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1. Calculation of the responsivity and detection external quantum efficiency of the devices

The responsivity (R) of the devices is calculated with the formula:

J
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where the J, is the photocurrent density of the NIR photodetector under illumination, J,,,, 1s
the total current density measured under illumination, J, , is the dark current, and P, is the

incident power density of the NIR laser. Then the detection external quantum efficiency (EQE )
can be expressed as:
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where 4 is the Planck constant, ¢ is the speed of light, and 4 is the wavelength of the incident

NIR laser. The J,,, of the NIR photodetector ITO/PbPc (60 nm)/Cgy (65 nm)/Al (100 nm)

under incident of an 808 nm NIR laser with a power density of 0.052 mW/cm? and the J, , at -
10 Vare 17.79 and 11.19 mA/cm?, respectively. Thus R of the NIR photodetector is calculated to

be 127 A/W. Correspondingly, the EQE 4 is 1.95%10% %.
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2. Calculation of the emission external quantum efficiency of the devices
The emission external quantum efficiency (EQEg,) is determined by the ratio between
the numbers of emitted photons (7, ) and injected electrons (#, ), which can be

calculated with:

n
EQE,, =~
n

em
e

3)

The n,can be obtained from the measured current (/) of the devices:

(4)
where ¢, the charge of elementary carrier. The n, can be expressed as:

n, = j n(A)dA=a j I(A)dA

(5)
wheren(A) is the number of emitted photons at a single wavelength 4, I(1) is the

relative emission intensity at a single wavelength 4 which can be obtained from the EL
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spectrum of the device, and « is a factor between n(4) and /(1). The relationship of
photon flux (F) and irradiation flux P(1) is:

F= j K, $(A)P(A)dA

(6)

where K, is photo-power equivalent and equates 683 Im/W, ¢(A) is visible function.

Meanwhile, the relationship between Fand luminance (1) is:

I dF
Scos@dQd

(7)

where S is emission area of the device, @ is the angle between the measurement
direction and vertical direction of emission area, and (2 is the space angle. In our
devices, fis 0 and Q2 equates 7 due to the bottom emission of the devices. Then the
relationship between Fand L is:

F=LSx

(8)

In addition:
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P(A) = hon(A) = % n(A)

(9)

where v is photon frequency. From expressions (5), (6), (8), and (9) we obtain:

| Km¢(/1)%n(/1)d/1 = | ngzﬁ(/l)%al(/l)dl = 7SL

(10)

Then the factor « can be expressed as:

o= SL 1
A

(11)

and the emitted photon number is:

o _asL i
P Kmhc I¢(ﬂ“)[(ﬂ) di
A

(12)

Then the EQE,, can be calculated with the formula:
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EQE

(13)

Thus we can obtain the EQE,, from the measured current /_, luminance L, device area

S, and EL spectrum (determines 1(1)).
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Figure S1. Schematic operation principles of the upconverter in dark and under NIR

illumination.
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Figure S2. Normalized PL spectra from 30 nm films of 2PXZ-OXD, NPB:2PXZ-OXD

(1:1), and 2PXZ-OXD:Bphen (1:1). The similar PL spectra confirm that 2PXZ-OXD

forms exciplex with neither NPB nor Bphen.
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Figure S3. (a) Luminance-current density-voltage, (b) EQE-current density, (c) current
efficiency-current density, and (d) power efficiency-current density characteristics of the non-
doped TADF-OLED with a structure of ITO/NPB (30 nm)/2PXZ-OXD (30 nm)/Bphen (30

nm)/LiF (1 nm)/Al (100 nm).
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Table S1. Comparison of the turn-on voltage ( 4), luminance (L), and emission external

quantum efficiency (EQEenm) of the OLED in this work to the other reported state-of-the-

art non-doped TADF-OLED:s.

Vr L EQEgm

Device Ref.
[V] [cd/m?] [%]
ITO/NPB/2PXZ-OXD/Bphen/LiF/Al 2.4 199@3 V 11.7 This work

ITO/MoO3/mCP/DMAC-BP/TPBI/LiF/Al 2.6 100@3 V 18.9 [1
ITO/PEDOT:PSS/TAPC/mCP/DMAC-TRZ/DPPs/3TPYMBI/LIF/AI 3.0 100@~4.5V 20 [2]
ITO/TAPC/DBT-BZ-DMAC/TmPyPBI/LIF/Al 2.7 100@~3.4V 14.2 [3]
ITO/TAPC/DBT-BZ-PXZ/TmPyPB/LiF/Al 2.7 100@~3.6V 9.7 [4]
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Figure S4. Normalized EL spectra of the TADF-OLED ITO/NPB (30 nm)/2PXZ-OXD (30

nm)/Bphen (30 nm)/LiF (1 nm)/Al (100 nm) at different applied voltages.

Table S2. Turn-on voltage (V/7), luminance (L), emission external quantum efficiency

(EQEgn), detection external quantum efficiency (EQEget), photon to photon conversion

efficiency (/pnoton), @nd power to power conversion efficiency (/power) Of the NIR-

upconverter under illumination of an 808 nm laser with different intensity.

lllumination
VT La Lb EQEema EC)Eemb EC)Edeta EQEdetb r]pht:ttona nphotonb npowera npowerb
intensity
V] [cd/m?  [cd/m?] [%] [%] [%] [%] [%] [%] [%] [%]
[mW/cm?]
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Figure S5. (a) Luminance of the the NIR-upconverter in dark (®), under illumination of

NIR laser with an intensity of 0.052 mW/cm? (@), and the upconversion emission (A

obtained by @ - W); (b) Total photon to photon conversion efficiency (/Jpnoton) (®) and

ohoton due to the upconversion (A) of the NIR-upconverter.
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Figure S6. Response speed of the upconversion emission of the device at 3 V to the

excitation of an 808 laser.
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