Advancing the Development of Highly-Functionalizable Glucose-Based Polycarbonates by Tuning of the Glass Transition Temperature

 Hai Wang, ${ }^{\text {,F }}$ and Karen L. Wooley**, ${ }^{*}$
${ }^{\dagger}$ Departments of Chemistry and Materials Science \& Engineering, ${ }^{*}$ Department of Chemical Engineering and Laboratory for Synthetic-Biologic Interactions, Texas A\&M University, College Station, Texas 77842, USA
${ }^{\text {§ }}$ College of Medicine, Texas A\&M University, Bryan, Texas 77807, USA
*Corresponding author
wooley@chem.tamu.edu

Materials and Methods.

1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD) and 2-ethylhexyl chloroformate were used as received from TCI America (Portland, OR). 4-Methylbenzyl alcohol was purified by recrystallization from petroleum ether and stored in a glovebox under Ar atmosphere. Amberlyst® $15(\mathrm{H})$, ion exchange resin and $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine, 99% were purchased from Alfa Aesar, Thermo Fisher Scientific (Ward Hill, MA). Triphosgene was used as received from Oakwood Products, Inc. (Estill, SC). Dichloromethane (DCM) was purified by a solvent purification system (J. C. Meyer Solvent Systems, Inc., Laguna Beach, CA). Other reagents were used as received from Sigma-Aldrich, Co. (St. Louis, MO) unless otherwise noted.

Instrumentation.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were acquired on a Varian Inova 500 spectrometer interfaced to a UNIX computer using VnmrJ software. Chemical shifts were referenced to the residual solvent resonance signals.

Fourier transform infrared (FT-IR) spectra were recorded on an IR Prestige 21 system (Shimadzu Corp., Japan), equipped with an attenuated total reflectance (ATR) accessory, and analyzed using IRsolution v. 1.40 software.

Size exclusion chromatography (SEC) eluting with THF was conducted on a Waters Chromatography, Inc. (Milford, MA) system equipped with an isocratic pump (model 1515), a differential refractometer (model 2414), and a four-column set, including a $5 \mu \mathrm{~m}$ Guard column ($50 \times 7.5 \mathrm{~mm}$), a PLgel $5 \mu \mathrm{~m}$ Mixed C column ($300 \times 7.5 \mathrm{~mm}$, Agilent Technologies) and two Styragel ${ }^{\circledR}$ columns ($500 \AA$ and $104 \AA, 300 \times 7.5 \mathrm{~mm}$, Waters Chromatography, Inc.). The system was equilibrated at $40^{\circ} \mathrm{C}$ in THF with the flow rate set to $1.0 \mathrm{~mL} / \mathrm{min}$. Data collection and analysis were performed with Waters Breeze ${ }^{\mathrm{TM}}$ software. Molar masses were determined relative to polystyrene standards (615-442800 Da) purchased from Polymer Laboratories, Inc. (Amherst, MA). Polymer solutions were prepared at a concentration of $c a .3 \mathrm{mg} / \mathrm{mL}$ with 0.05 $\operatorname{vol} \%$ toluene added as a flow marker, and an injection volume of $200 \mu \mathrm{~L}$ was used.

Preparative size exclusion chromatography (prep SEC) eluting with chloroform was conducted on a JAI LC-9230II NEXT Chromatography, Inc. (Japan) system equipped with a reciprocating double plunger pump (model P-9104B), a UV-vis 4ch NEXT detector at four wavelengths (254 $\mathrm{nm}, 280 \mathrm{~nm}, 300 \mathrm{~nm}, 330 \mathrm{~nm}$), and a two-column set, including a JAIGEL-H 40P Guard column and a JAIGEL-2H-40 HPLC column. The system was equilibrated at room temperature in chloroform with the flow rate set to $14.0 \mathrm{~mL} / \mathrm{min}$. Data collection and analysis were performed with JAI Scan ${ }^{\text {TM }}$ software. Polymer solutions were prepared at a concentration of $c a .10 \mathrm{mg} / \mathrm{mL}$ in chloroform and an injection volume of 5 mL was used.

Thermogravimetric analysis (TGA) was performed under an Ar atmosphere using a MettlerToledo model TGA2/1100/464 with a heating rate of $10{ }^{\circ} \mathrm{C} / \mathrm{min}$. Data were analyzed using Mettler-Toledo STAR ${ }^{\mathrm{e}}$ v. 15.00a software

Glass transitions (T_{g}) were measured by differential scanning calorimetry (DSC) on a MettlerToledo DSC3/700/1190® (Mettler-Toledo, Inc., Columbus, OH) under $\mathrm{N}_{2(\mathrm{~g})}$. Measurements were performed with a heating rate of $10{ }^{\circ} \mathrm{C} / \mathrm{min}$ and analyzed using Mettler-Toledo Star ${ }^{\mathrm{e}} \mathrm{v}$. 15.00a software. The T_{g} was taken as the midpoint of the inflection tangent of the second heating scan.

