Supporting Information

Analysis of Interdependent Kinetic Controls of Fatty Acid Synthases

Alex Ruppe^a and Jerome M. Fox^{a*}

^aDepartment of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303

*To whom correspondence should be addressed. E-mail: jerome.fox@colorado.edu

SI Notes 1-3	S2
Figures S1-S10	
Tables S1-S9	
Appendix 1	
Appendix 2	
SI References	S35

SI Notes

SI Note 1. Estimation of Diffusion Limits. We estimated the upper limits of rate constants for intermolecular association (k_{on}) by treating this process as a diffusion-limited reaction between two uniformly reactive spheres. In brief, we used the Stokes-Einstein equation (Eq. S1) to estimate diffusion coefficients (D) and the Smoluchowski expression (Eq. S2) to estimate rate

$$D = \frac{k_B T}{6\pi\eta r}$$
(Eq. S1)
$$k_{on} = 4\pi (D_A + D_B)(r_A + r_B)$$
(Eq. S2)

constants based on those coefficients.¹ In Eqs. S1-S2, k_B is the Boltzmann constant, T is temperature (300 K), η is the dynamic viscosity of water, r is the radius of a protein or ligand (e.g., small-molecule substrate), and subscripts A and B denote distinct binding partners. We estimated the radii of proteins and ligands from their volumes (i.e., we assumed a spherical volume of $4/3*\pi r^3$), and we determined those volumes with the following steps: For proteins, we

$$V = \frac{MW}{825}$$
(Eq. S3)

used Eq. S3, where MW is the molecular weight of the protein (Da), and V is its volume (nm³); this empirical relationship assumes a partial molar volume of 0.73 cm³/g, a reasonable estimate for a wide range of proteins.^{2,3} For ligands, we used the PhysChem module of the ACD/Labs property prediction service (www.chemspider.com). Estimates of k_{on}, thus determined, were similar between different varieties of protein-protein or protein-ligand interactions (i.e., within each class of interaction, the standard deviation of k_{on} was ~ 2%), so we used average values of 6.29 x 10² μ M⁻¹ s⁻¹ for all protein-protein interactions and 1.65 x 10³ μ M⁻¹ s⁻¹ for all protein-ligand interactions.

SI Note 2. Titration Experiments with FabD and FabG. We validated our kinetic model by comparing predicted trends in initial rates of fatty acid synthesis to previously reported measurements of those rates. For this comparison, we used titration data for ACP, FabH, FabZ, FabI, FabF, and TesA (Figures 2-4) because these components have been observed to enhance or inhibit fatty acid synthesis.⁴ We did not examine similar data for FabD and FabG, in turn, because the kinetic contributions of these enzymes are controversial and, thus, represent poor observables for model validation. (For example, the results of an *in vitro* analysis suggest that FAS activity is insensitive to changes in the concentrations of FabD and FabG,⁴ but findings from an *in vivo* study show that overexpression of FabD can increase fatty acid production in *E. coli*).⁵ Nonetheless, to complete our titration studies, we examined the contribution of FabD and FabG to FAS activity (Figure S5). Intriguingly, initial rates were insensitive to changes in the concentrations) but showed a pronounced sensitivity to FabD—a result consistent with both our sensitivity analysis (Figure 9) and the observed influence of carbon flux, which is gated by FabD, on total production (Figure 5).

SI Note 3. The Influence of Measurement Time and Substrate Concentration. For much of our study, we examine total production and product distribution at 12.5 minutes. To determine how this choice of measurement time affected observed trends in FAS outputs, we repeated the analyses reported in Figures 6 and 7B at 2.5 and 25 minutes. Interestingly, total production differed by ~fivefold between these time points, but general trends in production and chain length remained similar between them (Figures S6, and S8). The consistent trends exhibited at 2.5, 12.5, and 25 minutes suggest that differences in outputs of various FAS compositions—at least within the 2.5- to 25-minute span of times—result from differences in the steady-state kinetics of fatty acid production, not from differences in production at early or late time points (i.e., discrepancies that would grow or diminish with sample time).

Substrate concentrations represent another possible source of bias in our kinetic analysis. For our study, we chose substrate concentrations (0.5 mM for malonyl-CoA and 0.5 mM for acetyl-CoA) based on physiologically relevant FAS compositions examined by Khosla and colleagues.⁴ To determine how the choice of concentrations affected observed trends in FAS outputs, we repeated the analysis of Figure 6 at different concentrations of malonyl-CoA and acetyl-CoA (Figure S7). To our satisfaction, trends in production and chain length remained similar across different substrate concentrations (within a reasonable range of concentrations).

S4

Michaelis-Menten Kinetics: $[E] + [S] \xrightarrow{k_{1},k_{-1}} [ES] \xrightarrow{k_{cat}} [E] + [P]$ $K_{M} = \frac{k_{-1} + k_{cat}}{k_{1}}$

Competitive Inhibition: $[E] + [I] \stackrel{K_I}{\leftrightarrow} [EI]$ Mixed Inhibition: $\begin{bmatrix} E \end{bmatrix} + \begin{bmatrix} I \end{bmatrix} \stackrel{K_I}{\leftrightarrow} \begin{bmatrix} EI \end{bmatrix}$ $\begin{bmatrix} E^* \end{bmatrix} + \begin{bmatrix} I \end{bmatrix} \stackrel{K_{I,2}}{\leftrightarrow} \begin{bmatrix} E^*I \end{bmatrix}$

Activation⁶: $[E] + [S] \stackrel{K_A}{\leftrightarrow} [ES] \stackrel{k_{cat}}{\longrightarrow} [E] + [P]$ $[AES] \stackrel{\beta_{k_{cat}}}{\longrightarrow} [AE] + [P]$ $[E] + [S] \stackrel{K_A}{\leftrightarrow} [ES]$ $[E] + [A] \stackrel{K_X}{\leftrightarrow} [AES]$ $[ES] + [A] \stackrel{\alpha_{K_X}}{\longleftrightarrow} [AES]$

Figure S1. Kinetic models. We reference these models in the main text and supporting

information.

Figure S2. Analysis of TesA kinetics. (A) We estimated values of k_{cat} and K_M for TesAcatalyzed hydrolysis of acyl-CoAs by fitting a Michaelis-Menten model (solid lines) to previously reported kinetic data (filled circles; Table S2).⁷ (B) Values of k_{cat} determined from fits described in A (filled circles) or an extrapolation of those fits (open circles). We estimated values of k_{cat} for C₁₈ and C₂₀ acyl-CoAs by extrapolating the linear trend exhibited by values of k_{cat} for

 C_{10} - C_{16} acyl-CoAs ($r^2 = 0.943$); we estimated a k_{cat} for C₄ acyl-CoA, in turn, by averaging the k_{cat}'s of C₆- C_{10} acyl-CoAs. (C) Values of K_M determined from fits described in A (filled circles) or an extrapolation of those fits (open circles). Values of K_M for C₆- C_{16} acyl-CoAs fit well to a second-order polynomial ($r^2 = 0.97$), so we used this polynomial to estimate values of K_M for C₄, C₁₈, and C₂₀ acyl-CoAs. (D) Values of ln(K_d) determined from K_M's described in C (filled circles) or an optimization of our kinetic model (open circles). For C₄-C₁₂ acyl-CoAs, experimentally derived and model-based estimates of ln(K_d) overlap with one another. (E) Initial rates of TesA-catalyzed hydrolysis of p-nitrophenyl-butyrate (pNP4) in the presence of increasing concentrations of ACP. Lines represent fits to an activation model (Table S3), which allowed us to estimate a K_d for the ACP-TesA complex (i.e., K_x in Figure S1).

Figure S3. Analysis of FabH inhibition. We modeled inhibition of FabH by acyl-ACPs by using previously reported kinetic measurements.⁸ (A-B) To begin, we fit a kinetic model of FabH-catalyzed condensation of acetyl-CoA and malonyl-CoA (lines 3 and 4 in Table 1, open circles)

to initial rates of condensation (filled circles) determined at different concentrations of (A) acetyl-CoA and (B) malonyl-CoA. (C-D) We fit a model for competitive inhibition to initial rates determined in the presence of varying concentrations of C_{16} -ACP and (C) acetyl-CoA or (D) malonyl-CoA; that is, we fit only $K_{I,1}$ and $K_{I,2}$ as defined in Table S1 and retained the kinetic parameters determined in A-B. (E) We estimated length-specific values of $K_{I,1}$ and $K_{I,2}$, in turn, by fitting them to measurements of initial rates made in the presence of acyl-ACPs of different lengths ("NA" indicates an initial rate determined in the absence of acyl-ACPs). Table S4 shows estimates of k_{off} and k_{on} based on our initial fit to this data, and Table S7 shows the final inhibition parameters of our optimized model.

Figure S4. Analysis of FabZ kinetics. (A-B) The ratio of β -hydroxyacyl-ACP to enoyl-acyl-ACP generated by modeled FASs (1 μ M of each Fab, 10 μ M TesA, 10 μ M holo-ACP, 1 mM NADPH, 1 mM NADH, 0.5 mM malonyl-CoA, and 0.5 mM acetyl-CoA, 12.5 min) with varying concentrations of FabZ. In both (A) the base model and (B) the model in which we reduced the k_{cat} of FabZ by tenfold, this ratio is high, relative to the ratio expected at equilibrium (~4:1).⁹ (C) FabZ enhances rates of fatty acid synthesis until (D) concentrations of enoyl-acyl-ACP cease to increase.

