Supporting Information

Viscoelastic Properties of Tightly Entangled Semiflexible Polymer Solutions

Yuki Okada, Yuka Goto, Reina Tanaka, Takuya Katashima, Xinyue Jiang, Ken Terao,

Takahiro Sato and Tadashi Inoue*

Graduate School of Science, Osaka University,1-1, Machikaneyama, Toyonaka, Osaka, 560-0043, JAPAN

S1. Determination of molar mass of CTC

The absolute molar mass of CTC was estimated using a GPC system composed of a pump (Viscotek VE 1122, Malvern Panalytical), two polystyrene gel columns [TSKgel GMHHR-M × 2, Tosoh Bioscience (exclusion limit molar mass = 4×10^5 g mol⁻¹; bead size = 5 µm; column size =300 mm; Inner diameter= 7.8 mm); flow rate = 0.7 mL min⁻¹], and a multidetector of refractive index (RI), with laser light scattering ($\lambda = 670$ nm, scattering angles = 90° and 7°), and a differential pressure viscometer (Viscotek TDA 305, Malvern Panalytical). The elution solvent was tetrahydrofuran. Monodisperse linear polystyrene ($M_w = 105$ k g mol⁻¹) with a known dn/dc (= 0.185) value purchased from Malvern Panalytical was utilized for calibration of the GPC equipment. The dn/dc value of CTC was determined as 0.1715 via analysis of the RI signal. The data were analyzed using the OmniSec software program (Malvern Panalytical).

S2. Shift factor of time-temperature superposition principle for CTC solution in TCP

Figure S1 shows the temperature dependence of shift factors, a_T , for CTC110k with c= 0.01 and 0.23 gcm⁻³ and neat TCP. The reference temperature is -10° C. The shift factor for the dilute solution with c = 0.01 gcm⁻³ is very close to that of neat TCP, while that for the solution with c = 0.23 gcm⁻³ shows a stronger temperature dependence, reflecting the increase in the glass transition temperature of the solution.

Figure S1 Temperature-dependent shift factor, a_T , for CTC110k with c = 0.01 and 0.23 gcm⁻³and for neat TCP. Reference temperature, T_r , is -10° C.

S3. Estimation of the tension mode from the complex modulus

Figure S2 shows $G'-G'_{\text{link}}$ and $G''-G''_{\text{link}}$ of the CTC/TCP solution with $c = 0.01 \text{gcm}^{-3}$. Here, G'_{link} and G''_{link} were calculated as K'_{link}/C and K''_{link}/C , respectively. In the frequency regions of $\log(\omega a_T/s^{-1}) < 6$, $G'-G'_{\text{link}}$ was regarded as G'_{ten} and showed power law behavior with an exponent of 3/4. Therefore, G'_{tens} was approximated with a power-law-type function, given in Eq. (S-1).

$$G'(\omega) = G_0 \sum_{i=1}^{N(\infty)} \frac{\omega^2 \tau_i^2}{1 + \omega^2 \tau_i^2} \quad , G''(\omega) = G_0 \sum_{i=1}^{N(\infty)} \frac{\omega \tau_i}{1 + \omega^2 \tau_i^2} \qquad S-1$$

$$\tau_i = \frac{\tau_0}{i^a} \qquad \qquad S-2$$

Here, G_0 , τ , and a are the fitting parameters. We set $G_0 = 1100 \text{ Pa} \sim cRT/M_s$, $\tau_0 / s = \tau_{\text{tens}} / s = 2.5 \times 10^{-3}$, and a = 4/3. The result is presented in Figure S2 as the green solid line.

The theoretical storage modulus of the tension mode, $G'_{\text{Morse,Lp}}$, given by the Morse theory¹ was calculated and is indicated by the red broken line in Figure S2. For calculation, we used the following equation, which is valid for $L >> L_P$ and $t >> \tau_p$ (the relaxation time of undulation mode for the contour wavelength approaching L_p).

$$G_{tens}^*(\omega) \simeq \frac{2^{3/4}}{15} \frac{\rho k_B T}{L_p} \left(i\omega \frac{\zeta_{\perp} L_p^3}{k_B T} \right)^{3/4}$$
S-3

Here, ρ and *d* respectively represent the concentration of the contour length ($\rho = vL$; v: number density of the polymer) and the steric diameter of the chain. ζ_{\perp} is the effective friction coefficient for the rigid transverse motion of a rod.¹ Following Morse et al, we ignored the effects of long range hydrodynamic interactions and therefore.²

$$\zeta_{\perp} \cong 4\pi\eta_s \qquad \qquad S-4$$

The parameters used for this calculation are summarized in Table S1. The value of η_s was determined using the viscoelastic data for TCP; $\eta_s = G''(\omega)/\omega \ (\omega \rightarrow 0)$. The theoretical prediction is qualitatively consistent with the experimental result ($G'_{\text{tens}} \propto \omega^{3/4}$), but it gives an approximately three times lower modulus or $3^{3/4}$ times faster relaxation. To determine the origin of this disagreement, we calculated $\tau_{rod}(\lambda^{-1})$,^{1, 2}which corresponds to the shortest Rouse relaxation time. We found that the calculated theoretical value of $\tau_{rod}(\lambda^{-1}) \sim 1 \times 10^{-4}$ s was lower than the experimental value (see Figure 2 and also Figure S4). Therefore, we tentatively attributed the disagreement to the smaller estimated value of ζ_{\perp} . In a glass-forming solvent, there exists some cooperativity between the polymer and solvent dynamics; this means that the effective viscosity of the solvent around the polymer would be enhanced. This aspect should be examined in future studies on different polymer–solvent combinations.