Electrospray ionization mass spectrometry (ESI-MS) experiments were performed using a Thermo Scientific Q Exactive Focus. The sample was directly infused at a flow rate of 10 $\mu \mathrm{L} / \mathrm{min}$. The Q-Exactive Focus HESI source was operated in full MS in positive mode. The mass resolution was tuned to 70000 FWHM at $\mathrm{m} / \mathrm{z} 200$. The spray voltage was set to 3.75 kV , and the sheath gas and auxiliary gas flow rates were set to 7 and 0 arbitrary units, respectively. The transfer capillary temperature was held at $320^{\circ} \mathrm{C}$. Exactive Series $2.8 \mathrm{SP} 1 / X c a l i b u r ~ 4.0$ software was used for data acquisition and processing.

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was performed on a microflex ${ }^{\mathrm{TM}}$ LRF mass spectrometer (Bruker Corporation, Billerica, MA) in positive linear mode. Ions were generated by a pulsed nitrogen laser ($337 \mathrm{~nm}, 25 \mathrm{kV}$), and 200 laser pulses were used per spectrum. Trans-2-[3-(4-tert-butylphenyl)-2-methyl-2propylidene]malonitrile (DCTB) and potassium trifluoroacetate (KTFA) were used as a matrix and cationization reagent, respectively. The sample and matrix were prepared at 1 and 26 $\mathrm{mg} / \mathrm{mL}$, respectively, in chloroform, and KTFA was prepared at $1 \mathrm{mg} / \mathrm{mL}$ in acetone. The sample solution was mixed with the matrix and KTFA at a volumetric ratio of 2:2:1, and $1 \mu \mathrm{~L}$ of the mixture was deposited onto a stainless-steel sample holder and dried in air prior to the measurement.

Synthetic protocols.

Synthesis of the bicyclic glucose carbonate monomers were performed following previously reported procedures, ${ }^{1}$ using the corresponding alkyl chloroformates as starting materials. For simplicity, these monomers (Scheme 1) are systematically named:
methyl-2,3-O-n-ethyloxycarbonyl-4,6-O-carbonyl- α-D-glucopyranoside GC(EEC) (1), methyl-2,3-O-n-butyloxycarbonyl-4,6-O-carbonyl- α-D-glucopyranoside GC(BBC) (2), methyl-2,3-O-n-hexyloxycarbonyl-4,6-O-carbonyl- α-D-glucopyranoside GC(HHC) (3), methyl-2,3- O-isobutyloxycarbonyl-4,6- O-carbonyl- α-D-glucopyranoside GC(isoBBC) (4), methyl-2,3- O-neopentyloxycarbonyl-4,6- O-carbonyl- α-D-glucopyranoside GC(neoPPC) (5), and methyl-2,3-O-2-ethylhexyloxycarbonyl-4,6-O-carbonyl- α-D-glucopyranoside GC(EHEHC) (6).

The monomers 1-5 were purified by column chromatography and recrystallization in ethyl acetate and hexanes, while monomer 6 was a liquid/wax like compound that was purified by column chromatography and extensive drying against phosphorous pentoxide under reduced pressure.

Monomer GC(BBC) (2): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 5.40(\mathrm{dd}, J=10,10 \mathrm{~Hz}, 1 \mathrm{H}, 3-$ $\mathrm{C} H), 5.08(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{C} H), 4.71(\mathrm{dd}, J=10,4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{C} H), 4.53\left(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{CH}_{2}\right), 4.33$ - $4.25\left(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{CH}_{2}\right), 4.25-4.09\left(\mathrm{~m}, 6 \mathrm{H}, 4-\mathrm{CH}, 5-\mathrm{CH}, 2,3-\mathrm{CHOCOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.47(\mathrm{~s}$, $3 \mathrm{H}, 1-\mathrm{CHOCH}_{3}$), $1.71-1.59\left(\mathrm{~m}, 4 \mathrm{H}, 2,3-\mathrm{CHOCOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $1.40(\mathrm{~m}, 4 \mathrm{H}, 2,3-$ $\mathrm{CHOCOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 0.94 and $0.93\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 6 \mathrm{H}, 2,3-\mathrm{CHOCOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 154.45,154.04,146.50,97.97,76.65,73.63,71.86,69.43$, 68.97, 68.94, 59.69, 56.37, 30.66, 30.62, 18.97, 18.93, 13.76, 13.73. FT-IR(ATR): 2950, 2870, $1782,1749,1460,1394,1361,1268,1244,1193,1151,1109,1050,1025,978,931,900,848$, 777, $656 \mathrm{~cm}^{-1}$. HRMS (ESI $) \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{11} \mathrm{Na}^{+} 443.1529$, found (M+Na ${ }^{+}$443.1515; $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{11} \mathrm{H}^{+}$ 421.1710, found 421.1698.

