Supporting Information

Understanding Water Adsorption and the Impact on CO₂ Capture in Chemically Stable Covalent Organic Frameworks

Yuxin Ge,^a Hao Zhou,^a Yujin Ji,^b Lifeng Ding,*a Yuanyuan Cheng,^c Ruiyao Wang,^a Siyuan Yang,^a Yufeng Liu,^a Xiaoyu Wu,^a and Youyong Li,*b

a Department of Chemistry, Xi'an JiaoTong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Jiangsu Province, 215123, China

b Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215213, China

c School of Environmental Science & Engineering, Suzhou University of Science & Technology, Suzhou, 215009, China

Yuxin Ge and Hao Zhou contributed equally to this work

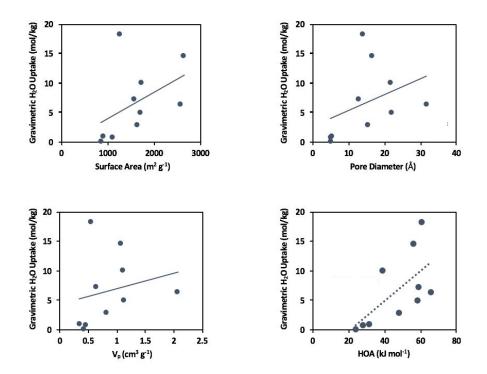
Corresponding authors: Lifeng Ding (Lifeng.Ding@xjtlu.edu.cn); Youyong Li (yyli@suda.edu.cn)

Section		Page No.
S-1	Summary of characteristics of the COFs	3
S-2	Structure-Property correlations	6
S-3	Model clusters and atomic partial charges for TpPa-NO ₂	8
S-4	Simulated water adsorption snapshots in the COFs	9
S-5	Simulated water and CO ₂ adsorption density plots in the COFs.	15
S-6	Pore size distributions of the COFs	19
S-7	Radial distribution functions (RDF) of the oxygen-oxygen distance between oxygen atoms of the water molecules and the COF framework oxygen atoms	25
S-8	Force field parameters used in the GCMC simulations	26

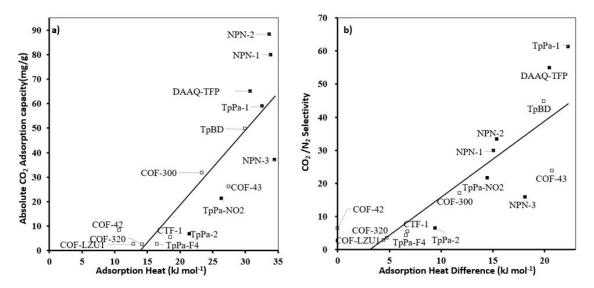
Section S-1: Summary of characteristics of the COFs

Table S1. Summary of characteristics of the COFs studied in this work

	$V_{\rm p}$, c	m ³ g ⁻¹	BET	Geometric	Pore Diameter, Å		
COFs				surface area			
	Lit	Sim	$m^2 g^{-1}$	$m^2 g^{-1}$	Lit	Sim	
COF-42	0.311	1.07	7105	2644	23.05	16.47	
COF-43	0.365	2.07	6205	2571	38.05	31.71	
COF-300	0.72^{6}	1.19	1360 ⁶	3453	7.2^{6}	8.73	
COF-320	0.81^{2}	0.60	-	1694	8.0^{2}	7.71	
COF-LZU1	0.547	1.01	4107	2129	12.07	15.15	
TpPa-1	-	0.81	5358	1639	12.58	15.27	
TpPa-2	-	0.63	3398	1569	13.58	12.87	
TpPa-F4	-	0.51	4381	1115	17.0^{1}	14.55	
TpPa-NO2	-	0.54	129¹	1254	16.0^{1}		
NPN-1	0.48^{9}	0.42	-	861	7.3×3.3 ⁹	3.51, 5.01	
NPN-2	0.549	0.46	-	1104	7.8×3.4 ⁹	3.75, 5.01	
NPN-3	0.469	0.34	-	915	5.2×5.2 ⁹	4.35, 5.25	
TpBD	-	1.12	53710	1710	17.2^{10}	22.11	
CTF-1	0.4011	0.36	79111	905	12.011	8.07	
DAAQ-TFP	-	1.10	128012	1737	23.012	21.63	


Table S2. Summary of adsorption heats, inflection points and water uptake in p/p_{θ} = 0.1, 0.3 and 0.9 of the COF at 298 K.