Figure S5. Titration of FabD and FabG. (A-B) Initial rates of fatty acid synthesis exhibited by reconstituted FASs (1 μ M of each Fab, 10 μ M TesA, 10 μ M holo-ACP, 1 mM NADPH, 1mM NADH, 0.5 mM malonyl-CoA, and 0.5 mM acetyl-CoA, 2.5 min) with varying concentrations of (A) FabD and (B) FabG. Rates are highly sensitive to FabD, but not FabG, a result consistent with our sensitivity analysis (Figure 9).

Figure S6. The influence of measurement time on compositional effects. (A-B) Ternary diagrams show total production (left) and average length (right) of fatty acids generated by modeled FASs (1 μ M of each Fab, 10 μ M holo-ACP, 1 mM NADPH, 1 mM NADH, 0.5 mM malonyl-CoA, 0.5 mM acetyl-CoA) in which ratios of FabH, FabF, and TesA vary (i.e., [FabH]+ [FabF]+[TesA] = 12 μ M). (A) 2.5 minutes and (B) 25 minutes. Compositions with low concentrations of FabF show disproportionately low fatty acid production at 2.5 minutes (i.e., in the diagram on the upper left, the lower right is blue); general trends across the diagrams, however, remain similar between measurement times and, thus, appear to reflect differences in the steady-state kinetics of fatty acid production between compositions.

Figure S7. The influence of substrate concentration on compositional effects. (A-B) Ternary diagrams show the total production (left) and average length (right) of fatty acids generated by modeled FASs (1 μ M of each Fab, 10 μ M holo-ACP, 1 mM NADPH, and 1mM NADH at 12.5 min) in which ratios of FabH, FabF, and TesA vary (i.e., [FabH]+ [FabF]+[TesA] = 12 μ M). Patterns are similar for (A) 500 μ M of malonyl CoA and 500 μ M acetyl-CoA and (B) 2500 μ M malonyl CoA and 2500 μ M acetyl-CoA; they, thus, appear to be independent of substrate concentration (within a reasonable range of concentrations).

Figure S8. The influence measurement time on the thioesterase-dependence of FabF concentration. (A-C) Total fatty acid production generated by modeled FASs (1 μ M of each Fab, 10 μ M TesA, 10 μ M holo-ACP, 1 mM NADPH, 1 mM NADH, 0.5 mM malonyl-CoA, 0.5 mM acetyl-CoA) with varying concentrations of FabF at (A) 2.5, (B) 12.5, and (C) 25 minutes. The consistency of trends across time points suggests that these trends result from differences in the steady-state kinetics of fatty acid production, not from differences in production at early or late time points (i.e., discrepancies that should change with sample time).

Figure S9. Analysis of plant-derived thioesterases. (A) Relative titers (i.e., palmitic acid equivalents) of fatty acids generated by strains of *E. coli* containing different thioesterases;^{10,11} we normalized each titer by the titer of the TesA-containing strain. (B-D) Approximate product distributions generated by strains containing (B) BfTES, (C) CpFatB1, and (D) UcFatB; we

normalized each plot by total production.¹¹ We note: The reported product profiles of all strains¹¹ showed low concentrations of off-target fatty acids (e.g., C₁₀, C₁₂, C₁₄, C₁₆, and C₁₈ for BfTES); however, these low concentrations—and their consistency across different thioesterase-containing strains—suggest that they arise from nonspecific background activities. Accordingly, panels B-D show only products close in length to the thioesterase-specific products (i.e., those most likely to be "true" off-target products of the thioesterases under study). For A-D, we prepared the model profiles by optimizing thioesterase-specific compositions to A (see main text); Table S8 shows the final optimized kinetic parameters for plant-derived thioesterases.

Figure S10. Analysis of the convergence of elementary effects (EE). (A-F) We ensured convergence of elementary effects by examining estimates determined from different numbers of model evaluations. In brief, (i) we determined the total number of evaluations (N) necessary to carry out sensitivity analyses of the kinetic model (A, C, and E) and the expanded version of that model (B, D, and F) by multiplying the number of trajectories (r, the number of initial points used to calculate the elementary effect) by the number of model variables (M) plus one (i.e., N =

r*[M+1] = 100*[12+1] or 100*[19+1]). (ii) We estimated the mean elementary effect for each trajectory (i.e., collection of 100 points). (iii) We averaged the mean elementary effects estimated from different subsets of trajectories chosen at random among all subsets (e.g., 20, 40, 60, 80, 100 trajectories for each model). The figures show the results of our sensitivity analysis of three objectives: (A-B) average length, (C-D) total production, and (E-F) a fitting objective sensitive to both length and total production (i.e., Obj_A, the product of the sums of squared errors between predicted and measured trends in Figures 2A and 2B; see Materials and Methods).

Table S1. Mechanisms of Inhibition.

$$FabH + ACP \xrightarrow{k_{on}FabH-lnh-1}}{FabH + ACP}$$
(51)

$$FabH + ACP \xrightarrow{k_{on}FabH-lnh-1}}{FabH + ACP} \xrightarrow{k_{on}FabH-lnh-2}}{FabH + ACP} \xrightarrow{k_{on}FabH-lnh-2}}{FabH + ACP} \xrightarrow{k_{on}FabH-lnh-2}}{FabH + ACP} \xrightarrow{k_{on}FabH-lnh-2}}{Acyl-ACP}$$
(52)

$$FabH^* + ACP \xrightarrow{k_{on}FabG-lnh}}{K_{off}FabG-lnh}} \xrightarrow{k_{on}FabH-lnh-3}}{FabH^* + ACP} \xrightarrow{k_{on}FabH-lnh-3}}{Acyl-ACP}$$
(53)

$$FabG + ACP \xrightarrow{k_{on}FabG-lnh}}{K_{off}FabG-lnh}} \xrightarrow{FabG + ACP}$$
(54)

$$FabZ + ACP \xrightarrow{k_{on}FabG-lnh}}{K_{off}FabG-lnh}} \xrightarrow{FabZ + ACP}$$
(55)

$$FabI + ACP \xrightarrow{k_{on}FabI-lnh}}{K_{off}FabL-lnh}} \xrightarrow{FabI + ACP}$$
(56)

FabF + ACP
$$\overbrace{k_{off-FabF-Inh}}^{k_{on-FabF-Inh}} FabF \cdot ACP$$
 (S7)

TesA + ACP
$$\xrightarrow{k_{on-TesA-Inh}}_{k_{off-TesA-Inh}}$$
 TesA · ACP (S8)

*ACP refers to holo-ACP. **FabD*, FabH*, and FabF* represent refer to acyl-enzyme intermediates. **In our analysis of FabH inhibition (Fig. S3), we defined values of $K_{I,1}$ and $K_{I,2}$ (Fig. S1) as follows: $K_{I,1} = k_{off-FabH-Inh2}/k_{on-FabH-Inh2}$ and $K_{I,2} = k_{off-FabH-Inh-3}/k_{on-FabH-Inh-3}$.

Enzyme	Substrate	k _{cat} (1/s)	$K_{M}(\mu M)$	K _d (μM)
TesA	C ₆ -CoA	5.50	1090	294
TesA	C ₈ -CoA	11.1	345	53.0
TesA	C ₁₀ -CoA	1.71	27.3	14.8
TesA	C ₁₂ -CoA	27.3	111	7.15
TesA	C ₁₄ -CoA	49.5	265	4.0
TesA	C ₁₆ -CoA	108	642	2.25

Table S2. Kinetic Parameters for TesA-Catalyzed Hydrolysis of Acyl-CoAs.

^{*}C_i-CoA refers to acyl-CoA with *i* carbons in its acyl chain. ^{*}Parameters determined from the fit described in Fig. S2A.

 Table S3. Kinetic Parameters for ACP-Mediated Inhibition of TesA.

Parameter	Value	Units
KA	308.6	μM
K _X	8.96	μM
α	0.862	unitless
β	1.654	unitless
k _{cat}	3.97	s ⁻¹

*Parameters determined from the fit described in Figure S2E.

