Supporting Information for

Controlled Exchange of Achiral Linkers with Chiral Linkers in Zr-Based UiO-68 Metal-Organic Framework

Chunxia Tan,[†] Xing Han,[†] Zijian Li,[†] Yan Liu,^{*,†} and Yong Cui^{*,†,‡}

[†]School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China

[‡]Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China

yongcui@sjtu.edu.cn, liuy@sjtu.edu.cn

Table of Content

- 1. Materials and general procedures
- 2. Synthesis
- 3. General procedure for asymmetric catalysis
- 4. **Table S2**. Crystal data and structure refinement
- 5. Table S3. Selected bond lengths and angles
- 6. Figures S2-S4. Additional X-ray crystallographic structures
- 7. Figure S5. PXRD patterns and stability
- 8. Figure S6. Residual weight percentage
- 9. Figure S7. CD spectra
- 10. Figure S8. TGA curves
- 11. Figure S9. FT-IR spectra
- 12. Figure S10. N₂ adsorption, BET plots and Isotherm Log Plots
- 13. Figure S11. SEM / TEM images and EDS mappings
- 14. Figure S12. ¹H NMR Spectra
- **15. Table S4**. ICP-OES
- 16. Tables S5-S13. Additional catalytic results
- 17. HPLC and NMR
- 18. References

1. Materials and general procedures.

All reagents and solvents are commercially available and used without further purification. Powder X-ray diffraction (PXRD) data was collected on a D8 Advance Bruker diffractometer with Cu-Ka radiation. The CD spectra were carried out on a J-800 spectropolarimeter (Jasco, Japan). Thermogravimetric analyses (TGA) were carried out in an N₂ atmosphere with a heating rate of 10 °C/min on a STA449C integration thermal analyzer. ICP-OES was performed on Optima 7300DV ICP-OES (Perkin Elmer Coporation, USA). The IR (KBr pellet) spectra were recorded (400-4000 cm⁻¹) on a Nicolet Magna 750 FT-IR spectrometer. Elemental analyses were performed with an EA1110 CHNS-0 CE elemental analyzer. Scanning Electron Microscopy (SEM) images were obtained on a NOVA NanoSEM 230 instrument equipped with an energy dispersive spectroscopy (EDS) detector. Transmission electron microscopy (TEM) images were performed on a Talos F200X/TALOS F200X instrument equipped with an energy dispersive spectroscopy (EDS) detector. The N₂ adsorption isotherms were measured at 77 K by using a Micrometritics ASAP 2020 surface area and porosity analyzer. Before the adsorption measurement, the sample was immersed in fresh DMF at 100 °C for three days during which the solvent was decanted and freshly replenished at least ten times, and then was Soxhlet extracted with THF for 48 h, and activated at 100 $^{\circ}$ C under vacuum (< 10⁻³ torr) for 8 h. The NMR experiments were carried out on a MERCURYplus 400 spectrometer operating at resonance frequencies of 400 MHz. Analytical high performance liquid chromatography (HPLC) was performed on a Shimadzu LC-2010HAT HPLC with UV detection at 200 or 254 nm. Analytical CHIRALCEL OD-H, AD-H, AS-H and OJ-H columns (4.6 mm \times 25 cm) from Daicel were used.

X-ray Crystallography. Single-crystal XRD data for compound **UiO-68-Cu** was collected on BL17B beamline ($\lambda = 0.82654$ Å) of National Facility for Protein Science in Shanghai Synchrotron Radiation Facility (SSRF) at 100 K. We have collected several sets of data for **UiO-68-Cu**, and the best data set was used for structure solution and refinement. The empirical absorption correction was applied by using the SADABS program (G. M. Sheldrick, SADABS, program for empirical absorption correction of area detector data; University of Gättingen, Gättingen, Germany, 1996). The structure was solved using direct method, and refined by full-matrix least-squares on F² (G. M. Sheldrick, SHELXTL97, program for crystal structure refinement, University of Gättingen, Germany, 1997). In the compound, all the non-hydrogen atoms except guest molecules were refined by full-matrix least-squares techniques with anisotropic displacement parameters, and the hydrogen atoms were geometrically fixed at the calculated positions attached to their parent

atoms, treated as riding atoms. Due to the high symmetry of the crystal, and the whole Cu(salen) ligand lies on a crystallographic symmetry axis were disorder thus we used the PART -1/PART 0 to restraint it. The final RI = 0.0737, wR2 = 0.2127, GOOF = 1.087 for [I > 2sigma(I)] was achieved for UiO-68-Cu. These parameters are reasonable, but the flack value was up to 0.45(4). Note that we used homochiral M(salen) ligands for the PSE process, the chirality of the single-crystal is from the chrial M(salen) ligands. Moreover, CD spectra of the crystal in solid-state show the optical purity of the structures. We think the possible reasons for the high flack parameter may be the disorder of chiral Cu(salen) units, which lies on the crystallographic symmetry axis over two positions of the crystal that weakens the anomalous scattering, leading to the determination of the absolute configuration inaccuracy. Thus the disorder of the chiral units may result in the high flack value. Crystal data and details of the data collection are given in Table S2, and selected bond distances and angles are presented in Table S3.

Explanation For The Alert A and B for the UiO-68-Cu

Alert level A

<u>PLAT250 ALERT 2 A</u> Large U3/U1 Ratio for Average U(i,j) Tensor 10.1 Note *Discussion:* The alert is generated because there is a large amount of disorder in the strucutre due to the whole disorder Cu(salen) ligand lies on the crystallographic symmetry axis over two positions of the crystal.

<u>PLAT602_ALERT_2_A</u> VERY LARGE Solvent Accessible VOID(S) in Structure ! Info

Discussion: The alert is generated because there exist large solvent-accessible void space up to 54% in the structure, and the *SQUEEZE* routine of *PLATON* were ever used but no obvious change.

Alert level B

<u>THETM01_ALERT_3_B</u> The value of sine(theta_max)/wavelength is less than 0.575 Calculated sin(theta_max)/wavelength = 0.5748

Discussion: A full set of data was collected, but the very high angle data was dominated by noise [I/sigma(I)<1.0] and was omitted. This arbitrary theta limit is inappropriate for our highly disordered structures. It would rule out all macromolecular structures. A limit on data/ parameter ratio's that properly consider the number of restraints / constraints and the redundancy of the measurements would be more appropriate. Unfortunately the cif check routine dose no do this. Short contacts between disordered fragments are to be expected.

 PLAT049 ALERT 1 B Calculated Density Less Than 1.0 gcm-3
 0.8326

 Check
 Discussion: The alert is generated due to the large solvent-accessible void space in the structure.

 PLAT213 ALERT 2 B Atom O3
 has ADP max/min Ratio

 4.4 prolat

 PLAT215 ALERT 3 B Disordered Cu1
 has ADP max/min Ratio

 4.7 Note

 PLAT215 ALERT 3 B Disordered C7
 has ADP max/min Ratio

 4.2 Note

Discussion: Those alerts are generated because there exists large amount of disorder salen unit in the structure.

2. Synthesis

The $H_2 L^M$ were synthesized according to the literatures^[1].

Synthesis of UiO-68-Me: The synthesis of the **UiO-68-Me** was according to the literatures^[2]: ZrCl₄ (93 mg), H₂Me-TPDC (113 mg), trifluoroacetic acid (1.0 mL) and DMF (20 mL) were charged in Pyrex vial, then the mixture was heated in a 120 °C oven for 72 h. The colorless crystals of **UiO-68-Me** were obtained (75.3 mg, yield: 63%). Its isostructural feature to **UiO-68** was suggested by PXRD (**Figure S1**). Comparison of unit cell parameters of reported UiO-type MOFs was listed in **Table S1**

Table S1 Unit cell	parameters of reported	UiO-68 type MOFs
--------------------	------------------------	------------------

MOF	Ligand	Space group	Unit cell	Reference	
PCN-56	H ₂ TPDC-2CH ₃	Fm 3m	a = b = c = 32.6003(11)	JACS. 2012,	
			V = 34647(2)	<i>134</i> , 14690	
PCN-57	H ₂ TPDC-4CH ₃	$Fm \ \overline{3}m$	a = b = c = 32.657(19)		
			V = 34829(36)		
PCN-58	H ₂ TPDC-4CH ₂ N ₃	Fm 3m	a = b = c = 32.6919(14)		
			<i>V</i> = 34940(3)		
sal-MOF	H2salTPD	Fm 3m	a = b = c = 32.6205(16)	JACS. 2014,	
			V = 34711(3)	<i>136</i> , 13182	
UiO-68-alkyne	H ₂ TPDC-CHC	Fm 3m	a = b = c = 32.7304(6)	Inorg. Chem.	
			<i>V</i> = 35063.4 (19)	2015 , <i>54</i> , 5139.	
UiO-68-Me	H ₂ TPDC-CH ₃	Fm 3m	a = b = c = 32.5979(5)	this work	
			<i>V</i> = 34639.3 (1)		

Figure S1. PXRD of UiO-type MOFs

Synthesis of UiO-68-M *via* PSE: The as-prepared UiO-68-Me (67.2 mg) was thoroughly washed with fresh DMF, and then was immersed in DMF solution of M(salen) (0.015 mol/L, the H_2L^M was about 5.0 equiv of the L in the UiO-68-Me) at 100 °C. After 24 h, the exchanged MOFs were thoroughly washed with hot DMF (10 mL × 5) and was then immersed in 10 mL fresh H_2L^M solution at 100 °C for another 24 h. The synthesis of UiO-68-M required ten exchange cycles. The obtained sample was immersed in fresh DMF at 100 °C for three days during which the solvent was decanted and freshly replenished at least ten times until no free M(salen) was detected by ICP-OES, The product can be best formulated based on IR, TGA, EA, NMR and ICP-OES.

