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Numerical solution of the Smoluchowski equation

The time-dependent orientation angle χ is determined by the time evolution of the probability

distribution function P (û, t) of the orientation û as given in eq. 4 of the paper. For the case

of Rayleigh scatterers, Frattini and Fuller1 employed the following expression for χ in terms
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of spherical coordinates (θ, φ)

tan 2χ =

〈
sin2 θ sin 2φ

〉〈
sin2 θ cos 2φ

〉 . (1)

This expression provides numerical predictions in good agreement with experimental re-

sults.1,2 The average 〈A〉 is calculated according to

〈A〉 =

∫ π

0

∫ 2π

0

A(θ, φ)P (θ, φ; t)dθdφ , (2)

where a monodisperse suspension is considered. In order to calculate the time evolution

of the orientation angle χ, the time dependence of P (θ, φ; t) has to be accounted for. The

Smoluchowski equation can be expressed in spherical coordinates as
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− 1
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(
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2
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∂φ

)
,

where τ = γ̇t is the strain, or dimensionless time. For the boundary condition at the two

poles, θ = 0 and θ = π, the probability density function is given by:

P |θ=0 =

[
Nθ∑
1

(4P (1, jθ)− P (2, jθ)) /3

]/
Nθ (4)

P |θ=π =

[
Nθ∑
1

(4P (Nθ − 1, jθ)− P (Nθ − 2, jθ)) /3

]/
Nθ (5)

where P (iθ, jφ) is the value of probability density function at the grid point (iθ, jφ). The

probability density function is also continuous, so that the periodic condition applies in the

azimuthal direction φ.

The equation for the averages is here numerically solved for each fixed value of the aspect
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ratio p, and Peclet number Pe. We use a finite difference method, in which the time term is

discretized by a 3rd order TVD (total variation diminishing) Runge-Kutta, while the space

terms are discretised by a central difference scheme on a grid domain with N intervals for

the θ variable with (0 ≤ θ ≤ π), and 2N intervals for the φ variable with (0 ≤ φ ≤ 2π). The

central difference scheme is 2nd order, which, however, gives rise to large spurious numerical

oscillations for high values of Pe and large time steps when it is used in the convection term.

Therefore, in order to guarantee numerical stability and accuracy of the method, we tested

different grids. The grid sensitivity analysis reveals that an accurate solution is obtained by

grid systems with N = 40 for values from Pe = 0.1 to 103; grids with N = 60 for Pe = 103 to

105; and grids with N = 150 for Pe ≥ 105. The integration is here performed by discretizing

each of the three terms in eq. 3, since splitting the second term into smaller terms leads to

undesired divergences.

In order to consider the effect of polydispersity, the orientation angle includes an addi-

tional averaging with respect to the aspect ratio

〈A〉 =

∫ π

0

∫ 2π

0

∫ ∞

0

A(θ, φ)P (θ, φ; t)m(p)dθdφdp , (6)

where both A and P are implicitly p-dependent. The distribution of aspect ratios m(p) can

be approximated by a log-normal distribution

m(p) =
1

p(2π)1/2s
exp

[
−(ln p− µ)2

2s2

]
, p > 0. (7)

where µ is the location parameter and s the scale parameter, respectively. The average

aspect ratio p̄ and the polydispersity σ are then given by

p̄ = eµ+s
2/2 (8)

σ2 = e2µ+s
2

(es
2 − 1). (9)
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The continuous distribution of aspect ratios is discretized into Nσ = 30 discrete values, which

proves to be sufficient to obtain accurate results. The program calculates χ(γ̇t), for various

input values, namely the physical parameters (Pe, p, σ), and the integrating parameters

(N,Nσ).
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