COFs	Adsorption heat	Inflection point	Water uptake, cm ³ g ¹				
	kJ mol ⁻¹	RH	$p/p_0=0.1$	$p/p_0=0.3$	$p/p_0 = 0.9$		
COF-42	55.89	0.71	326	394	1315		
COF-43	65.89	0.78	143	238	2620		
COF-300	13.57	0.52	0.049	0.149	0.821		
COF-320	29.69	0.52	0.245	0.773	17.267		
COF-LZU1	19.79	0.45	0.050	0.164	0.537		
TpPa-1	48.17	0.26	65.0	894	962		
TpPa-2	58.60	0.26	163	699	747		
TpPa-F4	35.11	0.58	0.820	2.474	75.3		
TpPa-NO ₂	60.47	0.13	410	612	653		
NPN-1	24.10	0.45	1.579	207	344		
NPN-2	27.73	0.19	18.532	393	435		
NPN-3	31.48	0.26	20.286	282	363		
TpBD	58.12	0.65	171	196	1347		
CTF-1	6.44	0.45	0.005	0.015	28.871		
DAAQ-TFP	38.86	0.22	226	1253	1348		


Table S3. Summary of the adsorption heats of 6 water models at low coverage in TpPa-1 and TpPa-2.

COFs	TpPa-1	TpPa-2			
	Heat of adsorption (kJ mol ⁻¹)	Heat of adsorption (kJ mol ⁻¹)			
SPC	49.00	59.30			
SPC/E	48.17	58.60			
TIP4P	52.77	61.03			
TIP4P_EW	52.79	64.46			
TIP5P	39.13	53.49			
TIP5P_EW	39.68	52.00			

Section S-2: Structure-Property correlations

Figure S1. Structure-property correlations between geometric water uptake and the surface area, pore diameter, porosity, heat of adsorption (HOA) of the COFs at RH = 0.1 and 298 K.

Figure S2. (a) Correlation between absolute CO_2 uptake and its isosteric heat of adsorption in the COFs at 1 bar (partial pressure of CO_2 is 0.15 bar, dry condition). (b) Correlation between CO_2/N_2 selectivity and the adsorption heat difference of CO_2/N_2 in the COFs at 1 bar (partial pressure of CO_2 is 0.15 bar, dry condition).

Section S-3: Model Clusters and atomic partial charges for TpPa-NO₂

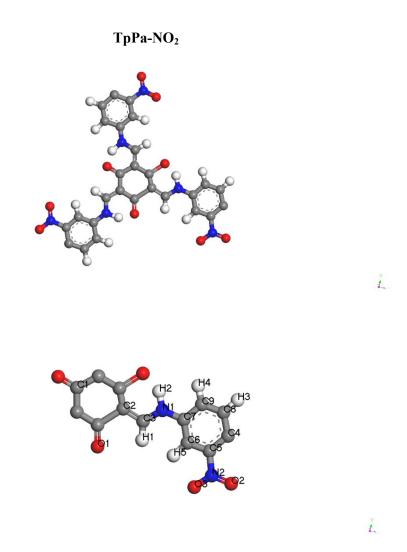


Figure S3. Model cluster used for calculating the partial charges for each atom of TpPa-NO₂.

Table S4. Atomic partial charges calculated using ChelpG method.

Atomic Types	C1	C2	C3	C4	C5	C6	C7	C8	C9	H1
Charge (e)	0.522	-0.347	0.263	0.291	-0.075	-0.260	0.293	-0.209	-0.164	0.071
Atomic Types	H2	Н3	H4	H5	N1	N2	O1	O2	О3	
Charge (e)	0.371	0.143	0.121	0.171	-0.388	0.721	-0.559	-0.449	-0.449	

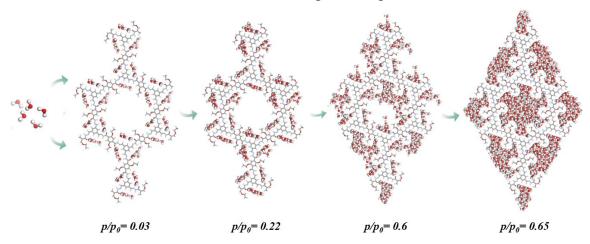


Figure S4. Snapshots of water molecules adsorbed in COF-42 as a function of pressure at 298 K.

