SUPPORTING INFORMATION

Metal-Rich Oxametallaboranes of Group 5 Metals: Synthesis and Structure of a Face-Fused μ_7 -Boride Cluster

Rini Prakash[†], Anangsha De[†], Bakthavachalam Kirubakaran[†]and Sundargopal Ghosh[†]*

⁺Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, India. Fax: +91 44-22574202; Tel: +91 44- 22574230; E-mail: <u>sqhosh@iitm.ac.in</u>

Table of contents

I Supplementary Data

Table S1Crystallographic data and structure refinement information for
compounds 1, 3 and 4.

II Spectroscopic details

Fig. S1	HRMS spectrum of 1
Fig. S2	¹ H NMR spectrum of 1 in CDCl ₃
Fig. S3	${}^{1}H{}^{11}B{}$ NMR spectrum of ${f 1}$ in CDCl ₃
Fig. S4	$^{11}B{}^{1}H{}$ NMR spectrum of ${f 1}$ in CDCl $_{3}$
Fig. S5	$^{13}C{}^{1}H{}$ NMR spectrum of ${f 1}$ in CDCl $_{3}$
Fig. S6	IR spectrum of 1 in CH ₂ Cl ₂
Fig. S7	ESI-MS spectrum of 3
Fig. S8	¹ H NMR spectrum of 3 in CDCl ₃
Fig. S9	^{1}H { ^{11}B } NMR spectrum of 3 in CDCl ₃
Fig. S10	Stacked ^1H (black) and $^1\text{H}\left\{^{11}\text{B}\right\}$ spectra of $\boldsymbol{3}$
Fig. S11	$^{11}\text{B}\{^1\text{H}\}$ NMR spectrum of $\boldsymbol{3}$ in CDCl_3
Fig. S12	$^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of $\boldsymbol{3}$ in CDCl_3
Fig. S13	IR spectrum of 3 in CH ₂ Cl ₂
Fig. S14	HRMS spectrum of 4
Fig. S15	¹ H NMR spectrum of 4 in CDCl ₃
Fig. S16	${}^{1}H{}^{11}B{}$ NMR spectrum of 4 in CDCl ₃
Fig. S17	$^{11}B{}^{1}H{}$ NMR spectrum of 4 in CDCl ₃
Fig. S18	$^{13}C{^{1}H}$ NMR spectrum of 4 in CDCl ₃
Fig. S19	IR spectrum of 4 in CH ₂ Cl ₂

III Computational Data

Table S2	Selected bond parameters for the compound 1' (1' : Cp analogue of 1) and their Wiberg bond indices (WBI).
Table S3	Experimentally observed and calculated ¹¹ B chemical shifts of 1' .
Table S4	Calculated (DFT) energies of the HOMO and LUMO (eV) and HOMO-LUMO gaps ($\Delta E = E_{LUMO}-E_{HOMO}$, eV) for compounds I', 1' and 2' .
Table S5	Calculated natural charges (q) and natural valence population (Pop) of I', 1'and 2'.
Table S6	Electron density, $\rho(r)$, Laplacian of electron density, $\nabla^2 \rho(r)$, total energy density, H(r), potential energy density, V(r) and kinetic energy density, G(r) in a.u. of selected bond critical points (BCPs) of 1 '.
Fig. S20	Frontier molecular orbital (MO) diagram of I', 1' and 2'.

- Fig. S21 M–M double bonding interactions in **1**'.
- Fig. S22 Selected bonding diagrams of **1'** and their occupation number (ON) as obtained from NBO analysis [(a) 3c-2e B4-B3-Nb1 bond, (b) B2-O1 bond, (c) Nb1-O1 bond and (d) Nb1-Nb2 bond].
- Fig. S23 Optimized geometry of compound I'.
- Fig. S24 Optimized geometry of compound **1**'.
- Fig. S25 Optimized geometry of compound **2'**.