Enzyme	Parameter	Model Label	Value	Units	Source
FabD	K _{M-mCoA}	N/A	6.0 E1	μM	12
FabD	k _{on-mCoA}	k2 1f	1.33 E-3	$\mu M^{-1} s^{-1}$	Estimate from K _m *
FabD	k _{off-mCoA}	k2_1r	8.0 E-2	s ⁻¹	13**
FabD	k _{f-FabD*}	k2_2f	1.58 E3	s ⁻¹	Estimate from FabD
F-LD	1.	1-2 2	10 5 2		K _{cat} ***
	K _{r-FabD} *	KZ_2r	1.0 E-2 2.51 E 1	μM ⁻ s ⁻	14
FaDD	K _{M-ACP}	IN/A	5.51 E-1		15
	K _{on-ACP}	K2_31	5.02 E-2	μ M s s s s s s s s s s s s s s s s s s	15
FabD	K _{off-ACP}	$K2_3r$	2.1/E-2	s -1	Estimate from EshD
FadD	K _{fFabD*ACP}	KZ_41	1.38 E3	S	k _{cat} ***
FabD	k _{rFabD*ACP}	k2_4r	1.0 E-2	$\mu M^{-1} s^{-1}$	****
FabD	k _{cat}	kcat2	1.58 E3	s ⁻¹	14
FabH	K _{M-aCoA}	N/A	4.0 E1	μM	16
FabH	k _{on-aCoA}	k3_1f	2.0 E-3	$\mu M^{-1} s^{-1}$	Estimate from K _m *
FabH	k _{off-aCoA}	k3_1r	8.0 E-2	s ⁻¹	13**
FabH	k _{f-FabH} *	k3_2f	1.58 E3	s ⁻¹	Used k _{f-FabD*} from FabD
FabH	k _{r-FabH} *	k3_2r	1.0 E-2	μM ⁻¹ s ⁻¹	***
FabH	K _{M-mACP}	N/A	5.0 E0	μM	16
FabH	kon-mACP	k3_3f	5.02 E-2	$\mu M^{-1} s^{-1}$	Used k _{on-ACP} from FabD
FabH	k _{off-mACP}	k3_3r	2.17 E-2	S ⁻¹	Used k _{off-ACP} from FabD
FabH	kon-ACP	k _{on-I-1}	2.41E-05	$\mu M^{-1} s^{-1}$	8, this study
FabH	k _{off-ACP}	k _{off-I-1}	2.17E-02	s ⁻¹	8, this study
FabH	kon-C(4-20)ACP	kon-I-2, C(4-20)	3.09E-1	$\mu M^{-1} s^{-1}$	8, this study
FabH	koff-C(4-12ACP	koff-I-2, C(4-12)	1.34E3	s ⁻¹	8, this study
FabH	koff-C14ACP	k _{off-I-2, C14}	2.55E2	s^{-1}	8, this study
FabH	k _{off-C16ACP}	k _{off-I-2, C16}	2.99E2	s ⁻¹	8, this study
FabH	k _{off-C18ACP}	k _{off-I-2, C18}	7.77E1	s ⁻¹	8, this study
FabH	koff-C20ACP	k _{off-I-2, C20}	3.98E1	s ⁻¹	8, this study
FabH	kon-C(4-20)ACP-FabH*	kon-I-3, C(4-20)	1.55E0	μM ⁻¹ s ⁻¹	8, this study
FabH	koff-C(4-12ACP-FabH*	k _{off-I-3, C(4-12)}	3.67E1	s ⁻¹	8, this study
FabH	koff-C14ACP-FabH*	k _{off-I-3, C14}	4.67E1	s ⁻¹	8, this study
FabH	k _{off-C16ACP-FabH*}	k _{off-I-3, C16}	1.17E1	s ⁻¹	8, this study
FabH	k _{off-C18ACP-FabH*}	k _{off-I-3, C18}	1.32E1	s ⁻¹	8, this study
FabH	koff-C20CACP-FabH*	k _{off-I-3, C20}	3.89E0	s ⁻¹	8, this study
FabH	k _{cat}	kcat3	3.13 E0	s^{-1}	17
FabG	K _{M-NADPH}	N/A	1.0 E-2	mM	18
FabG	kon-NADPH	k4_1f	1.54 E-3	μM ⁻¹ s ⁻¹	Used $k_{on-NADH}$ from FabI
FabG	k _{off-NADPH}	k4_1r	7.93 E-2	s ⁻¹	Used k _{off-NADH} from FabI
FabG	K _{M-βkaACP}	N/A	1.70 E-2	mM	19
FabG	k _{on-βkaACP}	k4_2f	1.28 E-3	$\mu M^{-1} s^{-1}$	Estimate from K _m *
FabG	k _{off-βkaACP}	k4_2r	2.17 E-2	S ⁻¹	Used k _{off-ACP} from FabD
FabG	k _{cat}	kcat4	5.90 E-1	S ⁻¹	18

Table S4. Estimates of Kinetic Parameters.

*Here, we used Eqs. 1 and 2 from the main text.

For these estimates, we used a measured value of k_{off} for the complex between C₄ acyl-CoA and FabI. *To clarify, we used k_{cat} as an order-of-magnitude estimate of the forward acyl-transfer constant.

****For this estimate, we assumed a rate constant approximately tenfold higher than kon-mCoA.

Enzyme	Parameter	Model Label	Value	Units	Source
FabZ	K _{M-BhaACP}	N/A	5.60 E1	μM	20
FabZ	kon-BhaACP	k5 1f	3.88 E-4	$\mu M^{-1} s^{-1}$	Estimate from K _m *
FabZ	k _{off-BhaACP}	k5 1r	2.17 E-2	s ⁻¹	Used k _{off-ACP} from FabD
FabZ	k _{cat}	kcat5	2.72 E-1	s ⁻¹	9
FabI	K _{M-I NADH}	N/A	2.0 E-2	mM	21
FabI	kon-I NADH	k6 1f	1.54 E-3	$\mu M^{-1} s^{-1}$	13
FabI	k _{off-I NADH}	k6 1r	7.93 E-2	s ⁻¹	13
FabI	K _{M-eacACP}	N/Ā	2.0 E-2	mM	22
FabI	kon-eacACP	k6 2f	1.09 E-3	$\mu M^{-1} s^{-1}$	Estimate from K _m *
FabI	k _{off-eacACP}	k6 2r	2.17 E-2	s ⁻¹	Used k _{off-ACP} from FabD
FabI	k _{cat}	kcat6	4.0 E0	s ⁻¹	23
TesA	kon-C4acACP	k7 1f-C4	4.59 E-3	$\mu M^{-1} s^{-1}$	7, this study
TesA	kon-C6acACP	k7 1f-C6	7.38 E-3	$\mu M^{-1} s^{-1}$	7, this study
TesA	kon-C8acACP	k7 1f-C8	4.10 E-2	$\mu M^{-1} s^{-1}$	7, this study
TesA	kon-C10acACP	k7 1f-C10	1.47 E-1	$\mu M^{-1} s^{-1}$	7, this study
TesA	kon-C12acACP	k7 ¹ f-C12	3.03 E-1	$\mu M^{-1} s^{-1}$	7, this study
TesA	kon-C14acACP	k7 1f-C14	5.42 E-1	$\mu M^{-1} s^{-1}$	7, this study
TesA	kon-C16acACP	k7_1f-C16	0.96669	$\mu M^{-1} s^{-1}$	7, this study
TesA	kon-C18acACP	k7 1f-C18	1.73 E0	$\mu M^{-1} s^{-1}$	7, this study
TesA	kon-C20acACP	k7 1f-C20	3.08 E0	$\mu M^{-1} s^{-1}$	7, this study
TesA	koff- acACP	k7_1r	2.17E0	s^{-1}	**
TesA	k _{cat-C4}	kcat7-C4	6.13 E0	s^{-1}	7, this study
TesA	k _{cat-C6}	kcat7-C6	5.50 E0	s ⁻¹	7, this study
TesA	k _{cat-C8}	kcat7-C8	1.12 E1	s^{-1}	7, this study
TesA	kcat-C10	kcat7-C10	1.71 E0	s^{-1}	7, this study
TesA	k _{cat-C12}	kcat7-C12	2.73 E1	s^{-1}	7, this study
TesA	k _{cat-C14}	kcat7-C14	4.95 E1	s ⁻¹	7, this study
TesA	k _{cat-C16}	kcat7-C16	1.08 E2	s ⁻¹	7, this study
TesA	k _{cat-C18}	kcat7-C18	1.32 E2	s ⁻¹	7, this study
TesA	k _{cat-C20}	kcat7-C20	1.66 E2	s ⁻¹	7, this study
FabF	K_{M-F_acACP}	N/A	1.40 E-2	mM	24
FabF	kon-F acACP	k8 1f	1.55 E-3	μM ⁻¹ s ⁻¹	Estimate from K _m *
FabF	k _{off-F} acACP	k8_1r	2.17 E-2	s ⁻¹	Used k _{off-ACP} from FabD
FabF	k _{fwdFabF} *	k8_2f	1.58 E3	s ⁻¹	Used k _{f-FabD} from
		10.0		261 1	FabD***
FabF	K _{rvsFabF} *	k8_2r	1.0 E-2	μM ⁻¹ s ⁻¹	* * * * 25
FabF	K _{M-F_mACP}	10.20	8.20 E-3	mM	
FabF	K _{on-F_mACP}	k8_3t	2.65 E-3	$\mu M^{-1} s^{-1}$	Estimate from K _m *
FabF	K _{off-F_mACP}	k8_3r	2.17 E-2	S	Used k _{f-FabD} from FabD***
FabF	k _{cat}	kcat8	2.90 E-2	s ⁻¹	25

Table S4 (cont.). Estimates of Kinetic Parameters.

*Here, we used Eqs. 1 and 2 from the main text.

For these estimates, we used a measured value of k_{off} for the complex between C₄ acyl-CoA and FabI. *To clarify, we used k_{cat} as an order-of-magnitude estimate of the forward acyl-transfer constant.