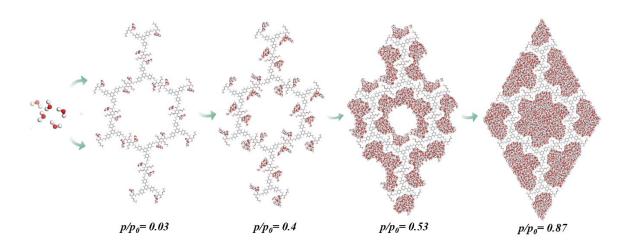
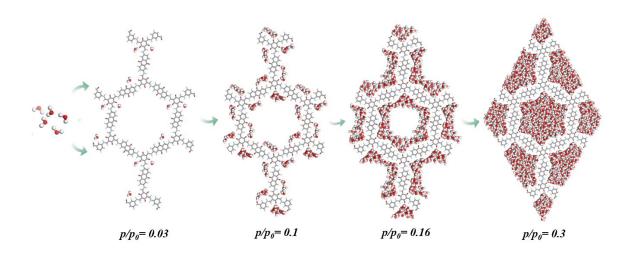
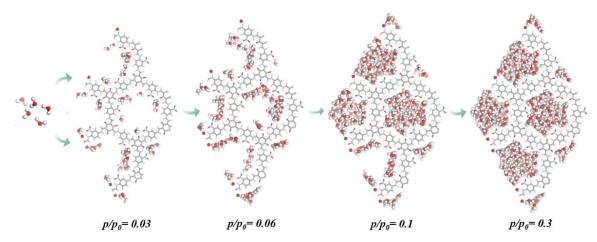




Figure S5. Snapshots of water molecules adsorbed in COF-43 as a function of pressure at 298 K.

Figure S6. Snapshots of water molecules adsorbed in DAAQ-TFP as a function of pressure at 298 K.

Figure S7. Snapshots of water molecules adsorbed in TpPa-NO₂ as a function of pressure at 298 K.

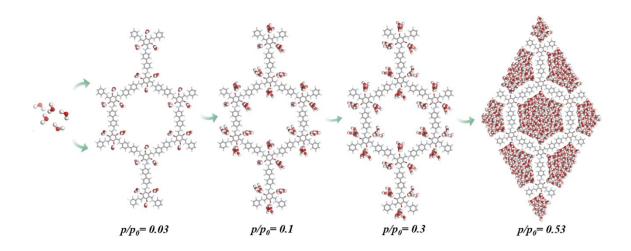


Figure S8. Snapshots of water molecules adsorbed in TpBD as a function of pressure at 298 K.

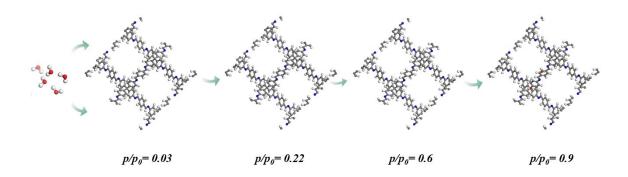
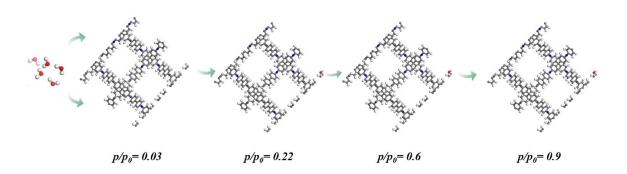
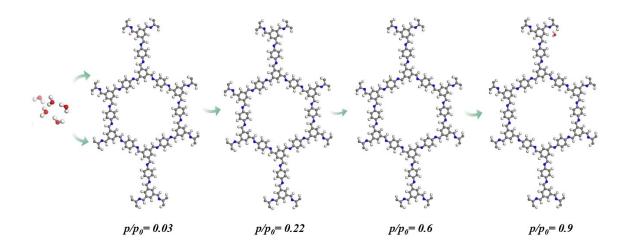




Figure S9. Snapshots of water molecules adsorbed in COF-300 as a function of pressure at 298 K.

Figure S10. Snapshots of water molecules adsorbed in COF-320 as a function of pressure at 298 K.

Figure S11. Snapshots of water molecules adsorbed in COF-LZU1 as a function of pressure at 298 K.