I Supplementary Data

	1	3	4
CCCDC no.	1862624	1862625	1862626
Empirical formula	$C_{20}H_{38}B_4Nb_2O$	$C_{30}H_{42}B_4Nb_2O_{11}Ru_4$	$C_{28}H_{38}B_4Ta_2O_9Ru_3$
Formula weight	523.56	1211.98	1226.93
Crystal system	triclinic	orthorhombic	triclinic
Space group	<i>P</i> -1	P212121	<i>P</i> -1
<i>a</i> (Å)	8.7671(4)	13.0386(4)	10.2153(12)
b (Å)	10.3397(5)	16.0508(4)	11.4968(14)
<i>c</i> (Å)	15.2338(6)	19.5876(6)	16.636(2)
α (°)	70.838(2)	90	85.258(6)
в (°)	77.033(2)	90	88.641(5)
γ (°)	73.132(2)	90	68.509(5)
V (Å ³)	1235.49(10)	4099.3(2)	1811.7(4)
Z	2	4	2
D _{calc} (g/cm ³)	1.407	1.961	2.249
F (000)	536	2344	720
μ (mm ⁻¹)	0.934	2.027	7.284
θ Range (°)	2.9-24.8	2.26-25.12	3.24-25.68
no. of reflections collected	4349	7120	6345
no. of unique reflns [/ >	2919	6204	4730
2 <i>σ(I)</i>]			
goodness-of-fit on F ²	1.037	1.053	1.030
R1, wR2 [<i>l</i> > 2σ(<i>l</i>)]	0.0883, 0.1982	0.0452, 0.0733	0.0691, 0.0797
R1, wR2 (all data)	0.0609, 0.1695	0.0342, 0.0674	0.0414, 0.0716

 Table S1. Crystallographic data and structure refinement information for compounds 1, 3 and 4.

II Spectroscopic details

Fig. S1. HRMS spectrum of 1

5

Fig. S2. ¹H NMR spectrum of 1 in CDCl₃

Fig. S3. ${}^{1}H{}^{11}B{}$ NMR spectrum of 1 in CDCl₃

Fig. S5. ${}^{13}C{}^{1}H$ NMR spectrum of 1 in CDCl₃

Fig. S6. IR spectrum of 1 in CH₂Cl₂

Fig. S7. ESI-MS spectrum of 3

Fig. S8. ¹H NMR spectrum of 3 in CDCl₃

Fig. S11. ${}^{11}B{}^{1}H{}$ spectrum of 3 in CDCl₃

Fig. S12. ${}^{13}C{}^{1}H$ spectrum of 3 in CDCl₃

Fig. S14. HRMS spectrum of 4

Fig. S15. ¹H NMR spectrum of 4 in CDCl₃

Fig. S17. ${}^{11}B{}^{1}H{}$ spectrum of 4 in CDCl₃

Fig. S18. ${}^{13}C{}^{1}H$ spectrum of 4 in CDCl₃

Fig. S19. IR spectrum of 4 in CH₂Cl₂

III Computational Data

	Expt.	Theo.	WBI
Nb1-Nb2	2.746	2.769	0.9763
B2-O1	1.454	1.405	0.8239
B1-B2	1.702	1.749	0.5765
B4-B3	1.704	1.765	0.6663
Nb1-01	2.106	2.154	0.5863
Nb2-01	2.103	2.154	0.5863
Nb1-B1	2.365	2.398	0.5076
Nb1-B2	2.421	2.395	0.4053
Nb2-B1	2.378	2.399	0.5074
Nb2-B2	2.409	2.395	0.4055
Nb1-B3	2.403	2.477	0.4097
Nb1-B4	2.372	2.431	0.4385
Nb2-B3	2.408	2.477	0.4094
Nb2-B4	2.411	2.432	0.4383

Table S2. Selected bond parameters for the compound 1' (1': Cp analogue of 1) and theirWiberg bond indices (WBI)

	Expt.	Theo.
B1	21.05	23.27
B2	5.68	0.44
B3	-26.99	-24.86
B4	-4.6	-4.49

Table S3. Experimentally observed and calculated ¹¹B chemical shifts of 1'.

Table S4. Calculated (DFT) energies of the HOMO and LUMO (eV) and HOMO-LUMO gaps ($\Delta E = E_{LUMO}-E_{HOMO}$, eV) for compounds **I'**, **1'**and **2'**.

