SUPPLEMENTARY INFORMATION

Electrophoretically deposited ZnFe₂O₄-carbon black porous film as a superior negative electrode for lithium-ion battery

Debasish Das^{a*}, Arijit Mitra^b, Sambedan Jena^c, Subhasish B. Majumder^a, Rajendra N. Basu^d

^aAdvanced Materials Processing Laboratory, Materials Science Centre, Indian Institute of Technology, Kharagpur, 721302, India

^bStructural Characterization of Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, 721302, India

^cSchool of Nano Science and Technology, Indian Institute of Technology, Kharagpur, 721302,

India

^dFuel Cell and Battery Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, 700032, India

Corresponding Author

* debasish.das@matsc.iitkgp.ac.in, <u>debasishcgcri@gmail.com</u>

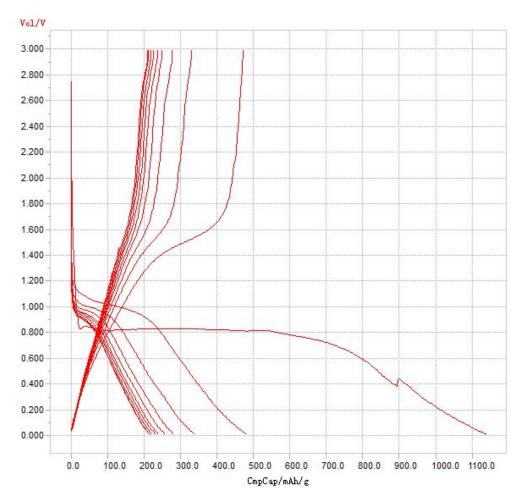


Figure S1: Charge-Discharge profile for ZFO-CB composite film, prepared using tape cast method. The electrodes are cycled at 100mAg⁻¹ specific current between 0.01 and 3.0V. The electrodes show poor electrochemical performance as compared to the ones exhibited by electrophoretically deposited electrodes.