****For this estimate, we assumed a rate constant approximately tenfold higher than kon-mCoA.

Enzyme	Parameter	Value	Units	Source	Source (high)
-				(low)	
FabD	K _{M-mCoA}	6.0E1 – 2.50E2	μM	12	14
FabD	kon-mCoA	1.28E-3 - 1.85E1	$\mu M^{-1} s^{-1}$	13	26, this study*
FabD	koff-mCoA	8.0E-2 - 1.11E3	s ⁻¹	13	Calculated from
					maximum K_m and k_{on}
FabD	$k_{f\text{-}FabD*}$	9.34E-4 - 5.20E3	s ⁻¹	14,26,27	12,26, this study*
FabD	k _{r-FabD*}	1.28E-3 - 1.85E1	$\mu M^{-1} s^{-1}$	13	26, this study*
FabD	K _{M-ACP}	4.0E1 - 3.51E2	μM	12	14
FabD	kon-ACP	5.02E-2 - 3.70E0	$\mu M^{-1} s^{-1}$	15	1, this study*
FabD	koff-ACP	2.17E-2 - 1.30E3	s ⁻¹	15	Calculated from
					maximum K_m and k_{on}
FabD	$k_{\mathrm{fFabD*ACP}}$	9.34E-4 - 5.20E3	s ⁻¹	14,26,27	12,26, this study*
FabD	$k_{rFabD*ACP}$	1.28E-3-3.70E0	$\mu M^{-1} s^{-1}$	13	1, this study*
FabD	k _{cat}	4.67E-4 - 2.60E3	s ⁻¹	14,27	12
FabH	K _{M-aCoA}	4.0E1 – 6.0E1	μM	16	12
FabH	k _{on-aCoA}	1.28E-3 – 1.87E1	$\mu M^{-1} s^{-1}$	13	26, this study*
FabH	k _{off-aCoA}	8.0E-2 - 1.12E3	s ⁻¹	13	Calculated from
					maximum K_m and k_{on}
FabH	$k_{f\text{-}FabH*}$	9.34E-4 - 5.20E3	s ⁻¹	14,26,27	12,26, this study*
FabH	k _{r-FabH*}	1.28E-3 - 3.70E0	μM ⁻¹ s ⁻¹	13	1, this study*
FabH	K _{M-mACP}	5.0E0 - 2.0E1	μM	16	12
FabH	kon-mACP	5.02E-2-3.70E0	μM ⁻¹ s ⁻¹	15	1, this study*
FabH	k _{off-mACP}	2.17E - 2 – 7.40E1	s ⁻¹	15	Calculated from
					maximum K_m and k_{on}
FabH	k _{cat}	2.7E-1 – 4.71E1	s ⁻¹	16	12,17
FabG	K _{M-NADPH}	1.0E1	μM	18	N/A
FabG	$k_{on-NADPH}$	1.54E-3 – 2.16E1	μM ⁻¹ s ⁻¹	13	26, this study*
FabG	k _{off-NADPH}	7.90E - 2 – 2.16E2	s ⁻¹	13	Calculated from
				1.0	maximum K_m and k_{on}
FabG	K _M - βkaACP	3.60E0 - 7.50E1	μM	19	18
FabG	${ m k}_{ m on}$ - $_{eta kaACP}$	5.02E-2 - 3.70E0	$\mu M^{-1} s^{-1}$	15	I, this study*
FabG	$k_{ m off}$ - $_{ m eta kaACP}$	2.17E-2 – 2.78E2	S ⁻¹	15	Calculated from
			_1	10	maximum K_m and k_{on}
FabG	k _{cat}	1.40E-2 - 2.65E2	S ⁻¹	18	28
FabZ	kon-βhaACP	5.02E-2 - 3.70E0	$\mu M^{-1} s^{-1}$	15	1, unis study*
FabZ	k_{off} - β haACP	2.17E-2 – 2.07E2	S ⁻¹	15	Calculated from
			1	20	maximum K_m and k_{on}
FabZ	k _{cat}	7.80E - 2 – 7.20E1	S ⁻¹	20	9,29

Table S5. Ranges of Kinetic Parameters.

*We used the diffusion calculations described in SI Note 1.

Enzyme	Parameter	Value	Units	Source	Source (high)
Fahl	KALMADDU	2 0E1 – 5 16E1	uМ	21	13
Fabl	k LNADPH	2.0E1 = 3.10E1 1 5/F 3 2 16E1	μ M ⁻¹ s ⁻¹	13	26, this study*
Fabl	k on-I_NADPH	7.03E 2 - 2.16E 1	μινι s	13	Calculated from
T ab1	Kott-I_NADPH	7.95E-2 - 2.10E-1	3		maximum K_m and k_{on}
FabI	K _{M- eacACP}	3.0E1 - 6.25E1	μM	21	13
FabI	kon- eacACP	5.02E-2 - 3.70E0	$\mu M^{-1} s^{-1}$	15	1, this study*
FabI	$k_{off- \ eacACP}$	2.17E-2 - 2.31E2	s ⁻¹	15	Calculated from maximum K _m and k _{on}
FabI	k _{cat}	2.50E-1 - 1.30E2	s ⁻¹	21,30	31
TesA	K _{M-C16acACP}	4.0E0 – 1.09E3	μM	32	7
TesA	kon- acACP	5.02E-2 - 3.70E0	$\mu M^{-1} s^{-1}$	15	1, this study*
TesA	koff- acACP	2.17E-2-4.04E3	s ⁻¹	15	Calculated from
					maximum K_m and k_{on}
TesA	k _{cat-C16}	8.0E-3 - 1.08E2	s ⁻¹	33	7
FabF	K _{M-F} acACP	8.20E0 - 4.0E1	μM	25	24
FabF	k_{on-F_acACP}	5.02E-2 - 3.70E0	$\mu M^{-1} s^{-1}$	15	1, this study*
FabF	k_{off-F_acACP}	2.17E-2 - 1.48E2	s ⁻¹	15	Calculated from
					maximum K_m and k_{on}
FabF	kfwdFabF*	9.34E-4 - 5.20E3	s ⁻¹	14,26,27	12,26, this study*
FabF	k _{rvsFabF*}	1.28E-3-3.70E0	$\mu M^{-1} s^{-1}$	13	1, this study*
FabF	K _{M-F} mACP	8.2E0 - 4.0E1	μM	25	24
FabF	kon-F_mACP	5.02E-2-3.70E0	μM ⁻¹ s ⁻¹	15	1, this study*
FabF	k _{off-F_mACP}	2.17E-2 - 1.48E2	s ⁻¹	15	Calculated from
	_				maximum K_m and k_{on}
FabF	k _{cat}	2.9E-2 - 5.51E2	s ⁻¹	25	34

	Table S5	(cont.).	Ranges	of Kinetic	Parameters.
--	----------	----------	--------	------------	-------------

*We used the diffusion calculations described in SI Note 1.

Parameter	Description*	Estimated Range ^{**}	Optimized Value ^{***}
a ₁	Scales k _{off} for 1-4	1E0 to 1.4E4	4.498 E3
a2	Scales k _{off} for acyl-ACPs for 5-11	1E0 to 1.28E4	1.586 E1
a 3	Scales k _{off} for 12	1E0 to 1.86E5	4.319 E3
b 1	Scales k _r for 1-3 and 10	0.128 to 3.7E2	2.474 E1
b ₂	Scales K _{eq} for acyl transfer in 1	2.46E-7 to 1.98E3	5.277 E-2
b ₃	Scales K_{eq} for acyl transfer in 2, 3, 10	2.46E-7 to 3.96E2	8.541 E-2
c ₁	Scales k _{cat} for 4	1E-3 to 1.5E1	1.651 E0
c ₂	Scales k_{cat} for 6, 7, 9, 11	1E-2 to 2.4E2	8.794 E1
C 3	Scales k _{cat} for 12	7.45E-5 to 1E0	1.902 E-2
d ₁	Substrate specificity of TesA; see Eq. 3 in main text.	-5E-1 to 5E-1	-2.897 E-1
d ₂	Substrate specificity of TesA; see Eq. 3 of main text.	0 to 1E1	5.443 E0
e	Scales inhibition of (i) FabH/ F by holo- ACPS and (ii) FabH by acyl-ACPs.	1E0 to 9E2	2.872 E1

Table S6. Optimized Scaling Parameters for the Kinetic Model.

*The numbers in these descriptions correspond to reactions in Table 1. **We determined these ranges from the ranges of associated scaled parameters described in Table S5. ***We determined these parameters by optimizing our kinetic model.

Enzyme	Substrate	K _D (μM)	kon (µM ⁻¹ s ⁻¹)	k _{off} (s ⁻¹)
FabH	ACP	3.14E1	6.92E-4	2.17E-2
FabH	C ₄ / C ₆ / C ₈ /C ₁₀ -ACP	1.51E2	3.09E-1	4.66E1
FabH	C ₁₂ -ACP	1.51E2	3.09E-1	4.66E1
FabH	C ₁₄ -ACP	2.87E1	3.09E-1	8.87E0
FabH	C ₁₆ -ACP	3.37E1	3.09E-1	1.04E1
FabH	C ₁₈ -ACP	8.76E0	3.09E-1	2.70E0
FabH	C ₂₀ -ACP	4.48E0	3.09E-1	1.38E0
FabH*	C ₄ / C ₆ / C ₈ /C ₁₀ -ACP	8.24E-1	1.55E0	1.28E0
FabH*	C ₁₂ -ACP	8.24E-1	1.55E0	1.28E0
FabH*	C ₁₄ -ACP	1.05E0	1.55E0	1.63E0
FabH*	C ₁₆ -ACP	2.63E-1	1.55E0	4.08E-1
FabH*	C ₁₈ -ACP	2.95E-1	1.55E0	4.58E-1
FabH*	C ₂₀ -ACP	8.74E-2	1.55E0	1.36E-1
TesA	holo-ACP	9.00E0	2.41E-3	2.17E-2
FabG	holo-ACP	9.00E0	2.41E-3	2.17E-2
FabZ	holo-ACP	9.00E0	2.41E-3	2.17E-2
FabI	holo-ACP	9.00E0	2.41E-3	2.17E-2
FabF	holo-ACP	3.14E-1	6.92E-2	2.17E-2

Table S7. Optimized Binding Parameters for ACPs and Acyl-ACPs.