Figure S2. $G'-G'_{\text{link}}$ and $G''-G''_{\text{link}}$ of CTC/TCP solution with $c = 0.01 \text{ gcm}^{-3}$. Green solid line represents the fitting result obtained using Eq.(S-4) and red broken line represents the fitting result obtained using Eq.(S-3). Characteristic relaxation times are also presented. τ_{tens} is the fitting parameter.

Table S1. Parameters for calculating $G'_{Morse,Ls}$, $G'_{Morse,Lp}$, and $\tau_{p,Lp}$.

L_p/nm	L _s /nm	ho /nm ²	<i>d</i> /nm	$\eta_{ m s}/{ m Pas}$	T/\mathbf{K}
5.75	14.4	6.02×10 ³	1.0	1.7	263

S4. Determination of the viscoelastic segment size, M_s

 $G^*_{\text{link}}(\omega)$ represents the reorientation process of the viscoelastic segments and it can be described using the Rouse–Zimm model. Thus, the limiting modulus of $G^*_{\text{link}}(\omega)$ can be related to the viscoelastic segment (the Rouse segment).

$$M_s = \frac{cRT}{G'_{link}(\infty)}$$
 S-6

Here, *c*, *R*, and *T* represent the concentration, gas constant, and temperature, respectively. According to Eq. (10), G'_{link} is equal to $K'_{\text{link}}C^{-1}$. Therefore, Eq. S-6 can be rewritten as follows.

$$M_s = \frac{cRT}{C^{-1}K'_{link}(\infty)}$$
S-7

This method has been used for various polymers, and the relationship between the viscoelastic segment and Kuhn segment is discussed elsewhere.³⁻⁶

S5. Estimation of G^*_{tens} and G^*_{bend} for tightly entangled system

Figure S3 shows $G'-G'_{link}$ of the CTC/TCP solution with c = 0.23 gcm⁻³ and the estimated values of G'_{bend} and G'_{tens} . We first calculated G'_{tens} using Eqs.(S-1) and (S-2). Here, τ_0 for the tension mode is estimated from $G'_{tens}(1/\tau_{tens}) = cRT/M_s$. The resultant modulus, $G'-G'_{link}$ – G'_{tens} is regarded as G'_{bend} and fitted to Eqs.(S-1) and (S-2). The obtained fitting parameters are summarized in Table 2.

Figure S3. *G'*-*G'*_{link} of CTC/TCP solution with c = 0.23 gcm⁻³. Blue and green solid lines represent the fitting results of *G'*_{bend} and *G'*_{tens}, respectively.

Table S2. Fitting parameters for G'_{tens} and G'_{bend}

	G ₀ /Pa	τ_0/s	а
G'_{tens}	28000	1.95	1.33
G'_{bend}	2800	3200	2

S6. Complex modulus and strain-optical coefficient for short CTC in TCP

Figure S4 displays the real and imaginary components of G^* and K^* for a 0.015 gcm⁻³ solution of CTC25k in TCP. The Kuhn segment number for this sample is 2.2. The results are similar to the 0.01 gcm⁻³ solution of CTC110k, except for the narrower relaxation mode distribution for K^* at lower frequencies, $\log(\omega a_T/s^{-1}) < 6$, where K' is negative. A negative K' can be attributed to the orientation mode of CTC and is rather close to a rod-like single Maxwellian relaxation. This result indicates that the contribution of bending and tension modes to birefringence is negligibly small, supporting our assumption $C_{bend} \sim C_{tens} \sim 0$ in this study.

Figure S4. Real and imaginary components of G^* and K^* for a 0.01 gcm⁻³ solution of CTC25k in TCP. Reference temperature is -10° C.

1. Morse, D. C. Viscoelasticity of concentrated isotropic solutions of semiflexible polymers. 2. Linear response. *Macromolecules* **1998**, 31 (20), 7044-7067 DOI: DOI 10.1021/ma980304u.

2. Shankar, V.; Pasquali, M.; Morse, D. C. Theory of linear viscoelasticity of semiflexible rods in dilute solution. *J Rheol* **2002**, 46 (5), 1111-1154 DOI: 10.1122/1.1501927.

3. Maeda, A.; Inoue, T. On the viscoelastic segment size of cellulose. *Nihon Reoroji Gakk* **2011**, 39 (4), 159-163.

4. Inoue, T. On the relationship between viscoelastic segments and Kuhn segments; Strain-induced chain orientation in fast deformation. *Macromolecules* **2006**, 39 (13), 4615-4618.

5. Inoue, T.; Mizukami, Y.; Okamoto, H.; Matsui, H.; Watanabe, H.; Kanaya, T.; Osaki, K. Dynamic birefringence of Vinyl polymers. *Macromolecules* **1996**, 29 (19), 6240-6245.

6. Inoue, T.; Matsui, H.; Osaki, K. Molecular origin of viscoelasticity and chain orientation of glassy polymers. *Rheol. Acta* **1997**, 36 (3), 239-244.