UiO-68-Cu: { $[Zr_6O_4(OH)_4(TPDC-CH_3)_{0.33}(L^{Cu})_{5.67}]$ ·5DMF·5H₂O}, Deep purple crystals. Yield: 96%. Elemental analysis: Anal. (%). Calcd for C₁₉₂H_{246.3}Cu_{5.7}N_{16.3}O_{53.3}Zr₆: C, 50.75; H, 5.46; N, 5.03; Found: C, 50.35; H, 5.37; N, 5.02. ICP-OES Anal. (%): Zr, 12.05; Cu, 7.92. Found: Zr, 11.94; Cu, 7.87. IR (KBr pellet, v/cm^{-1}): 3414 (m), 2936 (s), 2858 (m), 1659(m), 1630(m), 1603(s), 1556 (m), 1493(w), 1468(w), 1392(s), 1378(s), 1338(s), 1230(m), 1200(w), 1177(m), 1137(w), 1096(m), 976(w), 933(m), 861(w), 833(w), 795(m), 783(s), 735(w), 707(s), 654(s), 575(m), 519(m).

UiO-68-Mn: { $[Zr_6O_4(OH)_4(TPDC-CH_3)_{0.7}(L^{Mn})_{5.3}]$ ·9DMF·H₂O}, Wine crystals. Yield: 96%. Elemental analysis: Anal. (%). Calcd for C_{200.7}H₂₅₉Mn_{5.3}N_{19.6}O_{52.6}Zr₆: C, 52.11; H, 5.64; N, 5.93; Found: C, 52.35; H, 5.67; N, 5.79. ICP-OES Anal. (%): Zr, 11.83; Mn, 6.29; Found: Zr, 11.99; Mn, 6.337. IR (KBr pellet, v/cm⁻¹): 3492(s), 3056(m), 2943 (s), 2863 (m), 1653(w), 1602(2), 1549 (s), 1412(s), 1385(s), 1336(w), 1308(w), 1202(w), 1180(m), 1145(m), 1103(m), 1022(w), 1004(m), 933(w), 895(w), 863(m), 829(m), 781(s), 713(m), 665(m), 651(m), 549(w), 513(w).471(w).

UiO-68-Cr: { $[Zr_6O_4(OH)_4(TPDC-CH_3)_{0.4}(L^{Cr})_{5.6}]$ ·10DMF ·3H₂O}, Dark yellow Elemental Yield: 95%. analysis: Anal. crystals. (%). Calcd for C_{206.4}H₂₇₅Cr_{5.6}N_{21.2}O_{56.2}Zr₆: C, 51.73; H, 5.81; N, 6.20; O, 18.76; Found: C, 51.36; H, 5.67; N, 6.35. ICP-OES Anal. (%): Zr, 11.42; Cr, 6.08. Found, Zr, 10.98; Cr, 5.854. IR (KBr pellet, v/cm^{-1}): 3406(s), 2942(s), 2860(m), 1709(m), 1653(s), 1602(s), 1562(m), 1488(m), 1468(m), 1421(s), 1392(s), 1382(s), 1331(s), 1256(w), 1228(m), 1200(m), 1180(m), 1143(m), 1101(m), 1025(w), 1004(m), 934(m), 889(w), 865(m), 833(m), 812(m), 784(s), 731(m), 712(s), 653(s), 603(w), 575(m), 558(m), 508(w), 491(w), 464(w).

{ $[Zr_6O_4(OH)_4(TPDC-CH_3)_{1,03}(L^{Fe})_{4,97}] \cdot 15DMF \cdot 4H_2O$ }, **UiO-68-Fe:** dark red analysis: Yield: 96%. Elemental Anal. crystals. (%). Calcd for C_{215.7}H_{300.4}Fe_{4.97}N_{24.9}O_{60.9}Zr₆: C, 51.38; H, 6.00; N, 6.93. Found: C, 50.96; H, 5.91; N, 6.85. ICP-OES Anal. (%): Zr, 10.85; Fe, 5.50. Found: Zr, 10.76; Fe, 5.471. IR (KBr pellet, v/cm^{-1}): 3417(s), 2944(s), 2863(m), 1697(m), 1603(s), 1556(m), 1448(w). 1468(w), 1392(s), 1380(s), 1335(m), 1313(m), 1291(m), 1232(w), 1201(w), 1180(m), 1136(m), 1120(w), 1105(w), 1048(w), 1028(w), 1005(w), 933(w), 862(m), 831(m), 813(w), 781(s), 735(w), 711(s), 669(s), 651(s), 604(w), 593(w), 572(w), 548(w), 508(m), 487(m).

UiO-68-V: {[$Zr_6O_4(OH)_4(TPDC-CH_3)_{0.92}(L^v)_{5.08}$]·16DMF·3H₂O}, Green crystals. Yield: 96%. Elemental analysis: Anal. (%). Calcd for C_{219.7}H_{307.6}N_{26.2}O_{61.2}V_{5..8}Zr₆: C, 51.74; H, 6.08; N, 7.18. Found: C, 52.07; H, 6.01; N, 7.28. ICP-OES Anal. (%): Zr, 10.73; V, 5.07. Found, Zr, 10.09; V, 4.798. IR (KBr pellet, v/cm⁻¹): 3436(s), 2944(s), 2862(s), 1655(m), 1605(s), 1566(m), 1489(w), 1466(w), 1447(w), 1394(s), 1384(s), 1335(m), 1309(m), 1290(m), 1233(m), 1201(m), 1183(m), 1142(m), 1098(m), 1048(w), 1033(m), 988(s), 935(m), 922(m), 889(w), 862(m), 834(m), 813(m), 791(s), 786(s), 737(m), 710(s), 666(s), 640(s), 594(w), 576(m), 558(m), 527(m), 511(w), 465(w).

Synthesis of UiO-68-Mn-M via PSE: Similar to the synthesis of UiO-68-M, the newly fabricated UiO-68-Mn as a parent material was immersed in 10 mL fresh H_2L^M solution at 100 °C. After 24 h, the exchanged MOFs was thoroughly washed with hot DMF(10 mL × 5) and was then immersed in fresh H_2L^M solution at 100 °C for another 24 h. Repeated for about 5 times (120 h), the obtained sample was immersed in fresh DMF at 100 °C for three days during which the solvent was decanted and freshly replenished until no free M(salen) was detected by ICP-OES.

The product can be best formulated on the basis of IR, TGA, EA, NMR and ICP-OES.

UiO-68-Mn-Cr. { $[Zr_6O_4(OH)_4(TPDC-CH_3)_{0.44}(L^{Mn})_{2.85}(L^{Cr})_{2.71}]$ ·8DMF·3H₂O} Redlish brown crystals. Yield: 97%. Elemental analysis: Anal. (%). Calcd for C₂₀₀ H_{261.2}Cr_{2.71}Mn_{2.85}N_{19.1}O_{54.1}Zr₆: C, 51.73; H, 5.67; N, 5.77; Found: C, 50.95; H, 6.04; N, 5.68. ICP-OES Anal. (%): Cr, 3.03; Mn, 3.37; Zr, 11.78. Found, Cr, 3.07; Mn, 3.22; Zr, 11.86. IR (KBr pellet, v/cm⁻¹): 3418(s), 2944(s), 2865(m), 1654(s), 1604(s), 1549(m), 1485(w), 1410(s), 1384(s), 1335(m), 1308(m), 1292(m), 1252(w), 1204(m), 1180(m), 1145(m), 1104(m), 1047(w), 1020(w), 1006(m), 973(w), 934(w), 865(m), 831(m), 779(s), 738(m), 711(s), 665(s), 652(s), 604(w), 575(m), 557(m), 511(w), 459(w).

UiO-68-Mn-V. {[$Zr_6O_4(OH)_4(TPDC-CH_3)_{0.44}(L^{Mn})_{1.72}(L^{Cr})_{3.84}$]·3DMF·12H₂O}. Brown crystals. Yield: 96%. Elemental analysis: Anal. (%). Calcd for $C_{185}H_{244.2}Mn_{1.72}N_{141}O_{62}V_{3.84}Zr_6$. C, 49.44; H, 5.48; N, 4.40; Found: C, 48.96; H,5.51; N, 4.60. ICP-OES Anal. (%): Mn, 2.10; V, 4.35; Zr, 12.18. Found, Mn, 2.00; V, 4.46; Zr, 12.21. IR (KBr pellet, v/cm⁻¹): 3426(m), 2966(ms), 2865(m), 1687(s), 1606(s), 1564(m), 1430(w), 1403(s), 1314(s), 1284(m), 1180(m), 1140(m), 1106(m), 1045(w), 1025(w), 938(w), 875(m), 836(m), 748(m), 717(s), 655(s), 606 (w), 5775(m), 567(m), 510(w), 465(w).

3. General procedure for asymmetric catalysis

3.1 Epoxidation of Alkene Catalyzed by UiO-68-Mn: To a suspension of **UiO-68-Mn** (5×10^{-4} mmol) in dry DCM (1 mL), alkene (0.1 mmol) and the oxidant 2-(tert-butylsulfonyl)iodosylbenzene (*s*-PhIO) (2 mg, 6×10^{-3} mmol) were added. The same amount of oxidant was added 18 more times at 15 min intervals. The reaction was carried for 8 h at 0 °C. After that, the mixture was centrifuged at 9000 rpm for 5 min, and the supernatant was concentrated under vacuum. The concentrate was analyzed by ¹H NMR to give the conversion and by HPLC to give the ee value.

3.2 Epoxidation of Alkene Catalyzed by UiO-68-Fe: To a suspension of **UiO-68-Fe** $(1 \times 10^{-3} \text{ mmol})$ and alkene (0.1 mmol) in dry chloroform (1 mL), MesIO (0.12 mmol) was added at -20 °C, and then the reaction was allowed to proceed at -20 °C for 36 h. After that, the mixture was centrifuged at 9000 rpm for 5 min, and the supernatant was concentrated under vacuum. The concentrate was analyzed by ¹H NMR to give the conversion and by HPLC to give the ee value.

3.3 Oxidative Kinetic Resolution of Alcohols by UiO-68-Mn: UiO-68-Mn $(5 \times 10^{-3} \text{ mmol})$, racemic secondary alcohols (0.2 mmol), and 1.5 mL mixed solvent (CH₂Cl₂/H₂O, v:v = 1:2) were added to a 10 mL round-bottom flask. After stirring for 5 min, Et₄NBr (1.7 mg, 4.0 mol %) was added. The temperature was cooled down to 0 °C and PhI(OAc)₂ (45.0 mg,0.14 mmol) was added, and the reaction was allowed to proceed at 0 °C for 30 min. After that, the reaction was quenched by a saturated aqueous solution of Na₂S₂O₃. The mixture was extracted with Et₂O (3 × 2 mL) and the combined organic extracts were concentrated. The crude product was purified by flash chromatography over silica gel. The ee value and conversion of resulted products were determined by HPLC and ¹H NMR analysis, respectively.