Compound	ľ	1'	2'
НОМО	-5.63	-5.43	-5.25
LUMO	-2.49	-1.99	-1.71
ΔE	3.14	3.44	3.54

Table S5. Calculated natural charges (q) and natural valence population (Pop) of I', 1'and 2'.

		l'		1'		2'
	q	рор	q	рор	q	рор
B1	-0.23	3.20	-0.29	3.27	-0.34	3.32
B2	0.57	2.39	0.48	2.49	0.39	2.57
B3	-0.31	3.29	-0.33	3.31	-0.37	3.35
B4	-0.17	3.14	-0.23	3.21	-0.29	3.25
0	-0.56	6.55	-0.63	6.61	-0.70	6.69
M1	-0.46	5.42	-0.15	5.14	0.15	4.81
M2	-0.46	5.42	-0.15	5.14	0.15	4.81

Table S6. Electron density, $\rho(r)$, Laplacian of electron density, $\nabla^2 \rho(r)$, total energy density, H(r), potential energy density, V(r) and kinetic energy density, G(r) in a.u. of selected bond critical points (BCPs) of **1**'.

ВСР	ρ(r)	∇²ρ(r)	H(r)	V(r)	G(r)
Nb1-Nb2	0.0708	-0.0559	-0.0315	-0.049	0.0175
B3-B4	0.136	-0.283	-0.0854	-0.100	0.0147
B2-O	0.1945	0.4204	-0.1551	-0.415	0.260
Nb1-O	0.067	0.325	-0.0016	-0.0846	-0.0829
Nb2-O	0.0727	0.291	-0.0056	-0.0842	-0.0786

Fig. S20. Frontier molecular orbital (MO) diagram of I', 1' and 2'. Isosurfaces are plotted at an isovalue of 0.04 $a_0^{-3/2}$.

Fig. 21. M–M double bonding interactions in 1'.

Fig. S22. Selected bonding diagrams of **1'** and their occupation number (ON) as obtained from NBO analysis [(a) 3c-2e B4-B3-Nb1 bond, (b) B2-O1 bond, (c) Nb1-O1 bond and (d) Nb1-Nb2 bond]. Isosurfaces are plotted at an isovalue of 0.04 $a_0^{-3/2}$.

Fig. 23. Optimized geometry of compound I'. T. E. = -711.3647 a. u.

Cartesian coordinates for the calculated structure of I' (in Å).

С	-3.37059300	0.94344000	-0.48603700
С	-3.20514200	0.83723800	0.92485700
С	-2.98011100	-0.53513600	1.24862100
С	-3.03597800	-1.29258700	0.03650100
С	-3.27806800	-0.37471100	-1.03872400
С	3.27807400	-0.37468500	-1.03872500
С	3.03588900	-1.29261500	0.03642000
С	2.98000200	-0.53521600	1.24856700
С	3.20516100	0.83717800	0.92492300
С	3.37071100	0.94342500	-0.48594400
В	-0.00010900	1.79010900	-1.04024100
В	-0.00012500	1.89860500	0.69004800
0	0.00002100	-0.71917100	1.20868500
В	0.00007600	-1.75901400	0.29535800
В	0.00007100	-1.33811400	-1.37743100
Н	-0.00059600	2.83381000	-1.66064900
Н	1.03154600	1.19295600	-1.53125600
Н	-1.03078700	1.19167000	-1.53181700
Н	0.00026400	3.07105200	1.00729800
Н	0.00005800	-2.91919900	0.64491200
Н	0.00044800	-2.33408500	-2.06865400
Н	1.02491300	-0.65236100	-1.75191400
Н	-1.02537900	-0.65323500	-1.75179500
Н	-0.96088100	1.35999900	1.28898700
Н	0.96068900	1.35998200	1.28899800

3.20199800	1.66896100	1.63021700
3.52687900	1.86624400	-1.04606100
3.37679000	-0.63398900	-2.09351700
2.91474000	-2.37212600	-0.05633500
2.75720200	-0.92883000	2.24112700
-2.91483900	-2.37210800	-0.05617000
-3.37679000	-0.63412400	-2.09348800
-3.52666200	1.86626100	-1.04617600
-3.20190800	1.66909600	1.63006500
-2.75741500	-0.92872400	2.24121200
1.25837300	0.09148800	-0.13076700
-1.25835900	0.09139100	-0.13079300
	3.20199800 3.52687900 2.91474000 2.75720200 -2.91483900 -3.37679000 -3.52666200 -3.20190800 -2.75741500 1.25837300 -1.25835900	3.201998001.668961003.526879001.866244003.37679000-0.633989002.91474000-2.372126002.75720200-0.92883000-2.91483900-2.37210800-3.37679000-0.63412400-3.526662001.86626100-3.201908001.66909600-2.75741500-0.928724001.258373000.09148800-1.258359000.09139100

Fig. S24. Optimized geometry of compound 1'. T. E. = -682.0168 a. u.

