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Section S-1: Summary of characteristics of the COFs

Table S1.  Summary of characteristics of the COFs studied in this work

Vp, cm3 g-1 BET Geometric 

surface area

Pore Diameter, Å

COFs

Lit Sim m2 g-1 m2 g-1 Lit Sim

COF-42 0.311 1.07 7105 2644 23.05 16.47

COF-43 0.365 2.07 6205 2571 38.05 31.71

COF-300 0.726 1.19 13606 3453 7.26 8.73

COF-320 0.812 0.60 - 1694 8.02 7.71

COF-LZU1 0.547 1.01 4107 2129 12.07 15.15

TpPa-1 - 0.81 5358 1639 12.58 15.27

TpPa-2 - 0.63 3398 1569 13.58 12.87

TpPa-F4 - 0.51 4381 1115 17.01 14.55

TpPa-NO2 - 0.54 1291 1254 16.01

NPN-1 0.489 0.42 - 861 7.3×3.39 3.51, 5.01

NPN-2 0.549 0.46 - 1104 7.8×3.49 3.75, 5.01

NPN-3 0.469 0.34 - 915 5.2×5.29 4.35, 5.25

TpBD - 1.12 53710 1710 17.210 22.11

CTF-1 0.4011 0.36 79111 905 12.011 8.07

DAAQ-TFP - 1.10 128012 1737 23.012 21.63
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Table S2.  Summary of adsorption heats, inflection points and water uptake in p/p0 = 0.1, 0.3 

and 0.9 of the COF at 298 K.

Adsorption heat Inflection point Water uptake, cm3 g1

COFs
kJ mol-1 RH p/p0 = 0.1 p/p0 = 0.3 p/p0 = 0.9

COF-42 55.89 0.71 326 394 1315

COF-43 65.89 0.78 143 238 2620

COF-300 13.57 0.52 0.049 0.149 0.821

COF-320 29.69 0.52 0.245 0.773 17.267

COF-LZU1 19.79 0.45 0.050 0.164 0.537

TpPa-1 48.17 0.26 65.0 894 962

TpPa-2 58.60 0.26 163 699 747

TpPa-F4 35.11 0.58 0.820 2.474 75.3

TpPa-NO2 60.47 0.13 410 612 653

NPN-1 24.10 0.45 1.579 207 344

NPN-2 27.73 0.19 18.532 393 435

NPN-3 31.48 0.26 20.286 282 363

TpBD 58.12 0.65 171 196 1347

CTF-1 6.44 0.45 0.005 0.015 28.871

DAAQ-TFP 38.86 0.22 226 1253 1348
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Table S3.  Summary of the adsorption heats of 6 water models at low coverage in TpPa-1 

and TpPa-2.

TpPa-1 TpPa-2
COFs

Heat of adsorption (kJ mol-1) Heat of adsorption (kJ mol-1)

SPC 49.00 59.30

SPC/E 48.17 58.60

TIP4P 52.77 61.03

TIP4P_EW 52.79 64.46

TIP5P 39.13 53.49

TIP5P_EW 39.68 52.00
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Section S-2: Structure-Property correlations

Figure S1. Structure-property correlations between geometric water uptake and the surface area, 

pore diameter, porosity, heat of adsorption (HOA) of the COFs at RH = 0.1 and 298 K.
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Figure S2. (a) Correlation between absolute CO2 uptake and its isosteric heat of adsorption in the 

COFs at 1 bar (partial pressure of CO2 is 0.15 bar, dry condition). (b) Correlation between CO2/N2 

selectivity and the adsorption heat difference of CO2/N2 in the COFs at 1 bar (partial pressure of CO2 

is 0.15 bar, dry condition).
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Section S-3: Model Clusters and atomic partial charges for TpPa-NO2

TpPa-NO2

Figure S3. Model cluster used for calculating the partial charges for each atom of TpPa-NO2.

Table S4. Atomic partial charges calculated using ChelpG method. 