*ACP refers to holo-ACP; C_i-ACP refers to an acyl-ACP with *i* carbons in its acyl chain. *We determined these parameters by optimizing our kinetic model.

Enzyme	Substrate	k _{cat} (1/s)	K _D (μM)
BfTES	C ₄ -ACP	2.35	1.45
BfTES	C ₆ -ACP	1.70	2.62
BfTES	C ₈ -ACP	1.05	4.73
BfTES	C ₁₀ -ACP	0.40	8.53
CpFatB1	C ₆ -ACP	0.105	274
CpFatB1	C ₈ -ACP	2.77	0.989
CpFatB1	C ₁₀ -ACP	0.033	13.8
UcFatB	C ₁₀ -ACP	0.105	274
UcFatB	C ₁₂ -ACP	1.37	3.52
UcFatB	C ₁₄ -ACP	0.033	13.8

Table S8. Optimized Kinetic Parameters for Various Thioesterases

*C_i-ACP refers to an acyl-ACP with *i* carbons in its acyl chain. **We determined these parameters by optimizing our kinetic model.

Objective	Parameter	Min	Max	EE Mean	EE SD	Mean/SD
Avg. Length	d ₂	0	10	11.34	3.40	0.30
Avg. Length	d_1	-0.5	0	7.08	2.64	0.37
Avg. Length	C2	1	240	4.16	10.42	2.50
Avg. Length	C 3	1.00E-03	0.1	3.71	4.18	1.13
Avg. Length	e	0.1	200	2.61	2.86	1.10
Avg. Length	b 1	1	100	1.89	2.57	1.36
Avg. Length	b ₃	1.00E-03	0.1	1.18	1.13	0.96
Avg. Length	C 1	0.1	15	0.97	1.82	1.87
Avg. Length	b ₂	1.00E-03	0.1	0.89	0.91	1.02
Avg. Length	\mathbf{a}_1	100	10000	0.65	0.60	0.92
Avg. Length	a_2	1	100	0.30	0.36	1.21
Avg. Length	a ₃	100	10000	0.11	0.32	2.91
Production	c ₂	1	240	32.56	72.69	2.23
Production	b 1	1	100	32.23	49.22	1.53
Production	b ₃	1.00E-03	0.1	22.28	25.47	1.14
Production	d_2	0	10	20.00	22.60	1.13
Production	b ₂	1.00E-03	0.1	17.94	19.36	1.08
Production	d_1	-0.5	0	17.03	28.11	1.65
Production	a_1	100	10000	16.08	17.82	1.11
Production	\mathbf{c}_1	0.1	15	12.81	46.01	3.59
Production	C3	1.00E-03	0.1	9.19	15.85	1.72
Production	e	0.1	200	4.98	6.70	1.35
Production	a ₃	100	10000	1.10	7.89	7.16
Production	a ₂	1	100	0.39	0.49	1.26
Obj _A	d_2	0	10	4.29E05	5.39E05	1.26
Obj _A	d1	-0.5	0	3.28E05	4.40E05	1.34
Obj _A	b ₃	1.00E-03	0.1	1.97E05	3.59E05	1.82
Obj _A	b ₁	1	100	1.69E05	3.32E05	1.96
Obj _A	C 3	1.00E-03	0.1	1.69E05	2.28E05	1.35
Obj _A	c_2	1	240	1.64E05	3.29E05	2.01
Obj _A	b ₂	1.00E-03	0.1	1.59E05	2.70E05	1.70
Obj _A	e	0.1	200	1.39E05	2.15E05	1.55
Obj _A	a ₁	100	10000	1.15E05	1.57E05	1.37
Obj _A	\mathbf{c}_1	0.1	15	8.90E04	2.07E05	2.33
Obj _A	a3	100	10000	1.62E04	1.03E05	6.34
Obj _A	a_2	1	100	5.55E03	6.92E03	1.25

Table S9. Sensitivity Analysis of Scaling Parameters.

*This table shows the mean elementary effects used to generate Figure 9A. **Obj_A is described in Materials and Methods.

Appendix 1. Model Equations*

$$[FabD] = [FabD]_{tot} - [FabD \cdot Malonyl-CoA] - [FabD*] - [FabD* \cdot ACP]$$

$$[FabH] = [FabH]_{tot} - [FabH \cdot Acetyl-CoA] - [FabH^*] - [FabH^* \cdot Malonyl-ACP] - \sum_{n=2}^{10} [FabH \cdot C_{2n}Acyl-ACP] - \sum_{n=2}^{10} [FabH^* \cdot C_{2n}Acyl-ACP] - [FabH \cdot ACP]$$
Eq. S5

$$[FabG] = [FabG]_{tot} - [FabG \cdot NADPH] - \sum_{n=2}^{10} [FabG \cdot NADPH \cdot C_{2n}\beta \cdot ketoacyl \cdot ACP] - [FabG \cdot ACP]$$
Eq. S6

$$[FabZ] = [FabZ]_{tot} - \sum_{n=2}^{10} [FabZ \cdot C_{2n}\beta - hydroxyacyl - ACP] - [FabZ \cdot ACP]$$
Eq. S7

$$[FabI] = [FabI]_{tot} - [FabI \cdot NADH] - \sum_{n=2}^{10} [FabI \cdot NADH \cdot C_{2n}Enoylacyl-ACP] - [FabI \cdot ACP]$$
Eq. S8

$$[\text{TesA}] = [\text{TesA}]_{\text{tot}} - \sum_{n=2}^{10} [\text{TesA} \cdot C_{2n} \text{acyl-ACP}] - [\text{TesA} \cdot \text{ACP}]$$
Eq. S9

$$[FabF] = [FabF]_{tot} - \sum_{n=2}^{10} [FabF \cdot C_{2n}acyl-ACP] - \sum_{n=2}^{10} [C_{2n}FabF^*] - \sum_{n=2}^{10} [C_{2n}FabF^* \cdot Malonyl-ACP] - [FabF \cdot ACP]$$
Eq. S10

$$\frac{d[Acetyl-CoA]}{dt} = k_{off-aCoA}[FabH \cdot Acetyl-CoA] - k_{on-aCoA}[FabH][Acetyl-CoA]$$
Eq. S11

$$\frac{d[ACP]}{dt} = k_{off-ACP}[FabD^* \cdot ACP] - k_{on-ACP}[FabD^*][ACP]$$

$$+ \sum_{n=2}^{10} k_{catTesA,C2n}[TesA \cdot C_{2n}Acyl-ACP] + \sum_{n=2}^{10} k_{f-FabF^*}[FabF][C_{2n}Acyl-ACP]$$

$$- \sum_{n=2}^{10} k_{r-FabF^*}[C_{2n}FabF^*][ACP] + k_{off-FabH-Inh-1}[FabH \cdot ACP]$$

$$- k_{on-FabH-Inh-1}[FabH][ACP] + k_{off-FabG-Inh}[FabG \cdot ACP]$$

$$- k_{on-FabG-Inh}[FabG][ACP] + k_{off-FabZ-Inh}[FabZ \cdot ACP] - k_{on-FabZ-Inh}[FabZ][ACP]$$

$$+ k_{off-FabI-Inh}[FabI][ACP] + k_{off-FabZ-Inh}[FabI][ACP] + k_{off-FabF-Inh}[FabI][ACP]$$

$$- k_{on-TesA-Inh}[TesA][ACP] + k_{off-FabF-Inh}[FabF \cdot ACP] - k_{on-FabF-Inh}[FabF][ACP]$$

$$Eq. S13$$

 $\frac{d[NADPH]}{dt} = k_{off-NADPH}[FabG \cdot NADPH] - k_{on-NADPH}[FabG][NADPH]$

*Legend: In these equations, ACP refers to holo-ACP. For Eq. S20, n = 3-10; for Eq. S21-S23, S31-S32, S34, and S38-S39, n = 2-10; and for Eq. S35-37, n = 2-9.