Cartesian coordinates for the calculated structure of ${\bf 1'}$ (in Å).

С	-3.66744946	0.92340954	-0.44768861
С	-3.49649064	0.81095150	0.96520411
С	-3.28330997	-0.56883273	1.28417478
С	-3.34586632	-1.32202235	0.06586907
С	-3.57689802	-0.39487452	-1.00821345
С	3.57709161	-0.39254212	-1.00882123
С	3.34678346	-1.32170349	0.06368069
С	3.28390534	-0.57069731	1.28328578
С	3.49604037	0.80974643	0.96671649
С	3.66665991	0.92483614	-0.44604253
В	0.00051729	1.87006843	-1.00652356

В	0.00071660	1.94288433	0.75769571
0	-0.00021166	-0.82959350	1.26384533
В	-0.00066006	-1.83306039	0.28005370
В	-0.00024765	-1.38486420	-1.41137966
Н	0.00105743	2.93862509	-1.58063819
Н	1.04062650	1.30431443	-1.55627023
Н	-1.04085737	1.30579745	-1.55558448
Н	0.00076377	3.09806060	1.12308589
Н	-0.00083765	-3.00429219	0.58153499
Н	-0.00094574	-2.38930647	-2.08816366
Н	1.04244417	-0.70038934	-1.83950353
Н	-1.04200479	-0.69896289	-1.83963895
Н	-0.97041245	1.39595251	1.37064027
Н	0.97111716	1.39549866	1.37115037
Н	3.49338316	1.63664230	1.67904016
Н	3.83576963	1.85047581	-0.99863272
Н	3.68785865	-0.64695796	-2.06400179
Н	3.25094850	-2.40384419	-0.03260924
Н	3.09613919	-0.97762215	2.27845315
Н	-3.24942269	-2.40426871	-0.02855841
Н	-3.68760934	-0.65122867	-2.06293026
Н	-3.83718504	1.84797794	-1.00188700
Н	-3.49435754	1.63913769	1.67603100
Н	-3.09543329	-0.97393127	2.28006020
Nb	1.38464212	0.08152340	-0.11255720
Nb	-1.38473426	0.08214250	-0.11257845

Fig. S25. Optimized geometry of compound 2'. T. E. = -682.1233 a. u.

Cartesian coordinates for the calculated structure of 2' (in Å).

С	-3.68354000	0.91546600	-0.38281500
С	-3.50613200	0.76741900	1.02699200
С	-3.29583100	-0.62044500	1.31151500
С	-3.36599200	-1.34437800	0.07437000
С	-3.60104200	-0.39010800	-0.97647700
С	3.60099400	-0.38966400	-0.97664100
С	3.36630700	-1.34417200	0.07408400
С	3.29614300	-0.62049400	1.31137400
С	3.50603500	0.76745200	1.02705100
С	3.68321400	0.91581600	-0.38276300
В	0.00009600	1.84569600	-0.96479000
В	0.00025700	1.91782600	0.79830100
0	-0.00019600	-0.84390400	1.27653800
В	-0.00029700	-1.85579700	0.28229400
В	-0.00011100	-1.37912500	-1.39220500
Та	-1.39675000	0.06165500	-0.08812300
Та	1.39675300	0.06140100	-0.08805400
Н	0.00055800	2.91218100	-1.54190800
Н	1.05490100	1.29516000	-1.51950000
Н	-1.05513000	1.29590500	-1.51931500
Н	0.00015900	3.06543500	1.18279700
Н	-0.00034400	-3.02512900	0.58827100
Н	-0.00040700	-2.37118400	-2.08667200
Н	1.05484600	-0.69203700	-1.82587200
Н	-1.05457400	-0.69136500	-1.82603200
Н	-0.96977200	1.36208300	1.40865000
Н	0.97003200	1.36199600	1.40883700
Н	3.49837400	1.57768400	1.75840200
Н	3.85652100	1.85417200	-0.91219800
Н	3.72385500	-0.62026000	-2.03588600
Н	3.27791800	-2.42451600	-0.04621300
Н	3.10687500	-1.05122900	2.29626900
Н	-3.27715500	-2.42470200	-0.04574800
Н	-3.72393200	-0.62084000	-2.03569100
Н	-3.85714400	1.85362500	-0.91250600
Н	-3.49856100	1.57770600	1.75828100
Н	-3.10629800	-1.05090000	2.29648100