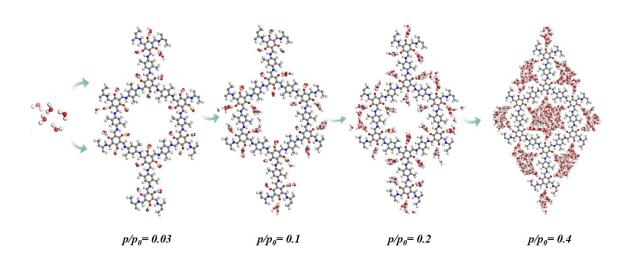


Figure S12. Snapshots of water molecules adsorbed in TpPa-2 as a function of pressure at 298 K.

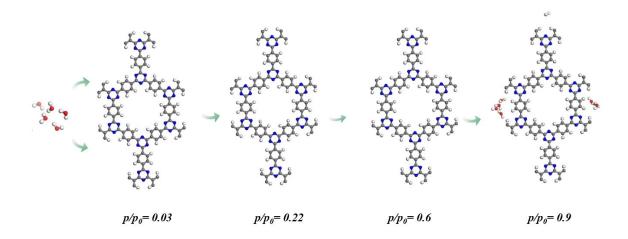


Figure \$13. Snapshots of water molecules adsorbed in CTF-1 as a function of pressure at 298 K.

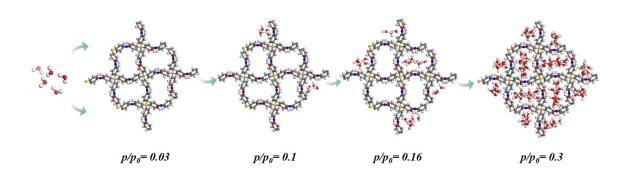


Figure S14. Snapshots of water molecules adsorbed in NPN-2 as a function of pressure at 298 K.

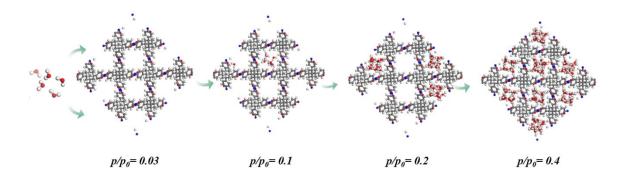
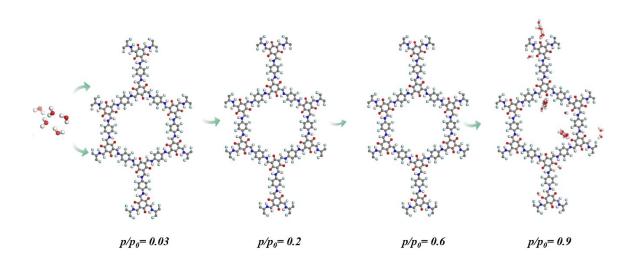
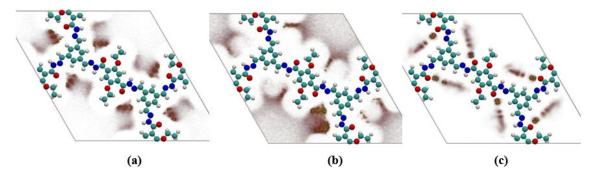




Figure S15. Snapshots of water molecules adsorbed in NPN-3 as a function of pressure at 298 K.

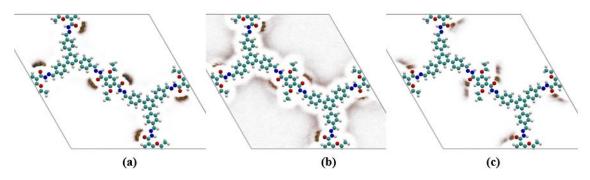
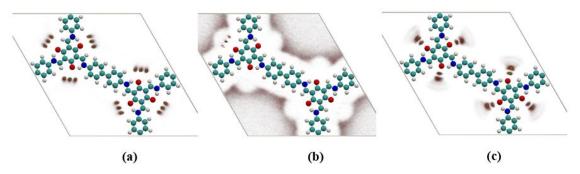
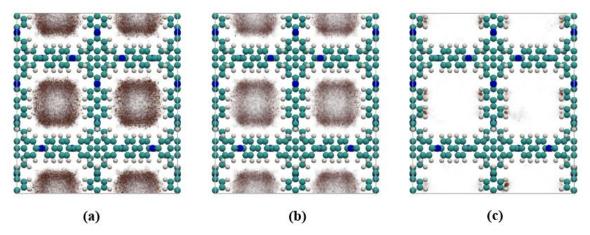
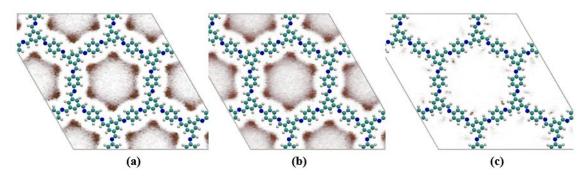
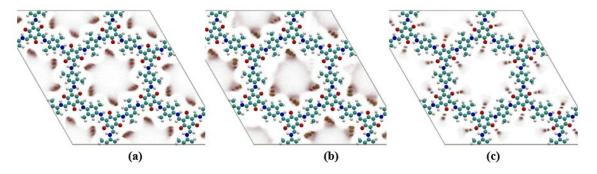