3.4 Cyanation of Aldehyde Catalyzed by UiO-68-V:

Before catalysis, V(IV) of **UiO-68-V** was oxidized to V(V) with m-chloroperoxylbenzoic acid. To a suspension of **UiO-68-V** (100 mg) in CH₂Cl₂ (20 mL) was added a CH₂Cl₂ solution (30 mL) of mCPBA (30 mg, 0.18 mmol). After stirring for 4 h, the mixture was filtered, washed with CH₂Cl₂ (3×8 mL) and dried at 80 °C under vacuum to give oxidized **UiO-68-V**.

To a suspension of oxidized **UiO-68-V** (0.025 mmol) and triphenylphosphine oxide (0.5 mmol) in dichloroethane (2 mL), TMSCN (0.6 mmol) was added dropwise. The mixture was stirred at room temperature for 0.5 h and then aldehyde (0.5 mmol) was added dropwise. The reaction was allowed to proceed at 0 °C for 36 h. After that, the mixture was centrifuged at 9000 rpm for 5 min, and the supernatant was concentrated under vacuum. The concentrate was analyzed by ¹H NMR to give the conversion. The corresponding trimethylsilyl ether was acidized with 10 w/w% HCl/MeOH (0.2 mL) at room temperature for 10 min. The filtrate was extracted with diethyl ether (10 mL × 3) and washed with brine (20 mL), dried over MgSO₄ and evaporated under reduced pressure to give the cyanohydrin.

To a solution of the crude cyanohydrin in CH_2Cl_2 (2 mL) was added pyridine (0.16 mL, 2 mmol) and acetic anhydride (0.14 mL, 1.5 mmol). The mixture was stirred at room temperature for 45 min, diluted with diethyl ether (3 mL) and 1M HCl (0.1 mL). The organic layer was then separated and washed with water (3 mL), and brine (3 mL), dried over Na₂SO₄ and evaporated under reduced pressure to give an o-acetyl cyanohydirn. The evalues were determined by HPLC.

3.5 Aminolysis of Epoxide Catalyzed by UiO-68-Cr: To a suspension of **UiO-68-Cr** (0.01 mmol) in DCM (1 mL) was added epoxide (0.2 mmol) at room temperature under nitrogen. After stirring for 15 min, aniline (0.1 mmol) was added and the

reaction mixture was stirred until the disappearance of the amine. After that, the mixture was centrifuged at 9000 rpm for 5 min, and the supernatant was concentrated under vacuum. The concentrate was analyzed by ¹H NMR to give the conversion and by HPLC to give the ee value.

3.6 Sequential Epoxidation/Ring-Opening Reactions Catalyzed by UiO-68-Mn-Cr: To a suspension of UiO-68-Mn-Cr (5×10^{-4} mmol) in dry DCM (1.0 mL), alkene (0.5 mmol) and S-PhIO (0.01 g, 0.03 mmol) were added. The same amount of oxidant was added 18 more times at 15 min intervals. The reaction was carried out overnight at 0 °C. After that, nucleophile (0.12 mmol) was added and the reaction mixture was stirred at 0 °C until the disappearance of the epoxide. Then the mixture was centrifuged at 9000 rpm for 5 min, and the supernatant was concentrated under vacuum. The concentrate was analyzed by ¹H NMR to give the conversion and by HPLC to give the evalue.

3.7 Catalyst Recycle Experiments, (using Epoxide Aminolysis as an example): After the reaction, the precipitate was immersed in 3.0 mL fresh CH_2Cl_2 and sonicated for 10 min, then centrifuged at 9000 rpm for 5 min to get the rest catalyst, then wash again for another two times, the recovered catalyst dried in a vacuum oven at 60 °C, then used for the next run. The recycled experimental of other two catalytic reactions were performed in a similar procedure.

	UiO-68-Cu	UiO-68-Me		
Empirical formula	$C_{90}H_{78}Cu_3N_6O_{22}Zr_3$	$C_{252}H_{132}O_{64}Zr_{12}$		
Formula weight	2059.86	5278.22		
Temperature (K)	100(2)	100(2)		
Wavelength (Å)	0.82654	0.71073		
Crystal system	Cubic	Cubic		
Space group	F432	Fm 3m		
Unit cell dimensions	$\begin{array}{ccc} a = 32.0319(7) \ \text{\AA} & a = 90 \ ^{\circ} \\ b = 32.0319(7) \ \text{\AA} & \beta = 90 \ ^{\circ} \\ c = 32.0319(7) \ \text{\AA} & \gamma = 90 \ ^{\circ} \end{array}$	$\begin{array}{ll} a = 32.5979(5) \ \text{\AA} & a = 90 \ ^{\circ} \\ b = 32.5979(5) \ \text{\AA} & \beta = 90 \ ^{\circ} \\ c = 32.5979(5) \ \text{\AA} & \gamma = 90 \ ^{\circ} \end{array}$		
Volume (Å ³), Z	32866(3), 8	34639.3(16), 2		
Density (calculated) (mg/m ³)	0.833	0.506		
Absorption coefficient (mm ⁻¹)	0.910	0.200		
F(000)	8344.0	5272.0		
Limiting indices	-36<= <i>h</i> <=36, -36<= <i>k</i> <=36, -34<= <i>l</i> <=36	-37<=h<=37, -37<=k<=37, -37<=l<=37		
Reflections collected / unique	45563 / 2200	86565 / 1416		
20 range for data collection/°, Completeness	4.904-56.732, 100%	5.448-48.072, 98.6%		
R _{int}	0.0901	0.1121		
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2		
Data / restraints / parameters	2200 / 297 / 116	1416 / 115 / 53		
Goodness-of-fit on F ²	1.093	1.088		
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	$R_1 = 0.0737, wR_2 = 0.2080$	$R_1 = 0.0724, wR_2 = 0.1960$		
R indices (all data)	$R_1 = 0.0819, wR_2 = 0.2172$	$R_1 = 0.0842, wR_2 = 0.2139$		
Absolute structure parameter	0.43(4)	-		
Largest diff. peak and hole (e.Å ⁻³)	0.91 and -0.60	0.58/-0.54		
${}^{a}R_{l} = \sum F_{o} - F_{c} / \sum F_{o} . {}^{b}wR_{2} = [\sum [w(\overline{F_{o}^{2}} - F_{c}^{2})^{2}] / \sum w(F_{o}^{2})^{2}]^{1/2},$				

4. Table S2. Crystal data and structure refinement for UiO-68-Cu and UiO-68-Me

 ${}^{a}R_{I} = \Sigma ||F_{o}| - |F_{c}| / \Sigma |F_{o}|. {}^{b}wR_{2} = [\Sigma[w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma w(F_{o}^{2})^{2} w(F_{o$

$Cu(1)-Cu(1)^{\#1}$	1.798(11)
$Cu(1)-O(3)^{\#1}$	1.569(11)
Cu(1)-O(3)	1.569(11)
$Cu(1)-N(1)^{\#2}$	2.06(2)
Cu(1)-N(1)	2.06(2)
Cu(1)-C(10)	2.06(2)
$Cu(1)-C(10)^{\#2}$	2.06(2)
$Zr(1)-Zr(1)^{\#3}$	3.5066(13)
$Zr(1)-Zr(1)^{#4}$	3.5066(13)
$Zr(1)-Zr(1)^{\#5}$	3.5066(13)
$Zr(1)-Zr(1)^{\#6}$	3.5066(13)
$O(3)-Cu(1)^{\#1}$	1.569(11)
$Zr(1)-O(1)^{\#7}$	2.142(4)
$Zr(1)-O(1)^{\#8}$	2.142(4)
Zr(1)-O(1)	2.142(4)
$Zr(1)-O(1)^{\#9}$	2.142(4)
$Zr(1)-O(2)^{\#10}$	2.201(5)
$Zr(1)-O(2)^{\#11}$	2.201(5)
Zr(1)-O(2)	2.201(5)
$Zr(1)-O(2)^{\#9}$	2.201(5)
O(1)-Zr(1) ^{#3}	2.142(4)
O(1)-Zr(1) ^{#4}	2.142(4)
$O(3)^{\#1}-Cu(1)-O(3)$	110.1(6)
O(3)-Cu(1)-N(1)	82.7(6)
$O(3)-Cu(1)-N(1)^{#2}$	161.9(9)
$O(3)^{#1}-Cu(1)-N(1)$	161.9(9)
$O(3)^{\#1}-Cu(1)-N(1)^{\#2}$	82.7(6)
$O(3)-Cu(1)-C(10)^{\#2}$	161.9(9)
O(3)-Cu(1)-C(10)	82.7(6)
$O(3)^{\#1}$ -Cu(1)-C(10) ^{#2}	82.7(6)
$O(3)^{\#1}$ -Cu(1)-C(10)	161.9(9)
$N(1)^{#2}-Cu(1)-N(1)$	88.1(12)
$C(10)^{#2}$ -Cu(1)-C(10)	88.1(12)
$O(1)^{\#9}$ -Zr(1)-O(1) ^{#7}	108.7(6)
$O(1)^{\#7}$ -Zr(1)-O(1) ^{#8}	70.1(3)
$O(1)^{\#9}$ -Zr(1)-O(1) ^{#8}	70.1(3)
$O(1)^{\#7}$ -Zr(1)-O(1)	70.1(3)
$O(1)^{\#9}$ -Zr(1)-O(1)	70.1(3)
$O(1)^{\#8}$ -Zr(1)-O(1)	108.7(6)

