphene Oxide Hybrid: An Efficient and Durable Electrocatalyst toward Artificial N₂ Fixation to NH₃ under Ambient Conditions. *J. Mater. Chem. A* 2018, DOI: 10.1039/C8TA05627G.
- Kong, J.; Lim, A.; Yoon, C.; Jang, J. H.; Ham, H. C.; Han, J.; Nam, S.; Kim, D.; Sung, Y. E.; Choi, J.; Park, H. S. Electrochemical Synthesis of NH₃ at Low Temperature and Atmospheric Pressure Using a γ-Fe₂O₃. *ACS Sustainable Chem. Eng.* 2017, *5(11)*, 10986–10995, DOI: 10.1021/acssuschemeng.7b02890.
- (4) Liu, Q.; Zhang, X.; Zhang, B.; Luo, Y.; Cui, G.; Xie, F.; Sun, X. Ambient N₂ Fixation to NH₃ Electrocatalyzed by Spinel Fe₃O₄ Nanorod. *Nanoscale* 2018, *10(30)*, 14386–14389, DOI: 10.1039/C8NR04524K.
- (5) Xiang, X.; Wang, Z.; Shi, X.; Fan, M.; Sun, X. Ammonia Synthesis from Electrocatalytic N₂ Reduction under Ambient Conditions by Fe₂O₃ Nanorods. *ChemCatChem* 2018, DOI: 10.1002/cctc.201801208.
- (6) Zhang, L.; Ji, X.; Ren, X.; Ma, Y.; Shi, X.; Tian, Z.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on MoS₂ Catalyst: Theoretical and Experimental Studies. *Adv. Mater.*, 2018, *30(28)*, 1800191, DOI: 10.1002/adma.201800191.
- (7) Shi, M.; Bao, D.; Li, S.; Wulan, B.; Yan, J.; Jiang, Q. Anchoring PdCu Amorphous Nanocluster on Graphene for Electrochemcial Reduction of N₂ to NH₃ under Ambient Conditions in Aqueous Solution. *Adv. Energy Mater.* 2018, 8(*21*), 1800124, DOI: 10.1002/aenm.201800124.
- (8) Chen, G.; Cao, X.; Wu, S.; Zeng, X.; Ding, L.; Zhu, M.; Wang, H. Ammonia Electrosynthesis with High Selectivity under Ambient Conditions via a Li⁺

Incorporation Strategy. J. Am. Chem. Soc. 2017, 139(29), 9771–9774, DOI: 10.1021/jacs.7b04393.

- (9) Bao, D.; Zhang, Q.; Meng, F.; Zhong, H.; Shi, M.; Zhang, Y.; Yan, J.; Jiang, Q.; Zhang, X. Electrochemical Reduction of N₂ under Ambient Conditions for Artificial N₂ Fixation and Renewable Energy Storage Using N₂/NH₃ Cycle. *Adv. Mater.* 2017, *29(3)*, 1604799, DOI: 10.1002/adma.201604799.
- Wu, X.; Xia, L.; Wang, Y.; Lu, W.; Liu, Q.; Shi, X.; Sun, X. Mn₃O₄ Nanocube: An Efficient Electrocatalyst toward Artificial N₂ Fixation to NH₃. *Small* 2018, DOI: 10.1002/smll.201803111.
- (11) Zhang, X.; Liu, Q.; Shi, X.; Asiri, A. M.; Luo, Y.; Sun, X.; Li, T. TiO₂ Nanoparticles-Reduced Graphene Oxide Hybrid: An Efficient and Durable Electrocatalyst toward Artificial N₂ Fixation to NH₃ under Ambient Conditions. *J. Mater. Chem. A* 2018, *6*, 17303–17306, DOI: 10.1039/C8TA05627G.
- (12) Zhang, Y.; Qiu, W.; Ma, Y.; Luo, Y.; Tian, Z.; Cui, G.; Xie, F.; Chen, L.; Li, T.; Sun, X. High-Performance Electrohydrogenation of N₂ to NH₃ Catalyzed by Multishelled Hollow Cr₂O₃ Microspheres at Ambient Conditions. *ACS Catal.* 2018, *8(9)*, 8540–8544, DOI: 10.1021/acscatal.8b02311.
- (13) Zhu, X.; Liu, Z.; Liu, Q.; Luo, Y.; Shi, X.; Asiri, a. M.; Wu, Y.; Sun, X. Efficient and Durable N₂ Reduction Electrocatalysis at Ambient Conditions: β-FeOOH Nanorod as a Non-Noble-Metal Catalyst. *Chem. Commun.* 2018, 54, 11332-11335, DOI: 10.1039/C8CC06366D.
- (14) Zhang, L.; Ren, X.; Luo, Y.; Shi, X.; Asiri, A. M.; Li, T.; Sun, X. Ambient NH₃ Synthesis via Electrochemical Reduction of N₂ over Cubic Sub-Micron SnO₂ Particle. *Chem. Commun.* 2018, DOI: 10.1039/C8CC06524A.