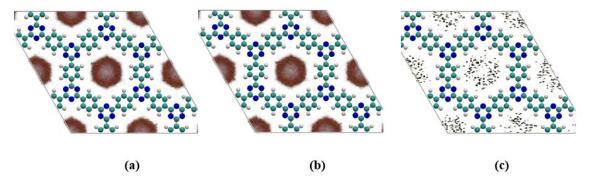
Figure S16. Snapshots of water molecules adsorbed in TpPa-F4 as a function of pressure at 298 K.

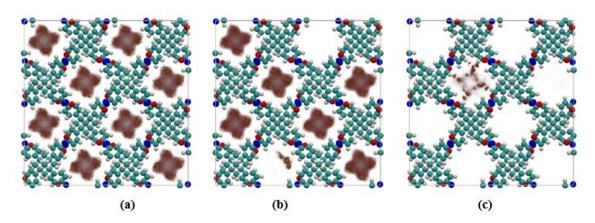

Section S-5 Simulated water and CO₂ adsorption density plots in the COFs.

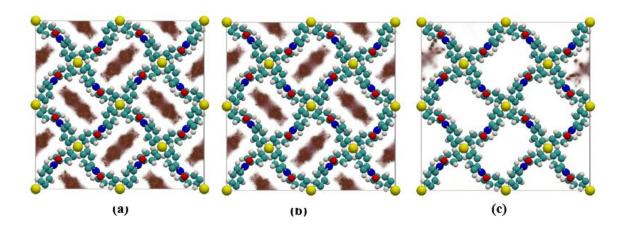

Figure S17. The simulated adsorption density plots of CO_2 (a) adsorption in CO_2/N_2 mixture (15:85) with RH = 0, CO_2 (b) and water (c) adsorption in CO_2/N_2 mixture (15:85) with RH = 0.1 in COF-42 at 298 K and 1 bar. (Color code: N, blue; O, red; C, green; H, white.)

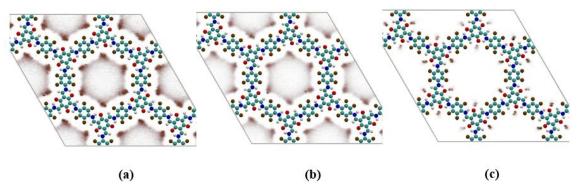

Figure S18. The simulated adsorption density plots of CO_2 (a) adsorption in CO_2/N_2 mixture (15:85) with RH = 0, CO_2 (b) and water (c) adsorption in CO_2/N_2 mixture (15:85) with RH = 0.1 in COF-43 at 298 K and 1 bar. (Color code: N, blue; O, red; C, green; H, white.)


Figure S19. The simulated adsorption density plots of CO_2 (**a**) adsorption in CO_2/N_2 mixture (15:85) with RH = 0, CO_2 (**b**) and water (**c**) adsorption in CO_2/N_2 mixture (15:85) with RH = 0.1 in TpBD at 298 K and 1 bar. (Color code: N, blue; O, red; C, green; H, white.)


Figure S20. The simulated adsorption density plots of CO_2 (a) adsorption in CO_2/N_2 mixture (15:85) with RH = 0, CO_2 (b) and water (c) adsorption in CO_2/N_2 mixture (15:85) with RH = 0.1 in COF-320 at 298 K and 1 bar. (Color code: N, blue; O, red; C, green; H, white.)


Figure S21. The simulated adsorption density plots of CO_2 (a) adsorption in CO_2/N_2 mixture (15:85) with RH = 0, CO_2 (b) and water (c) adsorption in CO_2/N_2 mixture (15:85) with RH = 0.1 in COF-LZU1 at 298 K and 1 bar. (Color code: N, blue; O, red; C, green; H, white.)


