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Electrochemical measurements 59 

All electrochemical tests were performed on a CHI 760D electrochemical workstation 60 

with a three-electrode test system using platinum sheet electrode as counter electrode, 61 

as-prepared active material modified electrode as working electrode referred to 62 

Hg/HgO electrode in 1.0 M KOH. The cyclic voltammetry (CV) curve was obtained at 63 

a scan speed of 5-100 mV/s at an operating voltage of -1.0-0 V relative to Hg/HgO 64 

electrode. The galvanostatic charge-discharge (GCD) test was carried out at a current 65 

density of 1-20 A g-1 and a voltage of -1.0-0 V relative to the Hg/HgO electrode. In 66 

addition, electrochemical impedance spectroscopy (EIS) was measured an open circuit 67 

voltage in the frequency range from 1 MHz to 0.01 Hz with an amplitude of 5 mV. The 68 

working electrode was prepared as follows: first, 80 wt % of the active material, 10 wt % 69 

of carbon black and 10 wt % of polytetrafluoroethylene (dispersed in N-70 

methylpyrrolidone) were mixed together and ground to a slurry. The slurry was then 71 

supported on foam nickel and dried under vacuum at 60 °C for 5 h. Next, the electrode 72 

was pressed at a pressure of 10 MPa and then dried in a vacuum oven at 100 °C for 12 73 

h. The area of the electrode was 1.0 cm2, and the amount of active material loaded on 74 

each collector was 5.0-6.0 mg. 75 

 76 
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 77 
Figure S1. (a,b)Digital photographs show the fabrication process of unique hierarchical 78 
mineral bridge structured KA and KGA, (c) Digital photographs of KGA with different 79 
concentrations of GO. 80 

 81 

Figure S2. Schematic illustrations of bidirectional freezing. In a typical freeze-casting 82 
process, the KGM/GO mixture suspension was poured into a cubic silicone mould, 83 
which was placed on a cold stainless steel plate that was pro-cooled by liquid nitrogen. 84 
Therefore, the temperature of the cold stainless steel plate was far below the freezing 85 
point of the mixture suspension. Because the thermal conductivity of the silicone mould 86 
is much lower than that of cold stainless steel plate, the ice crystals would mainly grow 87 
from bottom to top in the KGM/GO mixture suspension when it was contacted to the 88 
cold stainless steel plate. In the freeze-casting process, ice crystals grew from bottom 89 
to top, expelled the KGM/GO mixture suspension to the boundaries between ice 90 
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crystals and resulted in a directional hierarchical 3D structure. 91 

 92 

Figure S3. (a) Optical image of a Thalia dealbata. (b and c)Optical and SEM images 93 
showing themultiscale architecture. b and c) come from the literature1. 94 
 95 

 96 

Figure S4. High resolution XPS spectra of C1s (a, b) and N1s (c, d). 97 

 98 
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 99 
Figure S5.SEM images of 3D network structure of KGA-3 (disordered). 100 
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 102 
Figure S6.Comparison of the electrical conductivity of unique mineral bridge 103 
structured KGA-3 as a function of density to the several previously reported low-104 
density carbon aerogels2-17. 105 
 106 

 107 

Figure S7. SEM of KGA-3 after 80% compression recovery. 108 

 109 
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KGA is used as a supercapacitor. 110 

In addition to flexible piezoresistive sensors, KGA can also be used as a 111 

supercapacitors. To discuss the electrochemical performances of obtained KGA-3 in a 112 

three-electrode system in 1.0 M KOH electrolyte. Figure S8a show the CV curves of 113 

KGA-3 at various scan rates ranging from 5 to 50 mV/s in the potential range of -1.0 to 114 

0 V. With the increasing sweep speed, the CVs exhibited no significant changes and 115 

maintained a clear rectangle, even at 50 mV s-1, thus showing that the KGA-3 had a 116 

good rate performance. The capacitance performance was verified by the GCD profiles 117 

under different current densities. The specific capacitance for KGA-3 electrode is 287.6 118 

F/g at the current density of 20 A/g, consistent with the CV results (Figure S8b). 119 

Compared with other materials, KGA-3 has a higher specific capacitance. This is 120 

mainly due to the higher larger specific surface area and nitrogen doping, which can 121 

change the electronic properties of carbon nanosheets and facilitate the transfer of 122 

electrolyte ions into the interior of carbon material. Surprisingly, its capacitance was 123 

still 129.4 F g-1 at this current density of 1 A/g, which corresponds to capacity retention 124 

of approximately 44.993% and shows the excellent rate performance (Figure S8c). 125 