$$\frac{d[NADH]}{dt} = k_{off-NADH}[FabI \cdot NADH] - k_{on-NADH}[FabI][NADH]$$
Eq. S14

$$\frac{d[Malonyl-CoA]}{dt} = k_{off-mCoA}[FabD \cdot Malonyl-CoA] - k_{on-mCoA}[FabD][Malonyl-CoA]$$
Eq. S15

$$\frac{d[CoA]}{dt} = k_{f-FabD*}[FabD \cdot Malonyl-CoA] - k_{r-FabD*}[FabD*][CoA]$$

$$- k_{f-FabH*}[FabH][Acetyl-CoA] - k_{r-FabH*}[FabD][Acetyl-CoA]$$
Eq. S16

$$\frac{d[Malonyl-ACP]}{dt} = k_{f-FabD^*ACP}[FabD^* \cdot ACP] - k_{r-FabD^*ACP}[FabD][ACP] \qquad Eq. S17$$

$$= k_{on-mACP}[FabH^*][Malonyl-ACP] - k_{off-mACP}[FabH^* \cdot Malonyl-ACP] + \sum_{\substack{n=2\\9}}^{9} k_{off-F_{mACP}}[C_{2n}FabF^* \cdot Malonyl-ACP] - \sum_{\substack{n=2\\9}}^{10} k_{on-F_{mACP}}[C_{2n}FabF^*][Malonyl-ACP] \qquad Eq. S18$$

$$\frac{d[CO_2]}{dt} = k_{n-m}[FabH^* \cdot Malonyl-ACP] + \sum_{\substack{n=2\\9}}^{10} k_{n-m} = [C_n FabF^* \cdot Malonyl-ACP] \qquad Eq. S18$$

$$\frac{d[C_4\beta-\text{ketoacyl-ACP}]}{dt}$$
Eq. S19

$$\begin{aligned} dt &= k_{catFabH}[FabH* \cdot Malony]-ACP] \\ &+ k_{off\betakaACP}[FabG \cdot NADPH \cdot C_{4}\beta \cdot ketoacy]-ACP] \\ &- k_{on\betakaACP}[FabG \cdot NADPH][C_{4}\beta \cdot ketoacy]-ACP] \\ dt &= k_{off\betakaACP}[FabG \cdot NADPH \cdot C_{2n}\beta \cdot ketoacy]-ACP] \\ &- k_{on\betakaACP}[FabG \cdot NADPH][C_{2n}\beta \cdot ketoacy]-ACP] \\ &+ k_{catFabF}[C_{2n}FabF* \cdot Malony]-ACP] \\ \\ \frac{d[C_{2n}\beta - hydroxyacy]-ACP]}{dt} &= k_{off\betahaACP}[FabZ \cdot C_{2n}\beta - hydroxyacy]-ACP] \\ &- k_{on\betahaACP}[FabZ][C_{2n}\beta - hydroxyacy]-ACP] \\ &+ k_{catFabG}[FabZ \cdot C_{2n}\beta - hydroxyacy]-ACP] \\ &+ k_{catFabG}[FabZ \cdot NADPH \cdot C_{2n}\beta - hydroxyacy]-ACP] \\ &+ k_{catFabG}[FabZ \cdot NADPH \cdot C_{2n}\beta - hydroxyacy]-ACP] \\ &= k_{off}FabZ \cdot NADPH \cdot C_{2n}\beta - hydroxyacy]-ACP] \\ &= k_{catFabG}[FabG \cdot NADPH \cdot C_{2n}\beta - hydroxyacy]-ACP] \\ &= k_{catFabG}[FabG \cdot NADPH \cdot C_{2n}\beta - hydroxyacy]-ACP] \\ &= k_{catFabG}[FabG \cdot NADPH \cdot C_{2n}\beta - hydroxyacy]-ACP] \\ &= k_{catFabG}[FabG \cdot NADPH \cdot C_{2n}\beta - hydroxyacy]-ACP] \\ &= k_{catFabG}[FabG \cdot NADPH \cdot C_{2n}\beta - hydroxyacy]-ACP] \\ &= k_{catFabG}[FabJ \cdot NADH \cdot C_{2n}\beta - hydroxyacy]-ACP] \\ &= k_{catFabG}[FabJ \cdot NADH \cdot C_{2n}\beta - hydroxyacy]-ACP] \\ &= k_{catFabG}[FabJ \cdot NADH \cdot C_{2n}\beta - hydroxyacy]-ACP] \\ &= k_{catFabG}[FabJ \cdot NADH + C_{2n}\beta - hydroxyacy]-ACP] \\ &= k_{catFabG}[FabJ \cdot NADH + C_{2n}\beta - hydroxyacy]-ACP] \\ &= k_{catFabG}[FabJ \cdot NADH + C_{2n}\beta - hydroxyacy]-ACP] \\ &= k_{catFab}[FabJ \cdot NADH + C_{2n}\beta - hydroxyacy]-ACP] \\ &= k_{catFab}[FabJ \cdot NADH + C_{2n}\beta - hydroxyacy]-ACP] \\ &= k_{catFab}[FabJ \cdot NADH + C_{2n}\beta - hydroxyacy]-ACP] \\ &= k_{catFab}[FabJ \cdot NADH + C_{2n}\beta - hydroxyacy]-ACP] \\ &= k_{catFab}[FabJ \cdot NADH + C_{2n}\beta - hydroxyacy]-ACP] \\ &= k_{catFab}[FabJ \cdot NADH + C_{2n}\beta - hydroxyacy]-ACP] \\ &= k_{catFab}[FabJ \cdot NADH + C_{2n}\beta - hydroxyacy]-ACP] \\ &= k_{catFab}[FabJ \cdot NADH + C_{2n}\beta - hydroxyacy]-ACP] \\ &= k_{catFab}[FabJ \cdot NADH + C_{2n}\beta - hydroxyacy]-ACP] \\ &= k_{catFab}[FabJ \cdot NADH + C_{2n}\beta - hydroxyacy]-ACP] \\ &= k_{catFab}[FabJ \cdot NADH + C_{2n}\beta - hydroxyacy] + hydroxyacy] \\ &= k_{catFab}[FabJ \cdot NADH + C_{2n}\beta - hydroxyacy] + hydroxyacy] \\ &= k_{catFab}[FabJ$$

$$= k_{off-eacACP}[Fabl \cdot NADH \cdot C_{2n}Enoylacy]-ACP]$$

- k_on-eacACP[Fabl · NADH][C_{2n}Enoylacy]-ACP]

+ $k_{catFabZ}$ [FabZ · $C_{2n}\beta$ -hydroxyacyl-ACP]

- k [Eabl, NADH, C Enoulacy] ACD]	Eq. S23
$- \kappa_{catFab}[\Gammaab] \cdot [NADH \cdot C = Encylocyl ACD]$	
$- k_{catFabl}[Fabl \cdot NADH \cdot C_{2n}EnoylacyI-ACP]$	
+ $k_{off-FabH-Inh-2}$ [FabH · C_{2n} Acyl-ACP]	
$- k_{on-FabH-Inh-2,C2n}[FabH][C_{2n}Acyl-ACP]$	
+ $k_{off-FabH-Inh-3}$ [FabH* $\cdot C_{2n}$ Acyl-ACP]	
$- \kappa_{on-FabH-Inh-3,C2n}[FabH^*][C_{2n}Acyl-ACP]$	
d-CoA]	Eq. S24
$ = k_{on-mCoA}[FabD][Malonyl-CoA] - k_{off-mCoA}[FabD \cdot Malonyl-CoA] + k_{r-FabD*}[FabD*][CoA] - k_{f-FabD*}[FabD \cdot Malonyl-CoA] $	
$_{bD*}$ [FabD · Malonyl-CoA] — $k_{r-FabD*}$ [FabD*][CoA] + $k_{off-ACP}$ [FabD* · ACP]	Eq. S25
- k _{on-ACP} [FabD*][ACP]	
	F (2
$= k_{on-ACP}[FabD^*][ACP] - k_{off-ACP}[FabD^* \cdot ACP]$	Eq. S 26
+ $k_{r-FabD*ACP}[FabD][Malonyl-ACP] - k_{f-FabD*ACP}[FabD* \cdot ACP]$	
CoA]	Eq. S27
- k [EabIII[Acotyl CoA] k [EabII: Acotyl CoA]	
$= k_{on-aCoA}[rabh][Acetyl-CoA] - k_{off-aCoA}[rabh \cdot Acetyl-CoA]$ + $k_{r-FabH*}[FabH*][CoA] - k_{f-FabH*}[FabH \cdot Acetyl-CoA]$	
	Eq. S28
$_{bH*}[FabH \cdot Acetyl-CoA] - k_{r-FabH*}[FabH*][CoA]$	
+ $k_{off-mACP}$ [FabH *· Malonyl-ACP] - $k_{on-mACP}$ [FabH *][Malonyl-ACP]	
+ $\sum_{n=2}^{\infty} k_{off-FabH-Inh-3,C2n} [FabH * C_{2n}Acyl-ACP]$	
\sum^{n-2}	
$-\sum_{n=2} k_{\text{on-FabH-Inh-3,C2n}} [FabH *] [C_{2n} Acyl-ACP]$	
yl-ACP]	Eq. S29
$= k \dots m [FabH*][Malonv]-ACP]$	
$-k_{off-mACP}[FabH* \cdot Malonyl-ACP] - k_{catFabH}[FabH* \cdot Malonyl-ACP]$	
]	E 620
-	Eq. 830
$= \underset{10}{k_{on-NADPH}[FabG][NADPH]} - k_{off-NADPH}[FabG \cdot NADPH]$	
+ $\sum_{n=2}^{\infty} k_{off\beta kaACP} [FabG \cdot NADPH \cdot C_{2n}\beta - ketoacyl - ACP]$	
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$	
$-\sum_{n=2}^{K} \kappa_{\text{on}\beta\text{kaACP}}[\text{FabG} \cdot \text{NADPH}][C_{2n}\beta\text{-ketoacyl-ACP}]$	
3	$= k_{catFabi}[Fabi \cdot NADH \cdot C_{2n}Enoylacyl-ACP] + k_{catFabi}[Fabi \cdot NADH \cdot C_{2n}Enoylacyl-ACP] - k_{on-FacACP}[FabF][C_{2n}Acyl-ACP] + k_{off}Fabi-Linb_2C_{2n}[FabH][C_{2n}Acyl-ACP] + k_{off}Fabi-Linb_2C_{2n}[FabH][C_{2n}Acyl-ACP] + k_{off}Fabi-Linb_2C_{2n}[FabH][C_{2n}Acyl-ACP] + k_{off}Fabi-Linb_3[FabH \cdot C_{2n}Acyl-ACP] - k_{on-Fabi-Linb-3}(FabH - C_{2n}Acyl-ACP] - k_{on-Fabi-Linb-3}(Fab) + [FabD + ACP]] - k_{on-ACP}[FabD +][ACP] - k_{off-ACP}[FabD^* \cdot ACP] - k_{on-ACP}[FabD^*][ACP] - k_{off-ACP}[FabD^* \cdot ACP] - k_{on-ACP}[FabD][Malonyl-ACP] - k_{f-FabD^*ACP}[FabD^* \cdot ACP] - k_{on-ACP}[FabD][Malonyl-ACP] - k_{f-FabD^*ACP}[FabD^* \cdot ACP] - k_{on-ACP}[FabD][Malonyl-ACP] - k_{f-FabD^*ACP}[FabD^* \cdot ACP] - k_{on-ACP}[FabD][Malonyl-ACP] - k_{off-ACP}[FabD^* \cdot ACP] - k_{on-ACP}[FabD][Malonyl-ACP] - k_{f-FabD^*ACP}[FabD^* \cdot ACP] - k_{on-ACP}[FabD][Malonyl-ACP] - k_{off-ACP}[FabD^* \cdot ACP] - k_{on-ACP}[FabD][Malonyl-ACP] - k_{f-FabD^*ACP}[FabD^* \cdot ACP] - k_{on-FabH^*}[FabH^*][CoA] + k_{r-FabH^*}[FabH^*][CoA] - k_{r-FabH^*}[FabH^*][CoA] + k_{r-FabH^*}[FabH^*][CoA] - k_{r-FabH^*}[FabH^*][CoA] + k_{r-FabH^*}[FabH^* \cdot Malonyl-ACP] - k_{on-FabH^*}[FabH^*][Malonyl-ACP] - k_{on-FabH^*}[FabH^* \cdot Malonyl-ACP] - k_{on-FabH^*}[FabH^* \cdot Malony$