Monomer GC(HHC) (3): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 5.40(\mathrm{~m}, J=10,10 \mathrm{~Hz}, 1 \mathrm{H}, 3-$ CH), $5.08(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{C} H), 4.70(\mathrm{dd}, J=10,4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.57-4.50(\mathrm{~m}, 1 \mathrm{H}, 6-$ $\left.\mathrm{CH}_{2}\right), 4.34-4.25\left(\mathrm{~m}, 1 \mathrm{H}, \quad 6-\mathrm{CH}_{2}\right), 4.25-4.10(\mathrm{~m}, 6 \mathrm{H}, 4-\mathrm{CH}, 5-\mathrm{CH}$, 2,3- $\left.\mathrm{CHOCOCH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right), \quad 3.46$ ($\left.\mathrm{s}, \quad 3 \mathrm{H}, \quad 1-\mathrm{CHOCH}_{3}\right), \quad 1.70-1.59 \quad(\mathrm{~m}, 4 \mathrm{H}$, 2,3-CHOCOCH $2_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.41 - 1.22 (m, 12 H , 2,3-CHOCOCH $2_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.88\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 6 \mathrm{H}, 2,3-\mathrm{CHOCO}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$

NMR (126 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 154.43,154.02,146.50,97.95,76.65,73.62,71.85,69.42$, 69.36, 69.26, 69.24, 59.67, 56.35, 31.49, 31.45, 28.59, 28.57, 25.39, 25.34, 22.60, 14.09, 14.08. FT-IR(ATR): 2927, 2857, 1782, 1736, 1460, 1390, 1329, 1263, 1240, 1193, 1146, 1114, 1058, 1025, 974, 908, 777, $670 \mathrm{~cm}^{-1}$. HRMS (ESI^{+}) $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{11} \mathrm{Na}^{+} 499.2155$, found ($\mathrm{M}+\mathrm{Na}^{+}$) 499.2145; $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{11} \mathrm{H}^{+} 477.2336$, found 477.2327.

Monomer GC(isoBBC) (4): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 5.38(\mathrm{dd}, J=10,10 \mathrm{~Hz}, 1 \mathrm{H}$, $3-C H), 5.08(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}), 4.73(\mathrm{dd}, J=10,4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.54\left(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{CH}_{2}\right)$, $4.34-4.16\left(\mathrm{~m}, 3 \mathrm{H}, 6-\mathrm{CH}_{2}, 4-\mathrm{CH}, 5-\mathrm{CH}\right), 4.04-3.88\left(\mathrm{~m}, 4 \mathrm{H}, 2,3-\mathrm{CHOCOCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.47$ (s, $3 \mathrm{H}, 1-\mathrm{CHOCH}_{3}$), $1.98\left(\mathrm{spt}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, 2,3-\mathrm{CHOCOCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.97-0.90(\mathrm{~m}, 12 \mathrm{H}$, 2,3-CHOCOCH $\left.2 \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 154.13,153.84,146.34,97.51$, $76.06,74.50,74.42,73.32,71.75,69.06,59.27,55.80,27.51,27.46,18.54,18.51,18.47,18.46$. FT-IR(ATR): 1962, 2880, 1777, 1749, 1459, 1375, 1268, 1240, 1193, 1146, 1104, 1053, 1030, 974, 894, 820, 777, 763, $670 \mathrm{~cm}^{-1}$. HRMS (ESI^{+}) $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{11} \mathrm{Na}^{+} 443.1529$, found ($\mathrm{M}+\mathrm{Na}^{+}$) 443.1514; $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{11} \mathrm{H}^{+}$421.1710, found 421.1698 .