5. Table S3a. Selected bond lengths [Å] and angles [] for UiO-68-Cu

$O(1)^{\#9}$ -Zr(1)-O(2) ^{#10}	139.8(3)
$O(1)^{\#9}$ -Zr(1)-O(2) ^{#11}	78.6(3)
$O(1)^{\#9}$ -Zr(1)-O(2)	76.2(3)
$O(2)^{\#10}$ -Zr(1)-O(2) $^{\#11}$	121.9(3)
$O(2)$ -Zr(1)- $O(2)^{\#8}$	121.8(3)
$O(2)$ -Zr(1)- $O(2)^{\#10}$	76.34(13)
$O(2)$ -Zr(1)- $O(2)^{\#11}$	76.34(13)
$O(2)^{\#10}$ -Zr(1)-O(2) ^{#8}	76.34(13)
$O(2)^{\#11}$ -Zr(1)-O(2) ^{#8}	76.34(13)
O(1)-Zr(1)-O(2)	139.8(3)
$O(1)^{\#7}$ -Zr(1)-O(2)	143.7(3)
$O(1)^{#8}$ -Zr(1)-O(2) ^{#8}	139.8(3)
$O(1)$ -Zr(1)- $O(2)^{\#10}$	143.7(3)
$O(1)^{\#8}$ -Zr(1)-O(2) ^{#11}	143.7(3)
$O(1)^{\#8}$ -Zr(1)-O(2)	78.6(3)
O(1)-Zr(1)-O(2) ^{#8}	78.6(3)
$O(1)^{\#7}$ -Zr(1)-O(2) ^{#11}	139.8(3)
$O(1)^{\#7}$ -Zr(1)-O(2) ^{#8}	76.2(3)
$O(1)$ -Zr(1)- $O(2)^{\#11}$	76.2(3)
$O(1)^{\#7}$ -Zr(1)-O(2) ^{#10}	78.6(3)
$O(1)^{\#8}$ -Zr(1)-O(2) ^{#10}	76.2(3)
$O(1)^{#9}$ -Zr(1)-O(2) ^{#8}	143.7(3)

Symmetry transformations used to generate equivalent atoms: ^{#1}1/2-X, +Y, 3/2-Z; ^{#2}1-Z, 1-Y, 1-X;^{#3}1/2-Y, +Z, 1/2-X; ^{#4}-1/2+Z, 1/2-X, 1-Y; ^{#5}-1/2+Z, 1/2+X, +Y; ^{#6}-1/2+Y, +Z, 1/2+X; ^{#7}1/2-Y, 1/2-X, 1-Z; ^{#8}1/2-Y, 1/2+X, +Z; ^{#9}+X, 1-Y, 1-Z; ^{#10}+X, +Z, 1-Y; ^{#11}+X, 1-Z, +Y; ^{#12}-1/2+Z, 1-Y, 1/2+X

 Table S3b. Selected bond lengths [Å] and angles [] for UiO-68-Me

$Zr(1)-Zr(1)^{\#1}$	3.4745(10)
$Zr(1)-Zr(1)^{\#2}$	3.4745(10)
$Zr(1)-Zr(1)^{\#3}$	3.4745(10)
$Zr(1)$ - $Zr(1)^{#4}$	3.4745(10)
$Zr(1)-O(1)^{\#5}$	2.116(3)
Zr(1)-O(1)	2.116(3)
$Zr(1)-O(1)^{\#6}$	2.116(3)
$Zr(1)-O(1)^{\#7}$	2.116(3)
$Zr(1)-O(2)^{\#6}$	2.204(5)
$Zr(1)-O(2)^{\#7}$	2.204(5)
Zr(1)-O(2)	2.204(5)
$Zr(1)-O(2)^{\#5}$	2.204(5)

$O(1)$ - $Zr(1)^{\#1}$	2.116(3)
$O(1)$ - $Zr(1)^{\#2}$	2.116(3)
$O(1)^{\#6}$ -Zr(1)-O(1) ^{\#5}	69.6(2)
$O(1)^{\#7}$ -Zr(1)-O(1) ^{#6}	69.6(2)
$O(1)^{\#5}$ -Zr(1)-O(1)	69.6(2)
$O(1)^{\#6}$ -Zr(1)-O(1)	107.6(5)
$O(1)^{\#7}$ -Zr(1)-O(1)	69.6(2)
$O(1)^{\#7}$ -Zr(1)-O(1) ^{#5}	107.6(5)
$O(1)^{\#7}$ -Zr(1)-O(2)	78.4(2)
$O(1)^{\#6}$ -Zr(1)-O(2) ^{\#5}	142.06(7)
$O(1)^{\#5}$ -Zr(1)-O(2) ^{#7}	142.06(7)
O(1)-Zr(1)-O(2) ^{#7}	142.06(7)
$O(1)^{\#5}$ -Zr(1)-O(2)	142.06(7)
$O(1)^{\#7}$ -Zr(1)-O(2) ^{#7}	78.4(2)
O(1)-Zr(1)-O(2)	78.4(2)
$O(1)^{\#5}$ -Zr(1)-O(2) ^{\#6}	78.4(2)
O(1)-Zr(1)-O(2) ^{#6}	142.06(7)
$O(1)^{\#6}$ -Zr(1)-O(2) ^{\#6}	78.4(2)
$O(1)^{\#7}$ -Zr(1)-O(2) ^{#6}	142.06(7)
O(1)-Zr(1)-O(2) ^{#5}	78.4(2)
$O(1)^{\#7}$ -Zr(1)-O(2) ^{#5}	142.06(7)
O(2)-Zr(1)-O(2) ^{#5}	75.70(17)
O(2)-Zr(1)-O(2) ^{#6}	120.4(4)
$O(2)^{\#6}$ -Zr(1)-O(2) ^{\#5}	75.70(17)
$O(2)^{\#6}$ -Zr(1)-O(2) ^{#7}	75.70(17)
$O(2)^{\#5}$ -Zr(1)-O(2) ^{#7}	120.4(4)
O(2)-Zr(1)-O(2) ^{#7}	75.70(17)
$Zr(1)^{\#2}-O(1)-Zr(1)$	110.4(2)
$\operatorname{Zr}(1)^{\#2}$ -O(1)-Zr(1) ^{#3}	110.4(2)
$Zr(1)^{\#3}-O(1)-Zr(1)$	110.4(2)
$O(1)^{\#7}$ -Zr(1)-O(2) ^{#6}	142.06(7)
$O(1)^{\#7}$ -Zr(1)-O(2) ^{#5}	142.06(7)
$O(1)^{\#6}$ -Zr(1)-O(2)	142.06(7)
$O(1)^{\#6}$ -Zr(1)-O(2)	142.06(7)
$O(1)^{\#6}$ -Zr(1)-O(2) ^{#7}	78.4(2)

Symmetry transformations used to generate equivalent atoms:

^{#1}1/2-Z,2-Y,-1/2+X; ^{#2}+X,1-Z,-1+Y; ^{#3}1/2+Z,+Y,1/2-X; ^{#4}1-X,1+Z,1-Y; ^{#5}3/2-Y,1/2+X,+Z; ^{#6}1-X,2-Y,+Z; ^{#7}-1/2+Y,3/2-X,+Z; ^{#8}+X,1-Z,1-Y; ^{#9}1-X,+Y,+Z; ^{#10}+X,3/2-Y,1/2-Z 6. Figures S2~S4. Additional X-ray crystallographic structures
6.1 Figure S2. The structure of [Zr₆O₄(OH)₄(COO)₁₂] cluster

6.2 Figure S3. The structures of the tetrahedron and octahedron cages in **UiO-68-Me** (left) and **UiO-68-Cu** (right) (the cavity was highlighted by a yellow/orange ball)

6.3 Figure S4. The packing modes of $UiO-68-Me~(\mbox{top})$ and $UiO-68-Cu~(\mbox{down})$

7. Figure S5. PXRD patterns and stability

b)

c)

f) PXRD analysis of partially exchanged crystals by $H_2 L^{Cr}$

8. Figure S6. Residue weight percentage after treatment for 24 h in different solutions.

9. Figure S7. CD spectra

S21

10. Figure S8. TGA curves

11. Figure S9. FT-IR spectra

12. Figure S10. N_2 adsorption, Isotherm Log Plots and BET plots.

13. Figure S11. SEM / TEM images and EDS mappings

a) SEM images and particle size analysis

b) EDX mappings for the exchanged MOFs

c) Cross-sectional SEM-EDX mappings during the PSE process for UiO-68-Cr

d) TEM-EDX mappings for the exchanged MOFs

14. Figure S12 ¹H NMR Spectra

The activated **UiO-68-M** (5.0 mg) in nuclear magnetic tube were digested by HF(2 drops) in 0.5 mL DMSO- d_6 for 1 h, then collect the ¹H NMR.

-10.044

(i) ¹H NMR spectra of the solution during the PSE process of **UiO-68-Cr**. The solution was collected after exchanging, then large amount of water was added, adjusting the mixture to pH = $2\sim3$ by conc. HCl, stirred at 60 °C for 12 h to precipitate the 3-(*tert*-butyl)-5-formyl-4-hydroxybenzoic acid and H₂TPDC-Me, filter to get the solid, washing by H₂O then dried in 100 °C oven. The solid were then dissolved in DMSO-*d*₆ for ¹H NMR.

Time (h	1) Zr (wt %)	Cr (wt %)) Zr (mol %)	Cr (mol %)	Cr (mol %)/ Zr (mol %)	Exchange Ratio (%)
12	21.566	1.054	0.23642	0.02027	0.08573	8.5
24	15.939	1.889	0.17473	0.03633	0.2079	20.8
48	15.405	3.22	0.16888	0.06192	0.36667	36.7
72	13.414	3.644	0.14705	0.07008	0.47655	47.6
96	12.974	3.761	0.14223	0.07233	0.50853	50.8
120	13.129	4.686	0.14393	0.09012	0.62612	62.6
144	13.971	6.023	0.15316	0.11583	0.75626	75.6
168	12.906	6.182	0.14148	0.11888	0.84028	84
192	12.939	6.589	0.14184	0.12671	0.89332	89.3
216	12.119	6.297	0.13285	0.1211	0.91149	91.1
240	11.703	6.189	0.12829	0.11902	0.92771	92.7

15. Table S4 ICP-OES results of UiO-68-Cr during the PSE process

16. Tables S5-S13. Additional catalytic results

16.1 Table S5. Alkene epoxidation

$R_{2} \xrightarrow{I_{1}} O = R_{1} \xrightarrow{0.5 \text{ mol}\%} R_{1} \xrightarrow{0.5 \text{ mol}\%} R_{2} \xrightarrow{I_{1}} O = R_{1} \xrightarrow{R_{1}} R_{1}$				
Enter	D	р	UiO-68	-Mn
Entry	K 1	\mathbf{K}_2	Conv. $(\%)^a$	$ee(\%)^b$
1	Me	Н	91	88
2	-(CH ₂) ₅ -	Н	81	98
3	Me	6-Cl	88	90
4	Me	8-Cl	84	98
5	Me	8-Ph	78	82
6	Me	6-NO ₂	80	96
7	Me	6-Me	85	83

^{*a*} determined using ¹H NMR. ^{*b*} determined by HPLC.