Atomic Types C1 C2 C3 C4 C5 C6 C7 C8 C9 H1

Charge (e) 0.522 -0.347 0.263 0.291 -0.075 -0.260 0.293 -0.209 -0.164 0.071

Atomic Types H2 H3 H4 H5 N1 N2 O1 O2 O3

Charge (e) 0.371 0.143 0.121 0.171 -0.388 0.721 -0.559 -0.449 -0.449
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Section S-4 Simulated water adsorption snapshots in the COFs

Figure S4. Snapshots of water molecules adsorbed in COF-42 as a function of pressure at 298 K.

Figure S5. Snapshots of water molecules adsorbed in COF-43 as a function of pressure at 298 K.
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Figure S6. Snapshots of water molecules adsorbed in DAAQ-TFP as a function of pressure at 

298 K.

Figure S7. Snapshots of water molecules adsorbed in TpPa-NO2 as a function of pressure at 298 

K.
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Figure S8. Snapshots of water molecules adsorbed in TpBD as a function of pressure at 298 K.

Figure S9. Snapshots of water molecules adsorbed in COF-300 as a function of pressure at 298 K.

Figure S10. Snapshots of water molecules adsorbed in COF-320 as a function of pressure at 298 

K.
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Figure S11. Snapshots of water molecules adsorbed in COF-LZU1 as a function of pressure at 

298 K.

Figure S12. Snapshots of water molecules adsorbed in TpPa-2 as a function of pressure at 298 K.
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Figure S13. Snapshots of water molecules adsorbed in CTF-1 as a function of pressure at 298 K.

Figure S14. Snapshots of water molecules adsorbed in NPN-2 as a function of pressure at 298 K.

Figure S15. Snapshots of water molecules adsorbed in NPN-3 as a function of pressure at 298 K.
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Figure S16. Snapshots of water molecules adsorbed in TpPa-F4 as a function of pressure at 298 

K.
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Section S-5 Simulated water and CO2 adsorption density plots in the COFs.

Figure S17. The simulated adsorption density plots of CO2 (a) adsorption in CO2/N2 mixture (15:85) 

with RH = 0, CO2 (b) and water (c) adsorption in CO2/N2 mixture (15:85) with RH = 0.1 in COF-42 at 

298 K and 1 bar. (Color code: N, blue; O, red; C, green; H, white.)

Figure S18. The simulated adsorption density plots of CO2 (a) adsorption in CO2/N2 mixture (15:85) 

with RH = 0, CO2 (b) and water (c) adsorption in CO2/N2 mixture (15:85) with RH = 0.1 in COF-43 at 

298 K and 1 bar. (Color code: N, blue; O, red; C, green; H, white.)

Figure S19. The simulated adsorption density plots of CO2 (a) adsorption in CO2/N2 mixture (15:85) 

with RH = 0, CO2 (b) and water (c) adsorption in CO2/N2 mixture (15:85) with RH = 0.1 in TpBD at 

298 K and 1 bar. (Color code: N, blue; O, red; C, green; H, white.)
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Figure S20. The simulated adsorption density plots of CO2 (a) adsorption in CO2/N2 mixture (15:85) 

with RH = 0, CO2 (b) and water (c) adsorption in CO2/N2 mixture (15:85) with RH = 0.1 in COF-320 

at 298 K and 1 bar. (Color code: N, blue; O, red; C, green; H, white.)

Figure S21. The simulated adsorption density plots of CO2 (a) adsorption in CO2/N2 mixture (15:85) 

with RH = 0, CO2 (b) and water (c) adsorption in CO2/N2 mixture (15:85) with RH = 0.1 in COF-

LZU1 at 298 K and 1 bar. (Color code: N, blue; O, red; C, green; H, white.)