Monomer GC(neoPPC) (5): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 5.47-5.38(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{CH})$, $5.08(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}), 4.74(\mathrm{dd}, J=10,4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.57-4.49\left(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{CH}_{2}\right)$, $4.34-4.26\left(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{CH}_{2}\right), 4.26-4.17(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{CH}, 5-\mathrm{CH}), 3.94-3.78(\mathrm{~m}, 4 \mathrm{H}$, 2,3-CHOCOCH $2_{2} \mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), ~}^{3.47}\left(\mathrm{~s}, \quad 3 \mathrm{H}, \quad 1-\mathrm{CHOCH}_{3}\right), \quad 0.94$ and $0.93(\mathrm{~s}, 18 \mathrm{H}$, 2,3-CHOCOCH $\left.2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 154.74,154.29,146.52$, 98.01, $78.26,78.22,76.65,73.67,71.82,69.44,59.73,56.37,31.75,31.74,26.34,26.29,26.27$. FTIR(ATR): 2963, 2880, 1782, 1750, 1469, 1400, 1371, 1268, 1240, 1198, 1156, 1110, 1057, 1029, 983, 950, 908, 773, $679 \mathrm{~cm}^{-1}$. HRMS (ESI $) \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{11} \mathrm{Na}^{+} 471.1842$, found $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$471.1834; $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{11} \mathrm{H}^{+} 449.2023$, found 449.2016.

Monomer GC(EHEHC) (6): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 5.40(\mathrm{dd}, J=10,10 \mathrm{~Hz}, 1 \mathrm{H}$, 3-CH), 5.08 (d, $J=4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}), 4.71(\mathrm{dd}, J=10,4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}), 4.57-4.49(\mathrm{~m}, 1 \mathrm{H}, 6-$ $\left.\mathrm{CH}_{2}\right), 4.32-4.15\left(\mathrm{~m}, ~ 3 \mathrm{H}, ~ 6-\mathrm{CH}_{2}, ~ 4-\mathrm{CH}, ~ 5-\mathrm{CH}\right), 4.15-3.99(\mathrm{~m}, 4 \mathrm{H}$, 2,3-CHOCOCH${ }_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.46 ($\mathrm{s}, 3 \mathrm{H}, 1-\mathrm{CHOCH}_{3}$), 1.66 - $1.55(\mathrm{~m}, 2 \mathrm{H}$, 2,3- $\mathrm{CHOCOCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.36 - 1.25 (m, 16 H , 2,3-CHOCOCH$\left.{ }_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 0.88 (m, 12 H , 2,3-CHOCOCH $2 \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}^{\mathrm{C}} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ 154.61, $154.18,146.50,97.95,76.64,73.63,71.82,71.59,71.55,71.52,69.41,59.67,56.34,38.93,38.89$,
$38.87,30.24,30.15,30.11,30.07,29.01,28.98,28.93,28.89,23.57,23.50,23.02,14.13,10.98$, 10.96, 10.94. FT-IR(ATR): 2960, 2925, 2869, 1755, 1460, 1383, 1264, 1242, 1194, 1140, 1243, 1187, 1145, 1103, 1046, 980, 905, 785, 765, $670 \mathrm{~cm}^{-1}$. HRMS (ESI $) \mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{11} \mathrm{Na}^{+}$555.2781, found $\left(\mathrm{M}+\mathrm{Na}^{+}\right) 555.2777 ; \mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{11} \mathrm{H}^{+}$533.2962, found 533.2956.

Synthesis of poly(α-D-glucose carbonate)s PGC(RRC) homopolymers: A solution of alkyloxycarbonyl protected glucose carbonate monomer GC(RRC) (200 mg , at predetermined equivalences) and 4-methylbenzyl alcohol (1 eq.) dissolved in $c a .1 .0 \mathrm{~mL}$ of anhydrous DCM was transferred to a vial equipped with a stir bar and a rubber septum in a glovebox under Ar atmosphere, and the reaction was conducted in a $-78^{\circ} \mathrm{C}$ dry ice/acetone bath in a fume hood. A solution of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) (ca. 0.5 eq .) in 0.1 mL of anhydrous DCM was injected quickly into the vial under $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir at $78^{\circ} \mathrm{C}$ for 5 min , then quenched by adding an excess amount of acetic acid. The product was purified by precipitation from DCM into methanol three times and dried under vacuum.
PGC(BBC): ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.27$ and $7.16\left(\mathrm{AB}_{\mathrm{q}}, J=8 \mathrm{~Hz}\right.$), $5.33(\mathrm{dd}, J=$ $10,10 \mathrm{~Hz}), 5.00(\mathrm{~d}, J=4 \mathrm{~Hz}), 4.80(\mathrm{t}, J=10 \mathrm{~Hz}), 4.70(\mathrm{dd}, J=10,4 \mathrm{~Hz}), 4.32(\mathrm{~d}, J=11 \mathrm{~Hz})$, $4.23-4.06(\mathrm{~m}), 4.06-4.01(\mathrm{~m}), 3.40(\mathrm{~s}), 2.34(\mathrm{~s}), 1.66-1.60(\mathrm{~m}), 1.36-1.22(\mathrm{~m}), 0.93$ and $0.92(\mathrm{t}, J=7 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 154.40,154.34,153.91,96.46,73.87$, $73.60,72.91,68.67,68.56,66.89,66.14,55.76,30.67,30.65,18.95,18.92,13.77,13.75$. FTIR(ATR): 2959, 2868, 1752, 1456, 1394, 1232, 1163, 1110, 1032, 948, 846, $777 \mathrm{~cm}^{-1}$. Yield: 91%. $T_{\mathrm{g}}=68^{\circ} \mathrm{C}$. TGA in Ar: 270-393 ${ }^{\circ} \mathrm{C}, 87 \%$ mass loss. SEC (THF, PS standards): $M_{\mathrm{n}}=$ $15.5 \mathrm{kDa}, ~ Đ=1.06$.