16.2 Table S6. OKR reaction

он Г	1.0 mol% UiO-6 0.7 equiv Ph I (0	58-Mn DAc) ₂	OH ()		
R∕~R'	Et ₄ NBr DCM/H ₂ O, 0 °C,	30 min	R^R' + R	≺ _{R'}		
Enter	D	р'	U	iO-68-Mn		-
Entry	K	ĸ	Conv. $(\%)^a$	$ee(\%)^b$	k^{c}_{rel}	
1	4-CF ₃ Ph	CH ₃	59.8	99.7	30.6	_
2	Naphthalene	CH_3	50.1	80	21.4	
3	Ph	CH_3	56.7	97	27.3	
4	4-Br	CH ₃	58.5	99.7	35.6	
5	3-Br	CH ₃	52.8	94	30.4	
<i>a</i> det	termined usin	g ¹ H	NMR. ^b de	etermined	bv HI	PI

^{*a*} determined using ¹H NMR. ^{*b*} determined by HPLC. ^{*c*} $k_{el} = ln[(1-c)(1-ee)]/ln[(1-c)(1+ee)]$, where ee is the enantiomeric excess of the alcohol and c is the conversion of the alcohol.

16.3 Table S7. Alkene epoxidation

$R_{2} \xrightarrow{\text{II}} O = R_{1} \xrightarrow{0.5 \text{ mol}\%} H_{2} \xrightarrow{\text{II}} O = R_{1} \xrightarrow{\text{II}} R_{1} \xrightarrow{\text{II}} O = R_{2} \xrightarrow{\text{II}} O = R_{1} \xrightarrow{\text{II}} \xrightarrow{\text{II}} R_{1} \xrightarrow{\text{II}} \xrightarrow{\text{II}} R_{1} \xrightarrow{\text{II}} \xrightarrow{\text{II}}$				
Enter	р	р	UiO-6	8-Fe
Entry	\mathbf{K}_1	\mathbf{K}_2	Conv. $(\%)^a$	$ee(\%)^b$
1	Me	Н	84	86
2	-(CH ₂) ₅ -	Н	87	97
3	Me	6-NO ₂	84	93
4	Me	8-Cl	80	90
5	Me	6-Me	85	84

^{*a*}determined using ¹H NMR. ^{*b*}determined by HPLC.

16.4 Table S8. Asymmetric cyanation reaction

0 II	5 mol% UiO-68 1.0 equiv. Ph ₃ F	OSiMe ₃	
R~Н	DCE, 0 °C, 36		
Entry	R	Conv. $(\%)^a$	$ee(\%)^b$
1	C ₆ H ₅	85	82
2	$4-MeC_6H_4$	89	81
3	Thiophene	83	87
4	4-MeOC ₆ H ₄	84	84
5	$4-BrC_6H_4$	80	80

^{*a*}determined using ¹H NMR. ^{*b*}determined by HPLC.

16.5 Table S9. Aminolysis of trans-stilbene oxide with anilines

Å	Ph5 mol% UiO- + ArNH ₂ 5		,Ph			
Ph ² Ph ² DCM, r.t, 24 h ii (+/-) OH						
Entry	Ar	Conv. $(\%)^a$	ee $(\%)^b$			
1	Ph	86 $(\text{trace})^c$	80			
2	o-MeC ₆ H ₄	87	84			
3	o-EtC ₆ H ₄	85	80			
4	(2-Et-6-Me) C ₆ H ₄	87 $(\text{trace})^c$	99			
5	p-IC ₆ H ₄	90 $(\text{trace})^c$	97			
6	4-OMe	87	93			

^{*a*}determined using ¹H NMR base on anilines. ^{*b*}determined by HPLC. ^{*c*}Catalyzed by UiO-68-Me for both 24 h and 48 h.

۸...

16.6 Table S10. Alkene epoxidation

$R_{2} \underbrace{\prod_{i}}_{OR_{1}} + ArNH_{2} \xrightarrow{\begin{array}{c} 0.5 \text{ mol}\%\\ \textbf{UiO-68-Mn-Cr}\\ \text{sPhIO}\\ TCM, 0 \ ^{\circ}C, 24 \text{ h} \end{array}} R_{2} \underbrace{\prod_{i}}_{OR_{1}} + R_{1} \\ R_{$						
Entry	R_1	D	Ar	UiO-68-Mn-Cr		
		\mathbf{K}_2		Conv. $(\%)^a$	ee $(\%)^b$	
1	Me	Н	Ph	85	80	
2	Me	Н	2-OMePh	83	82	
3	Me	Н	4-OMePh	82	87	
4	Me	Н	4-OEtPh	80	82	
5	Me	Н	4-Cl	80	96	
6	Me	Н	4-MePh	82	84	
7	Me	Н	2-Et-6-MePh	81	99.5	
8	Me	6-Me	Ph	84	86	
9	Me	6-Cl	Ph	80	88	

^{*a*} determined using ¹H NMR. ^{*b*} determined by HPLC.

16.7 Table S11. Recycle experiments of epoxidation reactions

()	0.5 mol% UiO-68-Mn sPhIO DCM, 0 °C, 6 h	
Run	Conv. $(\%)^a$	ee $(\%)^b$
1	86	88
2	85	88
3	85	88
4	84	88
5	85	88
6	84	85
7	82	86
8	84	88
9	83	88
10	83	88

^{*a*}determined using ¹H NMR. ^{*b*}determined by HPLC.
OH	1.0 mol% UiO-68-M Et ₄ NBr	n	OH O
	DCM/H ₂ O, 0 °C, 30 r	nin	+
Run	Conv. $(\%)^a$	ee $(\%)^b$	$k_{\rm rel}$
1	56.7	97	27.3
2	56.1	96	26.9
3	55.9	96	27.7
4	56.5	96	26.1
5	56.3	94	25.4
6	55.6	94	26.6
7	55.4	94	26.6
8	55.0	93	24.5
9	55.7	94	26.2
10	55.3	94	25.4

16.8 Table S12. Recycle experiments of Alcohol OKR

^{*a*}determined using ¹H NMR. ^{*b*}determined by HPLC.

16.9 Table S13. Recycle experiments of Aminolysis of trans-Stilbene Oxide

Ph (+/-) +	5 mol% UiO-68-Cr	$\begin{array}{c} \bullet \\ \bullet $
Run	Conv. $(\%)^a$	$ee(\%)^b$
1	87	99.5
2	87	98
3	86	99.5
4	85	98
5	85	98
6	86	96
7	85	96
8	85	97
9	86	97
10	85	96

^{*a*}determined using ¹H NMR. ^{*b*}determined by HPLC.

17. HPLC and NMR results of catalysis

17.1 Alkene Epoxidation

2,2-dimethyl-2,7b-dihydro-1aH-oxireno[2,3-c]chromene:

Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/*i*-PrOH = 99/1, 1.0 mL/min, 230 nm), t _{major} = 10.839 min, t _{minor} = 13.943 min; ee = 88%, ¹H NMR^[2] (400 MHz, CDCl₃) δ 7.32 (dd, *J* = 7.4, 1.7 Hz, 1H), 7.25 – 7.20 (m, 1H), 6.93 (td, *J* = 7.4, 1.1 Hz, 1H), 6.83 (d, *J* = 8.1 Hz, 1H), 3.90 (d, *J* = 4.4 Hz, 1H), 1.58 (s, 3H), 1.23 (s, 3H).

ID#	Start	End	Ret. Time	Height	Area	Area%
1	10.583	11.550	10.839	1734816	26701821	49.379
2	13.633	14.858	13.943	1196158	27373581	50.621
Total				2930974	54075401	100.000

Catalyzed by UiO-68-Mn

Detect	or:230nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	10.433	12.242	10.746	765478	14801715	94.058
2	13.600	14.542	13.860	40531	935047	5.942
Total	Ĩ			806009	15736762	100.000

Catalyzed by UiO-68-Fe

1a',7b'-dihydrospiro[cyclohexane-1,2'-oxireno[2,3-c]chromene]:

Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/*i*-PrOH = 99/1, 1.0 mL/min, 230 nm), t _{major} = 11.014 min, t _{minor} = 18.381 min; ee = 97%, 1H NMR^[2] (400 MHz, CDCl3) δ 7.33 (d, *J* = 7.4, 1.6 Hz, 1H), 7.26 – 7.22 (m, 1H), 6.92 (m, *J* = 7.4, 1.0 Hz, 1H), 6.85 (d, *J* = 8.1 Hz, 1H), 3.89 (d, *J* = 4.4 Hz, 1H), 3.48 (d, *J* = 4.4 Hz, 1H), 1.68 (ddd, *J* = 12.4, 11.1, 3.7 Hz, 6H), 1.61 (ddd, *J* = 16.5, 8.5, 4.8 Hz, 3H).

Catalyzed by UiO-68-Mn

10#	Start	End	Ket. lime	neight	Area	Area‰
1	9.758	10.642	10.041	223200	3487411	98.893
2	17.492	18.817	17.887	1331	39035	1.107
Total				224531	3526447	100.000

Catalyzed by UiO-68-Fe

Ι	Detector:230nm								
[ID#	Start	End	Ret. Time	Height	Area	Area%		
ſ	1	11.350	12.467	11.726	364769	8022306	98.611		
ſ	2	18.408	20.042	19.130	2185	113033	1.389		
	Total				366954	8135339	100.000		

2,2-dimethyl-6-chloro-2,7b-dihydro-1aH-oxireno[2,3-c]chromene:

Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/*i*-PrOH = 99/1, 1.0 mL/min, 230 nm), t _{major} = 8.513 min, t _{minor} = 10.443 min; ee = 90%, ¹H NMR^[2] (400 MHz, CDCl₃) δ = 7.31 (d, *J* = 2.5, 1H), 7.18 (dd, *J* = 8.6, 2.6, 1H), 6.75 (d, *J* = 8.6, 1H), 3.86 (d, *J* = 4.2, 1H), 3.49 (d, *J* = 4.3, 1H), 1.25 (s, 3H), 1.24 (s, 3H).