Figure S22. The simulated adsorption density plots of CO_2 (a) adsorption in CO_2/N_2 mixture (15:85) with RH = 0, CO_2 (b) and water (c) adsorption in CO_2/N_2 mixture (15:85) with RH = 0.1 in TpPa-2 at 298 K and 1 bar. (Color code: N, blue; O, red; C, green; H, white.)


Figure S23. The simulated adsorption density plots of CO_2 (a) adsorption in CO_2/N_2 mixture (15:85) with RH = 0, CO_2 (b) and water (c) adsorption in CO_2/N_2 mixture (15:85) with RH = 0.1 in CTF-1 at 298 K and 1 bar. (Color code: N, blue; O, red; C, green; H, white.)

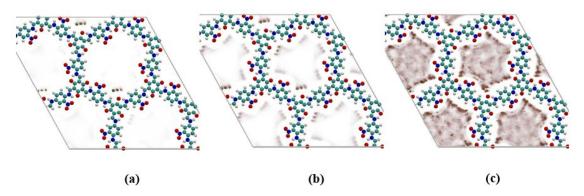

Figure S24. The simulated adsorption density plots of CO_2 (a) adsorption in CO_2/N_2 mixture (15:85) with RH = 0, CO_2 (b) and water (c) adsorption in CO_2/N_2 mixture (15:85) with RH = 0.1 in NPN-3 at 298 K and 1 bar. (Color code: N, blue; O, red; C, green; H, white.)

Figure S25. The simulated adsorption density plots of CO_2 (a) adsorption in CO_2/N_2 mixture (15:85) with RH = 0, CO_2 (b) and water (c) adsorption in CO_2/N_2 mixture (15:85) with RH = 0.1 in NPN-2 at 298 K and 1 bar. (Color code: N, blue; O, red; C, green; H, white.)

Figure S26. The simulated adsorption density plots of CO_2 (a) adsorption in CO_2/N_2 mixture (15:85) with RH = 0, CO_2 (b) and water (c) adsorption in CO_2/N_2 mixture (15:85) with RH = 0.1 in TpPa-F4 at 298 K and 1 bar. (Color code: N, blue; O, red; C, green; H, white.)

Figure S27. The simulated adsorption density plots of CO_2 (a) adsorption in CO_2/N_2 mixture (15:85) with RH = 0, CO_2 (b) and water (c) adsorption in CO_2/N_2 mixture (15:85) with RH = 0.1 in TpPa-NO₂ at 298 K and 1 bar. (Color code: N, blue; O, red; C, green; H, white.)

Section S-6 Pore Size Distributions of the COFs

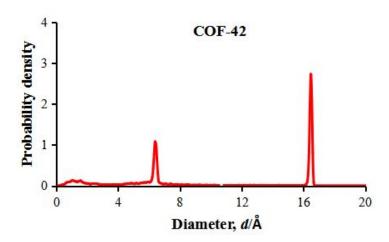


Figure S28. Pore Size distribution for COF-42.

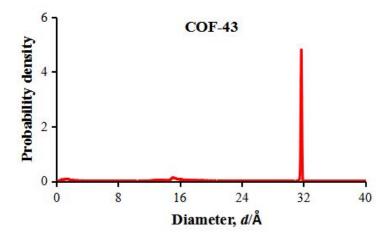


Figure S29. Pore Size distribution for COF-43.

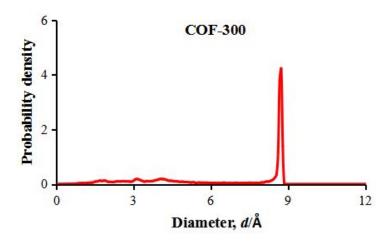


Figure S30. Pore Size distribution for COF-300.

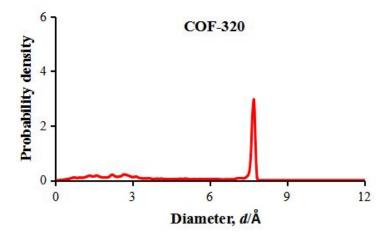


Figure S31. Pore Size distribution for COF-320.

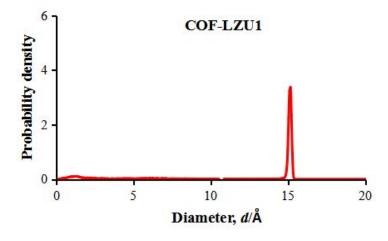


Figure S32. Pore Size distribution for COF-LZU1.