PGC(HHC): ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.27$ and $7.16\left(\mathrm{AB}_{\mathrm{q}}, J=8 \mathrm{~Hz}\right), 5.33(\mathrm{dd}, J=$ $10,10 \mathrm{~Hz}), 5.00(\mathrm{~d}, J=4 \mathrm{~Hz}), 4.80(\mathrm{t}, J=10 \mathrm{~Hz}), 4.71(\mathrm{dd}, J=10,4 \mathrm{~Hz}), 4.32(\mathrm{~d}, J=11 \mathrm{~Hz})$, $4.24-4.03(\mathrm{~m}), 3.41(\mathrm{~s}), 2.35(\mathrm{~s}), 1.71-1.57(\mathrm{~m}), 1.55(\mathrm{~s}), 1.44-1.31(\mathrm{~m}), 0.92(\mathrm{t}, J=7 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 154.23,154.15,153.75,129.19,128.53,96.30,77.26,77.00$, $76.75,73.74,73.47,72.77,68.78,68.70,66.73,65.96,55.59,31.37,31.34,31.19,28.61,28.46$, 25.22, 25.20, 25.06, 22.46, 22.32, 13.95, 13.93. FT-IR(ATR): 2936, 2855, 1749, 1453, 1372, 1232, 1166, 1113, 1029, $977,908,778 \mathrm{~cm}^{-1}$. Yield: $90 \% . T_{\mathrm{g}}=46^{\circ} \mathrm{C} . \mathrm{TGA}$ in Ar: $256-396{ }^{\circ} \mathrm{C}$, 85% mass loss. SEC (THF, PS standards): $M_{\mathrm{n}}=15.9 \mathrm{kDa}, ~ D=1.06$.

PGC(isoBBC): ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.27$ and $7.16\left(\mathrm{AB}_{\mathrm{q}}, J=8 \mathrm{~Hz}\right), 5.38-5.26$ (m), $5.00(\mathrm{t}, J=4 \mathrm{~Hz}), 4.86-4.76(\mathrm{~m}), 4.76-4.67(\mathrm{~m}), 4.32(\mathrm{~d}, J=11 \mathrm{~Hz}), 4.20(\mathrm{dd}, J=12,6$
$\mathrm{Hz}), 4.09-4.01(\mathrm{~m}), 4.00-3.83(\mathrm{~m}), 3.41(\mathrm{~s}), 2.34(\mathrm{~s}), 1.95(\mathrm{~m}), 0.92$ and $0.91(\mathrm{~d}, J=7 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 154.48,154.40,153.92,129.36,128.70,96.47,77.35,74.76$, $74.63,73.88,73.59,72.94,66.90,66.18,55.77,27.89,27.86,18.94,18.92,18.90$. FT-IR(ATR): $2959,2876,1751,1459,1378,1231,1169,1110,1035,967,777 \mathrm{~cm}^{-1}$. Yield: $89 \% . T_{\mathrm{g}}=85^{\circ} \mathrm{C}$. TGA in Ar: 260-394 ${ }^{\circ} \mathrm{C}, 86 \%$ mass loss. SEC (THF, PS standards): $M_{\mathrm{n}}=14.9 \mathrm{kDa}, ~ Đ=1.05$.