ID#	Start	End	Ret. Time	Height	Area	Area%
1	8.308	9.358	8.513	1892328	19970465	50.153
2	10.083	11.500	10.443	1392480	19848464	49.847
Total				3284808	39818929	100.000

Detecto	Detector: 230nm								
ID#	Start	End	Ret. Time	Height	Area	Area%			
1	8.692	10.025	9.119	2284694	45428131	95.094			
2	11.008	11.633	11.263	144225	2343700	4.906			
Total				2428919	47771831	100.000			

2,2-dimethyl-8-chloro-2,7b-dihydro-1aH-oxireno[2,3-c]chromene:

Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/*i*-PrOH = 99/1, 1.0 mL/min, 230 nm), t _{major} = 9.109 min, t _{minor} = 13.020 min; ee = 98%, ¹H NMR^[2] (400 MHz, CDCl₃) δ = 7.33 (dd, *J* = 8.0, 1.5, 1H), 7.25 (d, *J* = 1.5, 1H), 6.87 (t, *J* = 7.8, 1H), 3.91 (d, *J* = 4.4, 1H), 3.51 (d, *J* = 4.4, 1H), 1.66 (s, 3H), 1.27 (s, 3H).

Detector:220nm

00000	011					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	8.875	9.917	9.109	2740303	48832934	49.156
2	12.708	14.000	13.020	1630596	50510132	50.844
Total				4370899	99343066	100.000
-						

Catalyzed by UiO-68-Mn

Detecto	Detector: 220nm								
ID#	Start	End	Ret. Time	Height	Area	Area%			
1	9.292	13.100	10.102	2476213	69679263	99.410			
2	13.975	15.058	14.389	16001	413859	0.590			
Total				2492214	70093121	100.000			

Detector	: 230nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	9.075	11.642	9.297	2394643	63348873	95.152
2	13.792	14.958	14.107	121430	3227315	4.848
Total				2516072	66576189	100.000

2,2-dimethyl-6-nitro-2,7b-dihydro-1aH-oxireno[2,3-c]chromene:

Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/*i*-PrOH = 98/2, 1.0 mL/min, 230 nm), t _{major} = 18.130 min, t _{minor} = 22.760 min; ee = 96%, ¹H NMR^[2] (400 MHz, CDCl₃) δ 8.30 (d, *J* = 2.7 Hz, 1H), 8.12 (dd, *J* = 9.0, 2.8 Hz, 1H), 6.87 (d, *J* = 9.0 Hz, 1H), 3.99 (d, *J* = 4.3 Hz, 1H), 3.56 (d, *J* = 4.3 Hz, 1H), 1.60 (s, 3H), 1.30 (s, 3H).

Detect	Detector:230nm								
ID#	Start	End	Ret. Time	Height	Area	Area%			
1	17.658	20.442	18.130	1291396	37651347	50.084			
2	22.175	25.100	22.760	973106	37525551	49.916			
Total				2264502	75176899	100.000			

Detecto	or:230nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	15.992	19.750	16.829	227966	13940916	98.230
2	21.000	23.033	21.551	4207	251172	1.770
Total				232174	14192088	100.000

Catalyzed by UiO-68-Fe

Detector	: 230nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	17.775	20.858	18.476	650758	30592306	96.650
2	22.225	24.650	22.946	23074	1060299	3.350
Total				673833	31652605	100.000

2,2-dimethyl-6-methyl-2,7b-dihydro-1aH-oxireno[2,3-c]chromene:

Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/*i*-PrOH = 99/1, 1.0 mL/min, 230 nm), t _{major} = 8.310 min, t _{minor} = 12.586 min; ee = 83%, ¹H NMR^[2] (400 MHz, CDCl₃) δ 7.15 (d, *J* = 2.2 Hz, 1H), 7.03 (dd, *J* = 8.5, 1.9 Hz, 1H), 6.72 (d, *J* = 8.2 Hz, 1H), 3.86 (d, *J* = 4.4 Hz, 1H), 3.47 (d, *J* = 4.4 Hz, 1H), 2.29 (s, 3H), 1.56 (s, 3H), 1.25 (s, 3H).

Detecto	or:220nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	7.808	10. 533	8.310	1015082	44011042	50.746
2	11.967	16.858	12.586	573419	42717218	49.254
Total				1588500	86728260	100.000

Catalyzed by UiO-68-Mn

Detecto	Detector: 220nm									
ID#	Start	End	Ret. Time	Height	Area	Area%				
1	7.775	9.200	8.034	168403	2831671	91.435				
2	11.467	12.217	11.718	12822	265251	8.565				
Total				181225	3096923	100.000				

Detecto	r:220nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	7.133	10.692	7.541	571849	24157782	91.993
2	11.917	15.825	12.835	31674	2102788	8.007
Total				603522	26260570	100.000

17.2 Alcohol OKR

Phenethyl alcohol:

Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/*i*-PrOH = 95/5, 1.0 mL/min, 220 nm), t _{major} = 8.073 min, t _{minor} = 9.563 min; ee = 99.1%.

Detecto	Detector:220nm								
ID#	Start	End	Ret. Time	Height	Area	Area%			
1	7.617	9.217	8.073	722353	25411357	46.943			
2	9.217	16.050	9.563	679650	28721109	53.057			
Total				1402003	54132466	100.000			

Detecto	Detector: 220nm								
ID#	Start	End	Ret. Time	Height	Area	Area%			
1	7.983	9.483	8.327	224588	6285843	98.671			
2	9.483	10.300	9.496	3844	84696	1.329			
Total				228432	6370539	100.000			

1-(4-Bromophenyl)ethanol:

Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/*i*-PrOH = 95/5, 1.0 mL/min, 230 nm), t _{major} = 9.041 min, t _{minor} = 8.222 min; ee = 99.7%.

Detecto	Detector:220nm								
ID#	Start	End	Ret. Time	Height	Area	Area%			
1	7.667	8.825	8.222	2639565	64090884	47.514			
2	8.825	10.750	9.041	2508190	70798459	52.486			
Total				5147755	134889343	100.000			

Detecto	or:220nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	8.158	8.608	8.240	241	3866	0.114
2	8.708	11.875	9.156	130634	3387756	99.886
Total				130875	3391622	100.000

1-(3-Bromophenyl)ethanol:

Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/*i*-PrOH = 98/2, 1.0 mL/min, 220 nm), t _{major} = 17.389 min, t _{minor} = 15.316 min; ee = 94%.

Detecto	Detector:220nm									
ID#	Start	End	Ret. Time	Height	Area	Area%				
1	13.908	16.808	15.316	2011214	97891300	48.195				
2	16.850	21.967	17.389	1725731	105221688	51.805				
Total				3736945	203112988	100.000				

Detecto	letector:220nm								
ID#	Start	End	Ret. Time	Height	Area	Area%			
1	14.483	16.258	15.086	15449	649148	2.642			
2	16.258	20.558	17.068	457057	23922009	97.358			
Total				472506	24571157	100.000			

1-(3-Fluorophenyl)ethanol:

Enantiomeric excess was determined by HPLC with a chiralcel OJ-H column (hexane/*i*-PrOH = 99/1, 0.8 mL/min, 220 nm), t _{major} = 29.220 min, t _{minor} = 26.319 min; ee = 99.7%.

Detecto	Detector:220nm								
ID#	Start	End	Ret. Time	Height	Area	Area%			
1	25.333	28.600	26.319	605359	56202476	45.104			
2	28.600	38.267	29.220	572228	68402927	54.896			
Total				1177587	124605404	100.000			

Detecto	or:220nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	24.075	27.308	25.507	434	38516	0.149
2	27.308	34.967	29.205	229252	25880240	99.851
Total				229686	25918755	100.000

1-(2-Naphthyl)ethanol:

Enantiomeric excess was determined by HPLC with a chiralcel OJ-H column (hexane/*i*-PrOH = 90/10, 0.8 mL/min, 250 nm), t _{major} = 16.687 min, t _{minor} = 21.609 min; ee = 80%.

Detecto	or:250nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	16. 0 33	20.767	16.687	98790	6210786	49.054
2	20.767	28.500	21.609	74318	6450343	50.946
Total				173108	12661130	100.000

ID#	Start	End	Ret. Time	Height	Area	Area%
1	14.758	20.908	15.628	1879399	154609015	90.074
2	20.917	25.850	21.851	194520	17038047	9.926
Total				2073920	171647061	100.000

Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/*i*-PrOH = 95/5, 1.0 mL/min, 230 nm), t _{major} = 9.246 min, t _{minor} = 8.212 min; ee = 82%, ¹HNMR (CDCl₃) δ : 0.23 (s, 9H), 5.44 (s, 1H), 7.25-7.57 (m, 5H).

Detect	or:220nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	8.008	8.708	8.212	1283346	16899476	48.714
2	9.075	9.708	9.246	1167006	17791732	51.286
Total				2450351	34691208	100.000

De	tecto	r:230nm					
	ID#	Start	End	Ret. Time	Height	Area	Area%
	1	8.075	8.600	8.249	17931	224793	8.964
	2	8.883	9.675	9.125	147229	2282979	91.036
1	otal				165160	2507772	100.000

Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/*i*-PrOH = 95/5, 1.0 mL/min, 230 nm), t _{major} = 9.203 min, t _{minor} = 6.988 min; ee = 81%, ¹H NMR (CDCl₃) δ : 0.27 (s, 9H), 3.81 (s, 3H), 5.43 (s, 1H), 6.91-6.94 (m, 2H), 7.35-7.40 (m, 2H).

Detecto	or:230nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	6.783	7.542	6.988	1000714	11253875	47.224
2	8.975	9.675	9.203	826057	12576805	52.776
Total				1826770	23830680	100.000

Detecto	or:230nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	6.833	7.292	7.003	251777	2622778	9.650
2	8.817	9.842	9.014	1203145	24556224	90.350
Total				1454922	27179002	100.000

Enantiomeric excess was determined by HPLC with a chiralcel AD-H column (hexane/*i*-PrOH = 95/5, 1.0 mL/min, 230 nm), t _{major} = 10.044 min, t _{minor} = 9.028 min; ee = 87%, ¹H NMR (CDCl₃) δ : 0.24 (s, 9H), 5.73 (s, 1H), 7.00 (d, 1H), 7.19 (d, 1H), 7.37 (d, 1H).