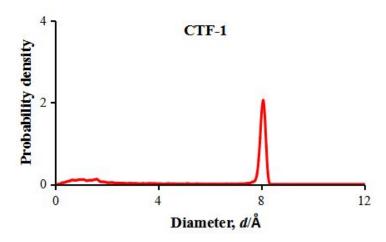


Figure S33. Pore Size distribution for CTF-1.

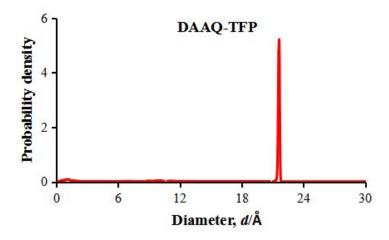


Figure S34. Pore Size distribution for DAAQ-TFP.

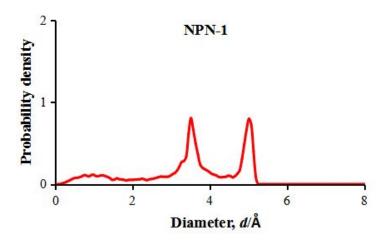


Figure S35. Pore Size distribution for NPN-1.

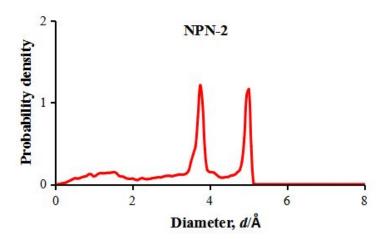


Figure \$36. Pore Size distribution for NPN-2.

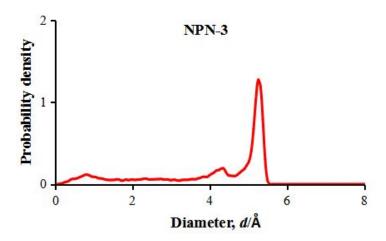


Figure S37. Pore Size distribution for NPN-3.

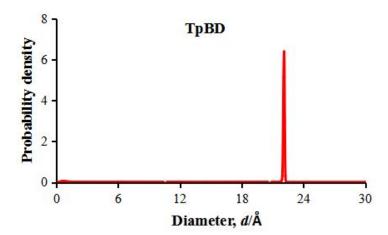


Figure S38. Pore Size distribution for TpBD.

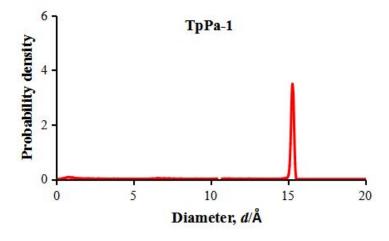


Figure \$39. Pore Size distribution for TpPa-1.

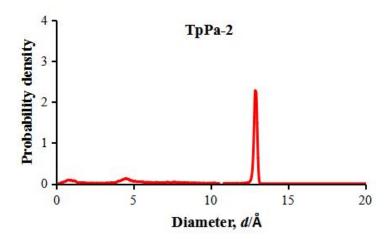


Figure \$40. Pore Size distribution for TpPa-2.

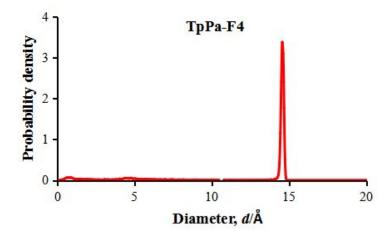


Figure S41. Pore Size distribution for TpPa-F4.

Section S-7 Radial distribution functions (RDF) of the oxygen-oxygen distance between oxygen atoms of the water molecules and the COF framework oxygen atoms

Figure S42. Radial distribution function (RDF) of the oxygen-oxygen distance between oxygen atom of the adsorbed water molecules and the COF framework oxygen atoms in DAAQ-TFP at different temperatures and 0.1 kPa.

Section S-8 Force field parameters used in the GCMC simulations

Table S5. Lennard-Jones parameters for the framework atoms of the COFs.

Atoms	C	О	Н	N	F	Si
σ(Å)	3.47	3.03	2.85	3.26	3.09	3.80
$\epsilon/k_{_{ m B}}$	47.86	48.16	7.650	38.95	156.0	10.53

 ϵ is the well depth, σ is the diameter. The LJ interaction parameters are from DREIDING force field.