PGC(neoPPC): ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.28$ and $7.16\left(\mathrm{AB}_{\mathrm{q}}, J=8 \mathrm{~Hz}\right), 5.36(\mathrm{dd}, J$ $=10,10 \mathrm{~Hz}), 5.01(\mathrm{~d}, J=4 \mathrm{~Hz}), 4.80(\mathrm{t}, J=10 \mathrm{~Hz}), 4.75-4.69(\mathrm{~m}), 4.32(\mathrm{~d}, J=11 \mathrm{~Hz}), 4.19$ (dd, $J=12,6 \mathrm{~Hz}), 4.10-4.02(\mathrm{~m}), 3.95-3.81(\mathrm{~m}), 3.79(\mathrm{dd}, J=10,4 \mathrm{~Hz}), 3.41(\mathrm{~s}), 3.44-3.33$ (m), 2.35 (s), 0.93 and $0.92(\mathrm{~s}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 154.70,154.57,153.92$, $128.71,96.46,77.98,77.80,77.35,73.91,73.55,73.01,66.90,66.19,55.78,31.81,31.72,26.33$, 26.32, 20.90. FT-IR(ATR): 2959, 2868, 1752, 1465, 1372, 1235, 1163, 1114, 1036, 958, 777 cm^{-1}. Yield: 91%. $T_{\mathrm{g}}=125{ }^{\circ} \mathrm{C}$. TGA in Ar: $266-398{ }^{\circ} \mathrm{C}, 89 \%$ mass loss. SEC (THF, PS standards): $M_{\mathrm{n}}=15.7 \mathrm{kDa}, ~ Đ=1.06$.

PGC(EHEHC): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.27$ and $7.16\left(\mathrm{AB}_{\mathrm{q}}, J=8 \mathrm{~Hz}\right), 5.33(\mathrm{dd}, J$ $=10,10 \mathrm{~Hz}), 5.01(\mathrm{~d}, J=4 \mathrm{~Hz}), 4.79(\mathrm{t}, J=10 \mathrm{~Hz}), 4.70(\mathrm{dd}, J=10,4 \mathrm{~Hz}), 4.32(\mathrm{~d}, J=11 \mathrm{~Hz})$, $4.24-4.14(\mathrm{~m}), 4.14-3.91(\mathrm{~m}), 3.41(\mathrm{~s}), 2.34(\mathrm{~s}), 1.58(\mathrm{br}), 1.41-1.30(\mathrm{~m}), 1.30-1.21(\mathrm{br})$, $0.91-0.82(\mathrm{~m}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm) $\delta 154.58,154.40,153.93,129.35,128.69$, $96.41,77.14,73.91,73.62,72.97,71.30,71.26,71.17,71.13,66.85,66.15,55.75,38.88,30.18$, $30.15,30.11,30.08,29.00,28.92,23.54,23.49,23.06,14.17,14.16,10.96,10.93,10.91$. FTIR(ATR): 2928, 2861, 1852, 1456, 1389, 1232, 1169, 1110, 1033, 967, 910, $777 \mathrm{~cm}^{-1}$. Yield: 90%. $T_{\mathrm{g}}=38^{\circ} \mathrm{C}$. TGA in Ar: 239-391 ${ }^{\circ} \mathrm{C}, 90 \%$ mass loss. SEC (THF, PS standards): $M_{\mathrm{n}}=$ $15.8 \mathrm{kDa}, ~ Đ=1.06$.

Synthesis of oligomers and polymers with different molar mass of GC(neoPPC) and

GC(EHEHC): Solutions of monomer and 4-methylbenzyl alcohol were dissolved in 0.5-1.0 mL of anhydrous DCM predetermined at different equivalence ratios. A solution of TBD ($1 \% \mathrm{eq}$. of monomer) in 0.05 mL of anhydrous DCM was injected quickly into the reaction mixtures under $-78^{\circ} \mathrm{C}$. After stirring for 5 min , the reaction was quenched by adding an excess amount of acetic acid. The products with $D P_{\mathrm{n}}>6$ were purified by precipitation from DCM into methanol three times; products with $D P_{\mathrm{n}} \leq 5$ were purified and separated using preparative SEC during up to 5 recycles, and dried under vacuum.

GC(neoPPC) unimer: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.28$ and $7.16\left(\mathrm{AB}_{\mathrm{q}}, J=8 \mathrm{~Hz}, 4 \mathrm{H}\right)$, 5.14 (s, 2H), 5.14 (dd, $J=10,10 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=10,4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.49(\mathrm{dd}, J=12,4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=12,2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.78(\mathrm{~m}, 5 \mathrm{H}), 3.68(\mathrm{dd}, J=10,9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 0.94$ and $0.93(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ $156.22,155.58,154.83,138.68,132.13,129.40,128.72,128.51,96.89,78.13,77.97,76.69$, $73.64,70.13,69.71,69.37,66.24,55.57,31.77,31.73,29.84,26.33,26.31,26.27,21.35$. FTIR(ATR): 3495, 2954, 2924, 2862, 1743, 1458, 1373, 1242, 1165, 1041, 980, 964, 918, 856, 787, $733 \mathrm{~cm}^{-1}$. Yield: $10 \% . T_{\mathrm{g}}=13{ }^{\circ} \mathrm{C}$. TGA in Ar: $164-373{ }^{\circ} \mathrm{C}, 81 \%$ mass loss.