Detecto	or:230nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	8.833	9.683	9.028	1528001	22678401	53. 631
2	9.792	10.692	10.044	1374539	19607725	46.369
Total				2902540	42286126	100.000

Detecto	or:230nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	8.775	9.367	9.028	112087	1366258	6.630
2	9.692	10.542	9.986	1361572	19239655	93.370
Total				1473659	20605913	100.000

Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/*i*-PrOH = 95/5, 1.0 mL/min, 230 nm), t _{major} = 12.605 min, t _{minor} = 10.610 min; ee = 84%, ¹H NMR (CDCl₃) δ : 0.21 (s, 9H), 3.82 (s, 3H), 5.44 (s, 1H), 6.91-6.94 (m, 2H), 7.37-7.40 (m, 2H).

Detecto	or:230nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	10.283	11.175	10.610	2683503	40628846	49.394
2	12.325	13.400	12.605	2237311	41626243	50.606
Total				4920814	82255088	100.000

Detecto	or:230nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	10.383	11.492	10.661	462124	7590622	8.063
2	12.158	13.508	12.467	3271463	86549716	91.937
Total				3733587	94140338	100.000

Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/*i*-PrOH = 95/5, 1.0 mL/min, 230 nm), t _{major} = 13.494 min, t _{minor} = 10.344 min; ee = 80%, ¹H NMR (CDCl₃) δ : 0.24 (s, 9H), 5.51 (s, 1H), 7.40-7.49(m, 4H).

Detecto	or:250nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	10.025	11.175	10.344	235112	4096944	49.936
2	13.267	14.917	13.494	149454	4107497	50.064
Total				384566	8204440	100.000

ID#	Start	End	Ret. Time	Height	Area	Area%
1	10.433	11.367	10.721	500509	7841845	9.792
2	13.508	15.050	13.806	2596438	72240259	90.208
Total				3096948	80082104	100.000

17.4 Aminolysis of trans-Stilbene Oxide

1,2-diphenyl-2-(phenylamino)ethanol: Enantiomeric excess was determined by HPLC with a chiralcel AD-H column (hexane/*i*-PrOH = 90/10, 0.75 mL/min, 250 nm), t _{major} = 15.565 min, t _{minor} = 19.390 min; ee= 81 %. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.20 (m, 7H), 7.17 – 7.11 (m, 2H), 7.12 (s, 2H), 6.91 – 6.82 (m, 2H), 6.45 (dd, J = 8.8, 2.3 Hz, 2H), 5.05 (d, J = 4.9 Hz, 1H), 4.65 (d, J = 4.9 Hz, 1H), 4.12 (d, J = 158.0 Hz, 1H).

Detetor	: 250nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	14.917	17.208	15.565	42200	1331751	50.125
2	18.542	21.167	19.390	31462	1325132	49.875
Total				73661	2656883	100.000

Detect	or:250nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	14.642	17.967	15.106	796215	34398910	90.458
2	17.967	19.992	18.439	80538	3628772	9.542
Total				876754	38027682	100.000

2-((4-methylphenyl)amino)-1,2-diphenylethanol:

Enantiomeric excess was determined by HPLC with a chiralcel AD-H column (hexane/*i*-PrOH = 95/5, 1.0 mL/min, 250 nm), t _{major} = 18.086 min, t _{minor} = 21.627 min; ee = 84%. ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.23 (m, 6H), 7.22 – 7.12 (m, 4H), 7.01 (d, *J* = 7.3 Hz, 1H), 6.91 (t, *J* = 8.2 Hz, 1H), 6.60 (t, *J* = 7.4 Hz, 1H), 6.34 (d, *J* = 7.7 Hz, 1H), 5.04 (d, *J* = 4.7 Hz, 1H), 4.67 (d, *J* = 5.3Hz, 1H), 4.25 (s, 1H), 2.38 (s, 1H), 2.12 (s, 3H).

Detecto	Detector:250nm								
ID#	Start	End	Ret. Time	Height	Area	Area%			
1	17.142	20.750	18.086	588021	24320375	50.051			
2	20.750	25.083	21.627	498302	24271256	49.949			
Total				1086323	48591632	100.000			

Detecto	tector:2001iii								
ID#	Start	End	Ret. Time	Height	Area	Area%			
1	16.367	19.717	16.877	34688	1710756	91.959			
2	19.725	22.183	20.306	3236	149586	8.041			
Total				37924	1860342	100.000			

2-((2-methyl-6-ethylphenyl)amino)-1,2-diphenylethanol: Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/*i*-PrOH = 90/10, 1.0 mL/min, 250 nm), t _{major} = 9.615 min, t _{minor} = 9.008 min; ee = 99%. ¹H NMR (400 MHz, CDCl₃) δ 7.27 - 7.15 (m, 6H), 7.07 - 6.92 (m, 6H), 6.84 (t, *J* = 7.5 Hz, 1H), 5.10 (d, 1H), 4.39 (d, *J* = 4.1 Hz, 1H), 2.65 - 2.48 (m, 2H), 2.20 (s, *J* = 3.1 Hz, 3H), 1.19 (t, *J* = 7.5 Hz, 3H).

Detecto	or:250nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	8.492	9.350	9.008	1075691	18991416	47.634
2	9.350	10.867	9.615	941632	20878276	52.366
Total				2017323	39869691	100.000

Detecti									
ID#	Start	End	Ret. Time	Height	Area	Area%			
1	8.700	9.217	8.936	3396	47385	0.468			
2	9.217	10.283	9.396	579122	10083628	99. 532			
Total				582519	10131013	100.000			

2-((4-iodophenyl)amino)-1,2-diphenylethanol:

Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/*i*-PrOH = 90/10, 1.0 mL/min, 250 nm), t _{major} = 19.274 min, t _{minor} = 15.657 min; ee = 96%. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 5H), 7.27 – 7.20 (m, 3H), 7.11 – 7.03 (m, 4H), 6.30 – 6.26 (m, 2H), 5.06 (d, 1H), 4.59 (d, *J* = 4.8 Hz, 1H).

Detecto	or:250nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	14.817	17.525	15.657	848813	29159597	50.659
2	18.433	20.575	19.274	658034	28400741	49.341
Total				1506848	57560338	100.000

2-((4-methoxyphenyl)amino)-1,2-diphenylethanol:

Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/*i*-PrOH = 90/10, 1.0 mL/min, 250 nm), t _{major} = 23.115 min, t _{minor} = 19.676 min; ee = 93%. ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.21 (m, 6H), 7.13 (dd, *J* = 7.2, 2.4 Hz, 2H), 7.09 (dd, *J* = 6.9, 2.8 Hz, 2H), 6.70 – 6.61 (m, 2H), 6.52 – 6.42 (m, 2H), 5.03 (t, *J* = 5.2 Hz, 1H), 4.60 (d, *J* = 5.0 Hz, 1H), 4.15(s, 1H), 3.67 (s, 3H).

Detecto	or:250nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	18.458	22.017	19.676	678176	34959190	52.025
2	22.042	25.975	23.115	567819	32237371	47.975
Total				1245996	67196561	100.000

Detecto	or:200mm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	19.292	20.775	19.945	66664	2137226	3. 433
2	23.283	29.967	23.875	970587	60110026	96.567
Total				1037250	62247252	100.000

17.5 Alkene epoxidation/epoxide aminolysis

2,2-dimethyl-4-(phenylamino)chroman-3-ol:

Enantiomeric excess was determined by HPLC with a chiralcel AD-H column (hexane/*i*-PrOH = 95/5, 1.0 mL/min, 250 nm), t _{major} = 17.357 min, t _{minor} = 19.986 min; ee = 80%, ¹H NMR (400 MHz, CDCl₃) δ 7.23 (dd, *J* = 20.5, 12.1 Hz, 4H), 6.87 – 6.79 (m, 5H), 4.56 (d, *J* = 9.0 Hz, 1H), 3.72 (d, *J* = 9.0 Hz, 1H), 2.61 (s, 1H), 1.56 (s, 3H), 1.37 (s, 3H).

Detecto	or:250nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	16.908	18.250	17.357	56392	1360415	49.155
2	19.233	20.675	19.986	48788	1407211	50.845
Total				105180	2767626	100.000

2,2-dimethyl-4-(o-methoxyl-phenylamino)chroman-3-ol:

Enantiomeric excess was determined by HPLC with a chiralcel AD-H column (hexane/*i*-PrOH = 95/5, 1.0 mL/min, 220 nm), t _{major} = 13.578 min, t _{minor} = 11.461 min; ee = 82%, ¹H NMR (CDCl₃) δ : 7.28-7.16 (m, 3H), 6.72~6.95 (m, 5H), 4.57 (d, J = 8Hz, 1H), 3.88 (s, 3H), 3.73 (d, J = 8 Hz, 1H), 2.74 (s, 1H), 1.53 (s, 3H), 1.29 (s, 3H).

Detecto	or:250nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	11.033	12.450	11.461	570692	11503559	51.862
2	13.142	14.758	13.578	470204	10677745	48.138
Total				1040895	22181304	100.000

2,2-dimethyl-4-(*p*-methoxyl-phenylamino)chroman-3-ol:

Enantiomeric excess was determined by HPLC with a chiralcel AD-H column (hexane/*i*-PrOH = 90/10, 1.0 mL/min, 250 nm), t _{major} = 19.469 min, t _{minor} = 16.984 min; ee = 87%, ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.08 (m, 2H), 6.89 – 6.72 (m, 5H), 4.42 (d, *J* = 9.2 Hz, 1H), 3.78 (s, 3H), 3.65 (d, *J* = 9.2 Hz, 1H), 2.78 (s, 1H), 1.52 (s, 3H), 1.33 (s, 3H).

