Supporting Information

Indirect Nano-Construction Morphology of Ni3S2 Electrodes Renovates the Performance for Electrochemical Energy Storage

Donggun Kim¹, Padmanathan Karthick Kannan¹, Srikanth Mateti², and Chan-Hwa Chung^{1*}

School of Chemical Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea

Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia

e-mail: chchung@skku.edu

D. Kim and P.K.K contributed equally to this work

Calculations

The specific capacity of a single electrode was calculated from discharge profiles of the GCD curves using the following equation:

$$C_s = \frac{I \cdot \Delta t}{m}$$

where C_s is the electrode specific capacity (C g⁻¹), I is the constant discharge current (A), Δt is the discharging time (s), and m is the mass of electrodeposited material (g, combined mass of Ni(Cu) frame and Ni₃S₂).

For the fabrication of asymmetric supercapacitor, the mass ratio of Ni_3S_2/Ni and activated carbon is estimated based on charge balance theory:

$$\frac{m_+}{m_-} = \frac{C_- \times \Delta V_-}{C_+ \times \Delta V_+}$$

where m is the mass of active material, C is the specific capacitance, and ΔV is the potential window, which were obtained based on CV curves at 10 mV s⁻¹. According to calculation, the mass ratio of Ni₃S₂/Ni and activated carbon was 1:3. The device specific capacitance was obtained from discharge curves of the GCD measurement according to the following equation:

$$C = \frac{I \cdot \Delta t}{\Delta V \cdot m}$$

where C is the device specific capacitance (F g^{-1}), I is the constant discharge current (A), Δt is the discharging time (s), ΔV is the potential window excluding the IR drop (V), and m is the total mass of active materials. The energy density and power density of the asymmetric supercapacitor

were estimated by the following equations:

$$E = \frac{1}{2} \mathbf{C} \cdot \Delta V^2$$

$$P = \frac{E}{\Delta t}$$

where E is the energy density (W h kg⁻¹), C is the device capacitance (F g⁻¹) obtained by the GCD curve, ΔV is the potential window excluding the IR drop (V), P is the power density (W kg⁻¹), and Δt is the discharging time (s).

Supplementary data

Figure. S1 Low magnification SEM images of (a) Ni_3S_2/Ni 2 min, (c) Ni_3S_2/Ni 4 min, and (e) Ni_3S_2/Ni 8 min electrodes. High magnification SEM images of (b) Ni_3S_2/Ni 2 min, (d) Ni_3S_2/Ni 4 min, and (f) Ni_3S_2/Ni 8 min electrodes.

Figure. S2 XRD patterns of the Ni(Cu) frame and Ni $_3$ S $_2$ /Ni electrode after annealing under a nitrogen atmosphere at 300 $^{\circ}$ C for 30 min.

Figure. S3 XPS survey spectrum of the Ni₃S₂/Ni 6 min electrode.

Elemental peaks are observed for Ni, S, C, O, and Pt, which indicates the high purity of the electrodeposited Ni_3S_2/Ni .

Figure. S4 Electrochemical performances of Ni_3S_2/Ni electrodes. (a) CV curves, (b) GCD curves, and (c) peak current response as a function of scan rate of the Ni_3S_2/Ni 2 min electrode. (d) CV curves, (e) GCD curves, and (f) peak current response as a function of scan rate of the Ni_3S_2/Ni 4 min electrode. (g) CV curves, (h) GCD curves, and (i) peak current response as a function of scan rate of the Ni_3S_2/Ni 8 min electrode.

Figure. S5 (a) CV curves of the Ni(Cu) frame and Ni₃S₂/Ni 6 min electrode at a scan rate of 10 mV s⁻¹. (b) IR drop of the Ni₃S₂/Ni electrodes as a function of electrodeposition time at a current density of 10 mA cm⁻².

Figure. S6 SEM images of Ni_3S_2/Ni 6 min electrode after cycling stability measurement at a scan rate of 30 mV s⁻¹ over 1000 cycles.

Figure. S7 CV curves of activated carbon and Ni₃S₂/Ni 6 min electrode at a scan rate of 10 mV s⁻¹.

Figure. S8 Cycling stability of the Ni_3S_2/Ni 6 min//AC asymmetric supercapacitor over 6000 cycles.

Table. S1 Comparison with previously reported electrochemical performances of nickel oxides/sulfides based electrode materials.

Electrode	Specific capacitance	Rate capability	Capacitance	Reference
materials			retention	
Ni₃S₂/Ni foam	1051 F g ⁻¹ at 1.25	53 % from 2.5 to	108.3 % after 2000	[25]
	mA cm ⁻²	30 mA cm ⁻²	cycles at 20 mA cm ⁻²	
Flaky Ni ₃ S ₂	717 F g ⁻¹ at 2 A g ⁻¹	57.3 % from 2 to	62 % after 1000	[15]
		32 A g ⁻¹	cycles at 4 A g ⁻¹	
Ni@NiO dendrites	1928.5 F g ⁻¹ at 2	70.8 % from 2.9	100 % after 70000	[17]
	mA cm ⁻²	A g^{-1} to 58 A g^{-1}	cycles at 100 mV s ⁻¹	
Ni ₃ S ₂ nanosheet	1370.4 F g ⁻¹ at 2 A	69.5 % from 2 to	91.4 % after 1000	[33]
arrays	g ⁻¹	20 A g ⁻¹	cycles at 6 A g ⁻¹	
Mesostructured	522 C g ⁻¹ at 1 A	78 % from 1 to	97 % after 10000	[14]
NiO/Ni	g_{NiO}^{-1}	50 A g _{NiO} -1	cycles at 100 mV s ⁻¹	
Ni ₃ S ₂ dendrites	710.4 F g ⁻¹ at 2 A	66.2 % from 2 to	100 % after 2000	[35]
	g ⁻¹	14 A g ⁻¹	cycles at 5 A g ⁻¹	
NiO nanosheets	993 F g ⁻¹ (348 C g ⁻	44.8 % from 3 to	98.2 % after 500	[36]
	¹) at 3 A g ⁻¹	15 A g ⁻¹	cycles at 15 A g ⁻¹	
Ni ₃ S ₂ -NiS	1077.3 F g ⁻¹ at 5 A	66.8 % from 5 to	76.3 % after 10000	[22]
nanowires	g ⁻¹	30 A g ⁻¹	cycles at 20 A g ⁻¹	
Ni ₃ S ₂ /Ni 6 min	786.5 C g ⁻¹ (1645 F	64 % from 10 to	88.6 % after 1000	Present
	g ⁻¹) at 10 mA cm ⁻²	70 mA cm ⁻²	cycles at 30 mV s ⁻¹	work