GC(neoPPC) dimer: ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.28$ and $7.16\left(\mathrm{AB}_{\mathrm{q}}, J=8 \mathrm{~Hz}, 4 \mathrm{H}\right)$, 5.33 (dd, $J=10,10 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.09(\mathrm{~m}, 3 \mathrm{H}), 4.99(\mathrm{dd}, J=12,4 \mathrm{~Hz}, 2 \mathrm{H}), 4.91$ (dd, $J=10,9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=10,4 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=10,4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.20(\mathrm{~m}, 4 \mathrm{H}), 4.04(3$, $1 \mathrm{H}), 3.95-3.76(\mathrm{~m}, 9 \mathrm{H}), 3.76-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.40$ and $3.39(\mathrm{~s}, 6 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 0.96-0.90(\mathrm{~m}$, $36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 156.09,155.03,154.99,154.84,154.71,154.25$, $138.58,132.17,129.37,128.67,96.91,78.04,77.98,77.99,77.92,76.63,74.19,73.79,73.64$, $72.99,70.10,69.42,69.17,66.97,66.91,65.56,55.75,55.61,31.79,31.76,31.73,26.35,26.31$, 26.29, 26.28, 26.25, 21.34. FT-IR(ATR): 3502, 2970, 1751, 1458, 1373, 1242, 1119, 1034, 964, $918,864,779,756,687 \mathrm{~cm}^{-1}$. Yield: $19 \% . T_{\mathrm{g}}=50^{\circ} \mathrm{C}$. TGA in Ar: $205-369{ }^{\circ} \mathrm{C}, 79 \%$ mass loss. GC(neoPPC) trimer: ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.28$ and $7.16\left(\mathrm{AB}_{\mathrm{q}}, J=8 \mathrm{~Hz}, 4 \mathrm{H}\right)$, 5.37 and $5.33(\mathrm{dd}, J=10,10 \mathrm{~Hz}, 2 \mathrm{H}) 5.20-5.07(\mathrm{~m}, 3 \mathrm{H}), 5.03-4.95(\mathrm{~m}, 3 \mathrm{H}), 4.88(\mathrm{~m}, 2 \mathrm{H})$, $4.80-4.67(\mathrm{~m}, 3 \mathrm{H}), 4.47-4.16(\mathrm{~m}, 6 \mathrm{H}), 4.05(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.67(\mathrm{~m}, 15 \mathrm{H}), 3.43-3.37(\mathrm{~m}$, 9H), $2.34(\mathrm{~s}, 3 \mathrm{H}), 0.96-0.89(\mathrm{~m}, 54 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) δ 156.03, 155.00, $154.84,154.71,154.69,154.65,154.20,153.96,138.53,132.25,129.35,128.68,96.88,96.64$, $96.54,78.01,77.99,77.93,77.90,77.84,76.58,74.21,73.91,73.83,73.64,73.51,73.09,72.97$, $70.04,69.44,69.11,67.07,67.01,66.89,66.26,65.62,55.80,55.71,55.59,31.80,31.79,31.76$, 31.72, 31.70, 26.35, 26.31, 26.29, 21.34. FT-IR(ATR): 3502, 2963, 2878, 1751, 1558, 1466, $1373,1242,1119,1034,957,756,671 \mathrm{~cm}^{-1}$. Yield: $28 \% . T_{\mathrm{g}}=65^{\circ} \mathrm{C} . \mathrm{TGA}$ in Ar: 211-377 ${ }^{\circ} \mathrm{C}$, 83% mass loss.