d[FabG · NADPH · $C_{2n}\beta$ -ketoacyl-ACP]	Eq. S31
dt = $k_{on\betakaACP}$ [FabG · NADPH][$C_{2n}\beta$ -ketoacyl-ACP] - $k_{off\betakaACP}$ [FabG · NADPH · $C_{2n}\beta$ -ketoacyl-ACP] - $k_{catFabG}$ [FabG · NADPH · $C_{2n}\beta$ -ketoacyl-ACP]	
d[FabZ $\cdot C_{2n}\beta$ -hydroxyacyl-ACP]	Fa 832
dt = $k_{on\betahaACP}$ [FabZ][C _{2n} β -hydroxyacyl-ACP] - $k_{off\betahaACP}$ [FabZ · C _{2n} β -hydroxyacyl-ACP] - $k_{catFabZ}$ [FabZ · C _{2n} β -hydroxyacyl-ACP]	Eq. 052
$\frac{d[FabI \cdot NADH]}{d[FabI]} = k_{ar} NADH [FabI][NADH] - k_{aff} NADH [FabI \cdot NADH]$	Eq. 833
dt $+\sum_{n=2}^{10} k_{off-eacACP} [FabI \cdot NADH \cdot C_{2n}Enoylacyl-ACP]$ $-\sum_{n=2}^{10} k_{on-eacACP} [FabI \cdot NADH] [C_{2n}Enoylacyl-ACP]$	
d[TesA · C_{2n} acyl-ACP]	Ea 834
dt = $k_{on-acACP}$ [TesA][C_{2n} Acyl-ACP] - $k_{off-acACP}$ [TesA · C_{2n} Acyl-ACP] - $k_{catTesA}$ [TesA · C_{2n} Acyl-ACP]	Eq. 55
d[FabF · C _{2n} acyl-ACP]	Ea. 835
dt = $k_{on-F_acACP}[FabF][C_{2n}Acyl-ACP] - k_{off-F_acACP}[FabF \cdot C_{2n}Acyl-ACP]$ + $k_{r-FabF^*}[C_{2n}FabF^*][ACP] - k_{f-FabF^*}[FabF \cdot C_{2n}acyl-ACP]$	Eq. 555
$\frac{d[C_{2n}FabF^*]}{dt} = k_{f-FabF^*}[FabF \cdot C_{2n}acyl-ACP] - k_{r-FabF^*}[C_{2n}FabF^*][ACP] + k_{off-F_{mACP}}[C_{2n}FabF^* \cdot Malonyl-ACP] - k_{on-F_{mACP}}[C_{2n}FabF^*][Malonyl-ACP]$	Eq. S 36
$d[C_{2n}FabF^* \cdot Malonyl-ACP]$	Eq. S37
dt = $k_{on-F_{mACP}}[C_{2n}FabF^*][Malonyl-ACP]$ - $k_{off-F_{mACP}}[C_{2n}FabF^* \cdot Malonyl-ACP] - k_{catFabF}[C_{2n}FabF^* \cdot Malonyl-ACP]$	
$d[FabH \cdot C_{2n}Acyl-ACP]$	Ea 838
dt = $k_{on-FabH-Inh-2}[FabH][C_{2n}Acyl-ACP]$ - $k_{off-FabH-Inh-2,C2n}[FabH \cdot C_{2n}Acyl-ACP]$	Eq. 550
$d[FabH^* \cdot C_{2n}Acyl-ACP]$	Ea 839
dt = $k_{on-FabH-Inh-3}[FabH^*][C_{2n}Acyl-ACP]$ - $k_{off-FabH-Inh-3,C2n}[FabH^* \cdot C_{2n}Acyl-ACP]$	£q. 557
$\frac{d[\text{TesA} \cdot \text{ACP}]}{d[\text{TesA} \cdot \text{ACP}]} = k_{\text{exp}} + k_{exp} + k_{exp$	Ea. S40
dt Kon-TesA-Inh[105/1][101] Kott-TesA-Inh[105/1][101]	24.510

$\frac{d[FabH \cdot ACP]}{dt} = k_{on-FabH-Inh-1}[FabH][ACP] - k_{off-FabH-Inh-1}[FabH \cdot ACP]$	Eq. S41
$\frac{d[FabG \cdot ACP]}{dt} = k_{on-FabG-Inh}[FabG][ACP] - k_{off-FabG-Inh}[FabG \cdot ACP]$	Eq. 842
$\frac{d[FabZ \cdot ACP]}{dt} = k_{on-FabZ-Inh}[FabZ][ACP] - k_{off-FabZ-Inh}[FabZ \cdot ACP]$	Eq. 843
$\frac{d[FabI \cdot ACP]}{dt} = k_{on-FabI-Inh}[FabI][ACP] - k_{off-FabI-Inh}[FabI \cdot ACP]$	Eq. S44
$\frac{d[FabF \cdot ACP]}{dt} = k_{on-FabF-Inh}[FabF][ACP] - k_{off-FabF-Inh}[FabF \cdot ACP]$	Eq. 845

Appendix 2. MATLAB Code and Associated Files

- 1. Combined_Pathway_Solver. This program initiates and solves the kinetic model with the specified input parameters and options described in files 2-8.
- 2. Combined_Pathway_Model. This program contains material balances and differential equations used to model FAS activity.
- 3. LeastSquaresCalc. This program calculates sums of squared errors between predicted and experimental trends (Experimental Dataset.csv).
- 4. param_func. This file parameterizes the model with specified input parameters.
- 5. kcat.csv. This file contains the estimates of k_{cat} used by param_func.
- 6. km_est.csv. This file contains the estimates of K_m used by param_func.
- 7. est_param.csv. This file contains estimates of all ratios of kon to koff used by param_func.
- 8. Experimental_Dataset.csv: contains the digitized values of previously reported experimental data.⁴