Figure S22. The simulated adsorption density plots of CO2 (a) adsorption in CO2/N2 mixture (15:85) 

with RH = 0, CO2 (b) and water (c) adsorption in CO2/N2 mixture (15:85) with RH = 0.1 in TpPa-2 at 

298 K and 1 bar. (Color code: N, blue; O, red; C, green; H, white.)
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Figure S23. The simulated adsorption density plots of CO2 (a) adsorption in CO2/N2 mixture (15:85) 

with RH = 0, CO2 (b) and water (c) adsorption in CO2/N2 mixture (15:85) with RH = 0.1 in CTF-1 at 

298 K and 1 bar. (Color code: N, blue; O, red; C, green; H, white.)

Figure S24. The simulated adsorption density plots of CO2 (a) adsorption in CO2/N2 mixture (15:85) 

with RH = 0, CO2 (b) and water (c) adsorption in CO2/N2 mixture (15:85) with RH = 0.1 in NPN-3 at 

298 K and 1 bar. (Color code: N, blue; O, red; C, green; H, white.)
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Figure S25. The simulated adsorption density plots of CO2 (a) adsorption in CO2/N2 mixture (15:85) 

with RH = 0, CO2 (b) and water (c) adsorption in CO2/N2 mixture (15:85) with RH = 0.1 in NPN-2 at 

298 K and 1 bar. (Color code: N, blue; O, red; C, green; H, white.)

Figure S26. The simulated adsorption density plots of CO2 (a) adsorption in CO2/N2 mixture (15:85) 

with RH = 0, CO2 (b) and water (c) adsorption in CO2/N2 mixture (15:85) with RH = 0.1 in TpPa-F4 

at 298 K and 1 bar. (Color code: N, blue; O, red; C, green; H, white.)

Figure S27. The simulated adsorption density plots of CO2 (a) adsorption in CO2/N2 mixture (15:85) 

with RH = 0, CO2 (b) and water (c) adsorption in CO2/N2 mixture (15:85) with RH = 0.1 in TpPa-NO2 

at 298 K and 1 bar. (Color code: N, blue; O, red; C, green; H, white.)
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Section S-6 Pore Size Distributions of the COFs

Figure S28. Pore Size distribution for COF-42.

Figure S29. Pore Size distribution for COF-43.



S20

Figure S30. Pore Size distribution for COF-300.

Figure S31. Pore Size distribution for COF-320.

Figure S32. Pore Size distribution for COF-LZU1.
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Figure S33. Pore Size distribution for CTF-1.

Figure S34. Pore Size distribution for DAAQ-TFP.
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Figure S35. Pore Size distribution for NPN-1.

Figure S36. Pore Size distribution for NPN-2.
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Figure S37. Pore Size distribution for NPN-3.

Figure S38. Pore Size distribution for TpBD.

Figure S39. Pore Size distribution for TpPa-1.
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Figure S40. Pore Size distribution for TpPa-2.

Figure S41. Pore Size distribution for TpPa-F4.
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Section S-7 Radial distribution functions (RDF) of the oxygen-oxygen distance 

between oxygen atoms of the water molecules and the COF framework oxygen 

atoms

Figure S42. Radial distribution function (RDF) of the oxygen-oxygen distance between oxygen 

atom of the adsorbed water molecules and the COF framework oxygen atoms in DAAQ-TFP at 

different temperatures and 0.1 kPa. 
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Section S-8 Force field parameters used in the GCMC simulations

Table S5. Lennard-Jones parameters for the framework atoms of the COFs.

ε is the well depth, σ is the diameter. The LJ interaction parameters are from DREIDING force 

field.

Table S6. Force-Field parameters and geometries of six water models considered in this 

study

Model Sites 1 2 q1 (e) q2 (e) (O) (O)

SPC Three 3.1656 1.000 - +0.4100 -0.8200 109.47 -

SPC/E Three 3.1656 1.000 - +0.4238 -0.8476 109.47 -

TIP4P Four 3.1540 0.957 0.150 +0.5200 -1.0400 104.52 52.26

TIP4P_Ew Four 3.1643 0.957 0.125 +0.5242 -1.0484 104.52 52.26

TIP5P Five 3.1200 0.957 0.700 +0.2410 -0.2410 104.52 109.47

TIP5P_Ew Five 3.0970 0.957 0.700 +0.2410 -0.2410 104.52 109.47
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