Table S6. Force-Field parameters and geometries of six water models considered in this study

Model	Sites	σ (Å)	$\iota_1(\mathring{A})$	$\iota_2(\mathring{A})$	$q_1(e)$	$q_2(e)$	0 (O)	$\boldsymbol{\varphi}^{(0)}$
SPC	Three	3.1656	1.000	-	+0.4100	-0.8200	109.47	-
SPC/E	Three	3.1656	1.000	-	+0.4238	-0.8476	109.47	-
TIP4P	Four	3.1540	0.957	0.150	+0.5200	-1.0400	104.52	52.26
TIP4P_Ew	Four	3.1643	0.957	0.125	+0.5242	-1.0484	104.52	52.26
TIP5P	Five	3.1200	0.957	0.700	+0.2410	-0.2410	104.52	109.47
TIP5P_Ew	Five	3.0970	0.957	0.700	+0.2410	-0.2410	104.52	109.47

References

- (1) Chandra, S.; Kandambeth, S.; Biswal, B. P.; Lukose, B.; Kunjir, S. M.; Chaudhary, M.; Babarao, R.; Heine, T.; Banerjee, R. Chemically Stable Multilayered Covalent Organic Nanosheets from Covalent Organic Frameworks via Mechanical Delamination. *J. Am. Chem. Soc.* 2013, 135, 17853-17861.
- (2) Zhang, Y.; Su, J.; Furukawa, H.; Yun, Y.; Gá, F. Single-Crystal Structure of a Covalent Organic Framework. *J. Am. Chem. Soc.* **2013**, 7–10.
- (3) Furukawa, H.; Yaghi, O. M. Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications. J. Am. Chem. Soc. 2009, 131, 8875-8883.
- (4) Nagai, A.; Guo, Z.; Feng, X.; Jin, S.; Chen, X.; Ding, X.; Jiang, D. Pore Surface Engineering in Covalent Organic Frameworks. *Nat. Commun.* **2011**, 2, 536.
- (5) Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H.; Oisaki, K.; Yaghi, O. M. Crystalline Covalent Organic Frameworks with Hydrazone Linkages: Journal of the American Chemical Society. *J. Am. Chem. Soc.* 2011, 133, 11478–11481.
- (6) Uribe-romo, F. J.; Hunt, J. R.; Furukawa, H.; Klo, C.; Keeffe, M. O.; Yaghi, O. M. Communication A Crystalline Imine-Linked 3-D Porous Covalent Organic Framework A Crystalline Imine-Linked 3-D Porous Covalent Organic Framework. J. Am. Chem. Soc. 2009, 131, 4570–4571.
- (7) Ding, S.-Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W.-G.; Su, C.-Y.; Wang, W. Construction of Covalent Organic Framework for Catalysis: Pd/COF-LZU1 in Suzuki-Miyaura Coupling Reaction. J. Am. Chem. Soc. 2011, 133, 19816–19822.
- (8) Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. Construction of Crystalline 2D Covalent Organic Frameworks with Remarkable Chemical (Acid/Base) Stability via a Combined Reversible and Irreversible Route. J. Am. Chem. Soc. 2012, 134, 19524–19527.
- (9) Tong, M.; Yang, Q.; Zhong, C. Computational Screening of Covalent Organic Frameworks for CH4/H2, CO2/H2 and CO2/CH4 Separations. *Microporous Mesoporous Mater.* 2015, 210, 142– 148.
- (10) Biswal, B. P.; Chandra, S.; Kandambeth, S.; Lukose, B.; Heine, T.; Banerjee, R. Mechanochemical

- Synthesis of Chemically Stable Isoreticular Covalent Organic Frameworks. *J. Am. Chem. Soc.* **2013**, *135*, 5328–5331.
- (11) Kuhn, P.; Antonietti, M.; Thomas, A. Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis. *Angew. Chemie Int. Ed.* 2008, 47, 3450–3453.
- (12) DeBlase, C. R.; Silberstein, K. E.; Truong, T.T.; Abruña, H. D.; Dichtel, W. R. β-Ketoenamine-Linked Covalent Organic Frameworks Capable of Pseudocapacitive Energy Storage. *J. Am. Chem. Soc.* 2013, 135, 16821–16824.
- (13) Tong, M.; Yang, Q.; Xiao, Y.; Zhong, C. Revealing the Structure-Property Relationship of Covalent Organic Frameworks for CO₂ Capture from Postcombustion Gas: A Multi-Scale Computational Study. *Phys. Chem. Chem. Phys.* **2014**, 16, 15189-15198.