SI References

- (1) Schlosshauer, M.; Baker, D. Realistic Protein-Protein Association Rates from a Simple Diffusional Model Neglecting Long-Range Interactions, Free Energy Barriers, and Landscape Ruggedness. *Protein Sci.* **2004**, *13*, 1660–1669.
- (2) Erickson, H. P. Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy. *Biol. Proced. Online* **2009**, *11*, 32–51.
- (3) Harpaz, Y.; Gerstein, M.; Chothia, C. Volume Changes on Protein Folding. *Structure*. **1994**, *2*, 641–649.
- (4) Yu, X.; Liu, T.; Zhu, F.; Khosla, C. In Vitro Reconstitution and Steady-State Analysis of the Fatty Acid Synthase from Escherichia Coli. *Proc. Natl. Acad. Sci.* **2011**, *108*, 18643–18648.
- (5) Jeon, E.; Lee, S.; Won, J. I.; Han, S. O.; Kim, J.; Lee, J. Development of Escherichia Coli MG1655 Strains to Produce Long Chain Fatty Acids by Engineering Fatty Acid Synthesis (FAS) Metabolism. *Enzyme Microb. Technol.* **2011**, *49*, 44–51.
- (6) Leskovac, V. *Comprehensive Enzyme Kinetics*; Kluwer Academic Publishers: New York, 2004.
- Grisewood, M. J.; Hernández-Lozada, N. J.; Thoden, J. B.; Gifford, N. P.; Mendez-Perez, D.; Schoenberger, H. A.; Allan, M. F.; Floy, M. E.; Lai, R. Y.; Holden, H. M.; Pfleger, B. F.; Maranas, C. D. Computational Redesign of Acyl-ACP Thioesterase with Improved Selectivity toward Medium-Chain-Length Fatty Acids. *ACS Catal.* 2017, *7*, 3837–3849.
- (8) Heath, R. J.; Rock, C. O.; Chem, C. O. J. B. Inhibition of B-Ketoacyl-Acyl Carrier Protein Synthase III (FabH) by Acyl-Acyl Carrier Protein in Escherichia Coli. *J. Biol. Chem.* 1996, 271, 10996–11000.
- (9) Heath, R. J.; Rock, C. O. Roles of the FabA and FabZ β-Hydroxyacyl-Acyl Carrier Protein Dehydratases in Escherichia Coli Fatty Acid Biosynthesis. J. Biol. Chem. 1996, 271, 27795–27801.
- (10) Choi, Y. J.; Lee, S. Y. Microbial Production of Short-Chain Alkanes. *Nature* **2013**, *502*, 571–574.
- (11) Torella, J. P.; Ford, T. J.; Kim, S. N.; Chen, A. M.; Way, J. C.; Silver, P. A. Tailored Fatty Acid Synthesis via Dynamic Control of Fatty Acid Elongation. *Proc. Natl. Acad. Sci. U. S. A.* 2013, *110*, 11290–11295.
- (12) Marcella, A. M.; Barb, A. W. A Rapid Fluorometric Assay for the S-Malonyltransacylase FabD and Other Sulfhydryl Utilizing Enzymes. *J Biol Methods* **2016**, *3*, 1-7.
- (13) Kapoor, M.; Mukhi, P. L. S.; Surolia, N.; Suguna, K.; Surolia, A. Kinetic and Structural Analysis of the Increased Affinity of Enoyl-ACP (Acyl-Carrier Protein) Reductase for Triclosan in the Presence of NAD+. *Biochem. J.* 2004, *381*, 725–733.
- (14) Szafranska, A. E.; Hitchman, T. S.; Cox, R. J.; Crosby, J.; Simpson, T. J. Kinetic and Mechanistic Analysis of the Malonyl CoA:ACP Transacylase from Streptomyces Coelicolor Indicates a Single Catalytically Competent Serine Nucleophile at the Active Site. *Biochemistry* 2002, *41*, 1421–1427.
- (15) Zhang, L.; Liu, W.; Xiao, J.; Hu, T.; Chen, J.; Chen, K.; Jiang, H.; Shen, X. Malonyl-CoA: Acyl Carrier Protein Transacylase from Helicobacter Pylori: Crystal Structure and Its Interaction with Acyl Carrier Protein. *Protein Sci* 2007, *16*, 1184–1192.

- (16) Heath, R. J.; Rock, C. O. Inhibition of Beta-Ketoacyl-Acyl Carrier Protein Synthase III (FabH) by Acyl-Acyl Carrier Protein in Escherichia Coli. J. Biol. Chem. 1996, 271, 10996–11000.
- (17) Qiu, X.; Choudhry, A. E.; Janson, C. a; Grooms, M.; Daines, R. a; Lonsdale, J. T.; Khandekar, S. S. Crystal Structure and Substrate Specificity of the B-Ketoacyl-Acyl Carrier Protein Synthase III (FabH) from Staphylococcus Aureus. *Protein Sci.* 2005, 14, 2087–2094.
- (18) Sun, Y. H.; Cheng, Q.; Tian, W. X.; Wu, X. D. A Substitutive Substrate for Measurements of Beta-Ketoacyl Reductases in Two Fatty Acid Synthase Systems. *J. Biochem. Biophys. Methods* 2008, 70, 850–856.
- (19) Shimakata, T.; Stumpf, P. K. Isolation and Function of Spinach Leaf β-Ketoacyl-[Acyl-Carrier-Protein] Synthases. *Proc. Natl. Acad. Sci. U. S. A.* **1982**, *79*, 5808–5812.
- (20) Swarnamukhi, P. L.; Sharma, S. K.; Bajaj, P.; Surolia, N.; Surolia, A.; Suguna, K. Crystal Structure of Dimeric FabZ of Plasmodium Falciparum Reveals Conformational Switching to Active Hexamers by Peptide Flips. *FEBS Lett.* **2006**, *580*, 2653–2660.
- (21) Sivaraman, S.; Zwahlen, J.; Bell, A. F.; Hedstrom, L.; Tonge, P. J. Structure-Activity Studies of the Inhibition of FabI, the Enoyl Reductase from Escherichia Coli, by Triclosan: Kinetic Analysis of Mutant FabIs. *Biochemistry* **2003**, *42*, 4406–4413.
- (22) Weeks, G.; Wakil, S. J. Mechanism of Fatty Acid Synthesis. XVIII. Preparation and General Properties of the Enoyl Acyl Carrier Protein Reductases from Escherichia Coli. J. Biol. Chem. 1968, 243, 1180–1189.
- (23) Liu, N.; Cummings, J. E.; England, K.; Slayden, R. A.; Tonge, P. J. Mechanism and Inhibition of the FabI Enoyl-ACP Reductase from Burkholderia Pseudomallei. J. Antimicrob. Chemother. 2011, 66, 564–573.
- (24) D'Agnolo, G.; Rosenfeld, I. S.; Vagelos, P. R. . Multiple Forms of Beta-Ketoacyl-Acyl Carrier Protein Synthetase in Escherichia Coli. *J. Biol. Chem.* **1975**, *250*, 5289–5294.
- (25) Borgaro, J.; Chang, a; Machutta, C.; Zhang, X.; Tonge, P. J. Substrate Recognition by Beta-Ketoacyl-ACP Synthases. *Biochemistry* **2011**, *50*, 10678–10686.
- (26) Mavrovouniotis, M. L.; Stephanopoulos, G. Estimation of Upper Bounds for the Rates of Enzymatic Reactions. *Chem. Eng. Commun.* **1990**, *93*, 211–236.
- (27) Misra, A.; Surolia, N.; Surolia, A. Catalysis and Mechanism of Malonyl Transferase Activity in Type II Fatty Acid Biosynthesis Acyl Carrier Proteins. *Mol. Biosyst.* 2009, 5, 651.
- Wickramasinghe, S. R.; Inglis, K. A.; Urch, J. E.; Müller, S.; van Aalten, D. M. F.;
 Fairlamb, A. H. Kinetic, Inhibition and Structural Studies on 3-Oxoacyl-ACP Reductase from Plasmodium Falciparum, a Key Enzyme in Fatty Acid Biosynthesis. *Biochem. J.* 2006, *393*, 447–457.
- (29) Fiers, W. D.; Dodge, G. J.; Sherman, D. H.; Smith, J. L.; Aldrich, C. C. Vinylogous Dehydration by a Polyketide Dehydratase Domain in Curacin Biosynthesis. *J. Am. Chem. Soc.* 2016, *138*, 16024–16036.
- (30) Ward, W. H. J.; Holdgate, G. A.; Rowsell, S.; McLean, E. G.; Pauptit, R. A.; Clayton, E.; Nichols, W. W.; Colls, J. G.; Minshull, C. A.; Jude, D. A.; Mistry, A.; Timms, D.; Camble, R.; Hales, N.J.; Britton, C. J.; Taylor, I. W. F. Kinetic and Structural Characteristics of the Inhibition of Enoyl (Acyl Carrier Protein) Reductase by Triclosan. *Biochemistry* 1999, *38*, 12514–12525.

- (31) Xu, H.; Sullivan, T. J.; Sekiguchi, J. I.; Kirikae, T.; Ojima, I.; Stratton, C. F.; Mao, W.; Rock, F. L.; Alley, M. R. K.; Johnson, F.; Walker, S. G.; Tonge, P. J. Mechanism and Inhibition of SaFabI, the Enoyl Reductase from Staphylococcus Aureus. *Biochemistry* 2008, 47, 4228–4236.
- (32) Bonner, W. M.; Bloch, K. Purification and Properties of Fatty Acyl Thioesterase I from Escherichia Coli. *J. Biol. Chem.* **1972**, *247*, 3123–3133.
- (33) Salas, J. J.; Ohlrogge, J. B. Characterization of Substrate Specificity of Plant FatA and FatB Acyl-ACP Thioesterases. *Arch. Biochem. Biophys.* **2002**, *403*, 25–34.
- (34) Zhang, L.; Joshi, A. K.; Hofmann, J.; Schweizer, E.; Smith, S. Cloning, Expression, and Characterization of the Human Mitochondrial β-Ketoacyl Synthase: Complementation of the Yeast Cem1 Knock-out Strain. J. Biol. Chem. 2005, 280, 12422–12429.