Electrochemical impedance spectroscopy (EIS) is a powerful means of studying the 126 

resistance between the electrolyte and the electrode and the internal resistance of the 127 

electrode18. Figure S8d shows the Nyquist plots of KGA-3 in the frequency range from 128 

0.01 Hz to 1 MHz. Nyquist plots are consisted of a straight line in the low frequency 129 

region a semicircle and in the high frequency region19. The KGA-3 had a unique layered 130 

structure and high specific surface area, which promoted the transport and migration of 131 

ions in the electrolyte to enhance electrochemical performance18. In addition, the 132 

stability of KGA-3 was also tested by LSV (Figure S9), because durability is also an 133 

important aspect of electrochemical performance. It can be observed that there was only 134 

a slight decrease (1.7 %) in the activity of the KGA-3 in the 600 cycle test, this result 135 

shows that KGA-3 has good electrocatalytic stability. 136 
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 137 

Figure S8.Electrochemical performances of KGA-3 measured in a three-electrode 138 

system. (a) CV curves of KGA-3 at different scan rates; (b) GCD profiles of KGA-3 at 139 

various current densities; (c) Specific capacitances of KGA-3 at different current 140 

densities; (e) Nyquist plots of KGA-3 in 1.0 M KOH in a frequency range from 1 MHz 141 

to 0.01 Hz. 142 

 143 

Figure S9. (a)XPS spectra of KGA-3-N2 and KGA-3-NH3. (b) GCD profiles of KGA-144 

3-N2 and KGA-3-NH3 at this current density of 1 A/g. 145 

 146 

 147 

 148 
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Table S1. The contents of C, O and N obtained by XPS in KGA-3. 149 

Groups C (%) O (%) N (%) 

KGA-3-N2 80.4 12.9 6.7 

KGA-3-NH4 80.9 10.5 8.6 

 150 

Figure S10.Cycling performance of the KGA-3. 151 

 152 

 153 

Figure S11.Digital photographs of KGA-3 with different carbonization temperatures. 154 

 155 

 156 

Figure S12. Digital photographs of KGA-3 compression test with a carbonization 157 

temperature of 800 °C. 158 

 159 
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Table S2. Building blocks, preparation methods, density, compressibility, adsorption 160 
capacity of previously reported 3D materials and the KGAs in this work. 161 

Sample name Building 

blocks 

Preparation 

methods 

Density 

(mg/cm3) 

Compressibility 

(%) 

Cost Ref 

WCA Winter 

melon 

Hydrothermal 

freeze-drying 

pyrolysis 

48 - Low 20
 

CMB aerogel Waste 

paper 

Freeze-drying 5.8 - Low 21
 

TCF aerogel Cotton Pyrolysis 12 - Low 22
 

CNF 

aerogel 

Bacterial 

cellulose 

Freeze-drying 

pyrolysis 

4-6 90 Low 23
 

Nanocellulose 

aerogel 

Cellulose 

nanofibril 

Freeze-drying 20-30 - Low 24
 

PSC aerogel Bacterial 

cellulose 

poplars 

catkin 

Hydrothermal 

freeze-drying 

pyrolysis 

4.3 80 Low 25
 

S-PPy/RGO 

aerogel 

GO Hydrothermal  140  High 26
 

Spongy 

graphene 

GO Hydrothermal 

freeze-drying  

12 - High 27
 

NGA GO Hydrothermal 

pyrolysis 

1.9 - High 28
 

GA GO Chemical 

reduction 

freeze-drying 

5 80 High 29
 

CNT spongy CNTs Chemical 

vapor 

deposition 

10-29 60 High 30
 

CNT spongy CNTs Chemical 

vapor 

deposition 

5-10 80 High 31
 

UFA GO+CNTs Freeze-drying 

Chemical 

reduction 

0.16 50 High 14
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Graphene/CNT 

foam 

GO+CNTs Chemical 

vapor 

deposition 

6.92  High 32
 

PU spongy PU Dip-coating - - Medium 33
 

PU spongy PU Dip-coating - 80 Medium 34
 

CS-sponge Melamine 

sponge 

Dip-coating 30 - Medium 35
 

Silanized 

Melamine 

Sponge 

Melamine 

Sponge 

Dip-coating 4-12 - Medium 36
 

PDMS sponge Organic 

siloxane 

Templating 

Sol-gel 

- 90 Medium 37
 

Marshmallow-

like gel 

Organic 

siloxane 

Sol-gel 120 80 High 38
 

BSQ aerogel Organic 

siloxane 

Sol-gel 55-83 50 High 39
 

KGA KGM/GO Freeze-casting 

freeze-drying 

carbonization 

4.2-11.2 80 Medium This 

work 
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