ID#	Start	End	Ret. Time	Height	Area	Area%			
1	16.400	18.842	16.984	626080	21508807	50.466			
2	18.867	21.475	19.469	547523	21111786	49.534			
Total				1173603	42620592	100.000			

2,2-dimethyl-4-(p-ethoxyl-phenylamino)chroman-3-ol

Enantiomeric excess was determined by HPLC with a chiralcel AD-H column (hexane/*i*-PrOH = 90/10, 1.0 mL/min, 250 nm), t _{major} = 19.464 min, t _{minor} = 14.551 min; ee = 82%, ¹H NMR (CDCl₃) δ : 6.70~7.36 (m, 8H), 4.60 (d, *J* = 8Hz, 1H), 4.06 (m, 2H), 3.74 (d, *J* = 8 Hz, 1H), 2.80 (s, 1H), 1.54 (s, 3H), 1.43 (t, *J* = 8 Hz, 3H), 1.38 (s, 3H).

Detecto	or:250nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	13.425	16.842	14.551	149913	4001554	50.583
2	18.392	21.908	19.464	113478	3909333	49.417
Total				263391	7910887	100.000

OН

Enantiomeric excess was determined by HPLC with a chiralcel OD-H column (hexane/*i*-PrOH = 95/5, 1.0 mL/min, 250 nm), t _{major} = 22.833 min, t _{minor} = 24.469 min; ee = 96%, ¹H NMR (CDCl₃) δ : 6.70~7.22 (m, 9H), 4.46 (d, *J* = 8 Hz, 1H), 3.84 (br, 1H), 3.56 (d, *J* = 4 Hz, 1H), 2.55 (br, 1H), 1.50 (s, 3H), 1.33 (s, 3H).

Detect	or:250nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	22.142	23.825	22.833	297006	11429881	50.142
2	23.825	26.100	24.469	266341	11365113	49.858
Total				563347	22794994	100.000

2,2-dimethyl-4-(p-tolylamino)chroman-3-ol

Enantiomeric excess was determined by HPLC with a chiralcel AD-H column (hexane/*i*-PrOH = 95/5, 1.0 mL/min, 250 nm), t _{major} = 17.638 min, t _{minor} = 20.693 min; ee = 84%, ¹H NMR (CDCl₃) δ : 6.72-7.30 (m, 8H), 4.47(d, *J* = 8 Hz, 1H), 3.70 (br, 1H), 3.65 (d, *J* = 8 Hz, 1H), 2.72 (br, 1H), 2.29 (s, 3H), 1.53 (s, 3H), 1.34 (s, 3H).

Detecto	or:250nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	16.717	19.308	17.638	195977	5835191	49.666
2	19.308	23.292	20.693	141552	5913689	50.334
Total				337529	11748880	100.000

Detecto	or:250nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	16.642	19.642	17.633	730831	32176164	92.196
2	19.708	22.117	20.325	53972	2723537	7.804
Total				784803	34899701	100.000

2,2-dimethyl-4-(2-Methyl-6-Ehtyl-phenylamino)chroman-3-ol

Enantiomeric excess was determined by HPLC with a chiralcel AD-H column (hexane/*i*-PrOH = 95/5, 1.0 mL/min, 250 nm), t _{major} = 5.197 min, t _{minor} = 6.754 min; ee = 99.5%, ¹H NMR (CDCl₃) δ : 6.86~7.54 (m, 7H), 4.49 (d, *J* = 12 Hz, 1H), 3.80 (d, *J* = 12 Hz, 1H), 3.50 (br, 2H), 2.75 (q, *J* = 8 Hz, 2H), 2.42 (s, 3H), 1.53 (s, 3H), 1.26~1.32 (m, 6H).

Detecto	or:250nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	5.067	5.583	5. 197	1024237	8602788	50.651
2	6.475	7.375	6.754	742930	8381621	49.349
Total				1767167	16984409	100.000

2,2-dimethyl-6-methyl-4-(phenylamino)chroman-3-ol

Enantiomeric excess was determined by HPLC with a chiralcel AD-H column (hexane/*i*-PrOH = 95/5, 1.0 mL/min, 250 nm), t _{major} = 14.573 min, t _{minor} = 17.357 min; ee = 86%, ¹H NMR (CDCl₃) δ : 6.72~7.26 (m, 8H), 4.48 (t, *J* = 8 Hz, 1H), 3.82 (br, 1H), 3.66 (d, *J* = 8 Hz, 1H), 2.52 (br, 1H), 2.20 (s, 3H), 1.50 (s, 3H), 1.33 (s, 3H).

ID#	Start	End	Ret. Time	Height	Area	Area%
1	13.983	16.750	14.573	2040967	71140981	50.099
2	16.750	20.867	17.357	1677341	70861187	49.901
Total				3718308	142002168	100.000

Detecto	or:240nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	14.283	16.775	14.751	64681	2499394	92. 983
2	17.142	18.217	17.492	6446	188632	7.017
Total				71127	2688026	100.000

2,2-dimethyl-6-nitro-4-(phenylamino)chroman-3-ol

Enantiomeric excess was determined by HPLC with a chiralcel AD-H column (hexane/*i*-PrOH = 95/5, 1.0 mL/min, 250 nm), t _{major} = 16.036 min, t _{minor} = 21.961 min; ee = 87%, ¹H NMR (CDCl₃) δ : 6.76~7.26 (m, 8H), 4.48 (t, *J* = 12 Hz, 1H), 3.80 (br, 1H), 3.66 (d, *J* = 8 Hz, 1H), 2.54 (br, 1H), 1.50 (s, 3H), 1.32 (s, 3H).

Detecto	or:250nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	15.108	18.925	16.036	96796	3559388	50.140
2	21.008	25.867	21.961	69240	3539568	49.860
Total				166036	7098955	100.000

Detecto	or:240nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	15 . 658	19.383	16.573	57258	2641384	93.747
2	22.067	25.000	22.667	3305	176170	6.253
Total				60563	2817554	100.000

Run 2

Run 4

Detecto	or:230nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	9.058	11.125	9.456	927333	26930795	94.060
2	11.717	12.883	12.038	58582	1700693	5.940
Total				985915	28631489	100.000

Run 5

Detecto	or:230nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	9.183	11.383	9.762	518581	8578228	92.483
2	12.233	12.817	12.435	41287	697218	7.517
Total				559868	9275445	100.000

Run 7

Detector: 230nm											
	ID#	Start	End	Ret. Time	Height	Area	Area%				
	1	8.925	10.908	9.487	1630814	30293352	93.800				
	2	11.900	12.983	12.136	96789	2002217	6.200				
	Total				1727603	32295570	100.000				

Run 8

Detector: 230nm										
ID#	Start	End	Ret. Time	Height	Area	Area%				
1	8.900	10.958	9.431	1298227	23411912	93.800				
2	11.775	12.925	12.024	76365	1547376	6.200				
Total				1374593	24959288	100.000				

17.7 Recycled experiments of Alcohol OKR by UiO-68-Mn Run 1

ID#	Start	End	Ret. Time	Height	Area	Area%
1	8.042	9.417	8.371	154487	4062940	98.266
2	9.417	10.242	9.429	2652	71696	1.734
Total				157138	4134635	100.000

Run 4

Detecto	or:220nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	8.008	9.400	8.355	246724	6908627	97.290
2	9.400	10.858	9.413	5855	192445	2.710
Total				252579	7101072	100.000

0000000	2201iii									
ID#	Start	End	Ret. Time	Height	Area	Area%				
1	7.967	9.400	8.377	253888	7077056	97.409				
2	9.408	10.292	9.421	6034	188217	2.591				
Total				259922	7265273	100.000				

Detect	or:220nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	7.967	9.450	8.322	515310	17653289	97.298
2	9.450	10.308	9.463	18401	490218	2.702
Total				533711	18143506	100.000

De	tecto	or:220nm					
	ID#	Start	End	Ret. Time	Height	Area	Area%
	1	7.967	9.492	8.334	332811	10330840	96.883
	2	9.492	10.700	9.504	10594	332352	3.117
Τ	otal				343405	10663191	100.000

17.8 Recycled experiments of Aminolysis of trans-Stilbene Oxide by UiO-68-Cr Run 1

Run 2

Beteeter . Bootim						
ID#	Start	End	Ret. Time	Height	Area	Area%
1	7.983	8.742	8.165	3794	123949	0. 932
2	8.775	12.617	9.085	388750	13178708	99.068
Total				392545	13302657	100.000

Detecto	or:240nm					
ID#	Start	End	Ret. Time	Height	Area	Area%
1	7.900	8.642	8.148	15418	424234	0.836
2	8.642	11.042	8.977	1459229	50322138	99.164
Total				1474647	50746372	100.000

Run 6

ID#	Start	End	Ret. Time	Height	Area	Area%
1	8.000	8.850	8.358	19181	451033	2.216
2	8.858	11.575	9.172	588984	19902316	97.784
Total				608165	20353349	100.000

Run 9

18. References

- [1] (a) Yuan, G.; Zhu, C.; Liu, Y.; Cui, Y. Chem. Commun. 2011, 47, 3180-3182.
 (b) Xi, W.; Liu, Y.; Xia, Q.; Li, Z.; Cui, Y. Chem. Eur. J., 2015, 21, 12581-12585. (c) Song, F.; Wang, C.; Falkowski, J.; Ma, L.; Lin, W. J. Am. Chem. Soc., 2010, 132, 15390-15398. (d)Liu, Y.; Li, Z.; Yuan, G.; Xia, Q.; Yuan, C.; Cui, Y.; Inorg. Chem., 2016, 55, 12500-12503. (e) Zhu, C.; Yuan, G.; Chen, X.; Yang, Z.; Cui, Y. J. Am. Chem. Soc., 2012, 134, 8058-8061.
- [2] (a) Yuan, S.; Chen, Y. P.; Qi n, J. S.; Lu, W.; Zou, L.; Zhang, Q.; Wang, X.; Sun, X. and Zhou, H. C. J. Am. Chem. Soc. 2016, 138, 8912-8919. (b) Jiang, H. L.; Feng, D.; Liu, T. F.; Li, J. R. and Zhou, H. C. J. Am. Chem. Soc., 2012, 134, 14690-14693. (c) Manna, K.; Zhang, T.; Carboni, M.; Abney, C. W. and W. Lin. J. Am. Chem. Soc. 2014, 136, 13182-13185 (d) Li, B.; Gui, B.; Hu, G.; Yuan, D and Wang, C. Inorg. Chem., 2015, 54 5139-5141.