GC(neoPPC) tetramer: ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.28$ and $7.16\left(\mathrm{AB}_{\mathrm{q}}, J=8 \mathrm{~Hz}, 4 \mathrm{H}\right)$, 5.37 (dd, $J=10,10 \mathrm{~Hz}, 2 \mathrm{H}), 5.32(\mathrm{dd}, J=10,10 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-4.95(\mathrm{~m}, 4 \mathrm{H}), 4.92-4.80(\mathrm{~m}$, $3 \mathrm{H}), 4.78-4.68(\mathrm{~m}, 4 \mathrm{H}), 4.48-4.18(\mathrm{~m}, 9 \mathrm{H}), 4.05(\mathrm{~m}, 3 \mathrm{H}), 3.96-3.75(\mathrm{~m}, 19 \mathrm{H}), 3.42-3.36$ $(\mathrm{m}, 12 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 0.95-0.90(\mathrm{~m}, 72 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 155.98$,
$155.00,154.84,154.72,154.69,154.69,154.64,154.19,153.94,153.92,138.52,132.25,129.35$, $128.68,96.88,96.63,96.52,96.51,78.01,78.00,77.99,77.89,77.82,76.54,74.24,73.94,73.92$, $73.86,73.63,73.49,73.12,73.02,72.97,70.04,69.48,69.05,67.11,67.04,66.78,66.37,66.27$, $65.61,55.84,55.75,55.70,55.58,31.81,31.80,31.75,31.72,31.71,26.35,26.32,26.30,21.34$. FT-IR(ATR): 3495, 2963, 2908, 1751, 1558, 1466, 1373, 1242, 1111, 1041, 964, 779, $664 \mathrm{~cm}^{-1}$. Yield: $20 \% . T_{\mathrm{g}}=79^{\circ} \mathrm{C} . \mathrm{TGA}$ in $\mathrm{Ar}: 215-376^{\circ} \mathrm{C}, 80 \%$ mass loss.

GC(EHEHC) unimer: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.28$ and $7.17\left(\mathrm{AB}_{\mathrm{q}}, J=8 \mathrm{~Hz}, 4 \mathrm{H}\right)$, 5.13 (s, 2H), $5.12(\mathrm{dd}, J=10,10 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=10,4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.49 (dd, $J=12,4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=12,2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-3.99(\mathrm{~m}, 5 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 3.68$ $(\mathrm{m}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.22(\mathrm{~m}, 16 \mathrm{H}), 0.93-0.83(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 156.18,155.56,154.70,138.68,132.12,129.40,128.72,96.84,76.71$, $73.61,71.50,71.45,71.30,71.25,70.12,69.67,69.41,66.25,55.56,38.95,38.91,38.89,30.21$, $30.16,30.15,30.10,29.01,29.00,28.94,28.91,23.58,23.53,23.06,23.05,21.35,14.15,10.99$, 10.96. FT-IR(ATR): $3495,2932,2870,1744,1458,1389,1242,1165,1041,972,918,787 \mathrm{~cm}^{-1}$. Yield: $14 \% . T_{\mathrm{g}}=-25^{\circ} \mathrm{C} . \mathrm{TGA}$ in Ar: $185-350^{\circ} \mathrm{C}, 61 \%$ mass loss.

GC(EHEHC) dimer: ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.28$ and $7.16\left(\mathrm{AB}_{\mathrm{q}}, J=8 \mathrm{~Hz}, 4 \mathrm{H}\right)$, $5.30(\mathrm{dd}, J=10,10 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.08(\mathrm{~m}, 3 \mathrm{H}), 4.99(\mathrm{dd}, J=10,4 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{dd}, J=10$, $10 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=10,4 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{dd}, J=10,4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 4.30$ $(\mathrm{d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 4.14-3.94(\mathrm{~m}, 10 \mathrm{H}), 3.39$ and $3.38(\mathrm{~s}, 6 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.41-1.20(\mathrm{~m}, 32 \mathrm{H})$, $0.88(\mathrm{~m}, 24 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 1 \mathrm{j} 56.00,155.03,154.92,154.71,154.59$, 154.23, 138.57, 132.18, 129.37, 128.68, 96.87, 96.57, 76.62, 74.26, 73.78, 73.60, 72.99, 71.38, $71.33,71.32,71.31,71.25,71.20,70.09,69.42,69.18,66.91,65.56,55.74,55.60,38.95,38.91$, $38.89,38.85,30.21,30.17,30.15,30.13,30.10,30.09,29.01,28.99,28.96,28.94,28.92,23.58$, 23.52, 23.48, 23.05, 21.34, 14.15, 10.97, 10.96, 10.93. FT-IR(ATR): 3503, 2931, 2870, 1751, $1458,1389,1242,1165,1111,1034,972,786 \mathrm{~cm}^{-1}$. Yield: $23 \% . T_{\mathrm{g}}=-8{ }^{\circ} \mathrm{C}$. TGA in Ar: 190$364{ }^{\circ} \mathrm{C}, 82 \%$ mass loss.

GC(EHEHC) trimer: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.28$ and $7.16\left(\mathrm{AB}_{\mathrm{q}}, J=8 \mathrm{~Hz}, 4 \mathrm{H}\right)$, $5.35(\mathrm{dd}, J=10,10 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 2 \mathrm{H}), 5.30(\mathrm{dd}, J=10,10 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.08(\mathrm{~m}, 3 \mathrm{H})$, $5.00(\mathrm{dd}, J=10,4 \mathrm{~Hz}, 2 \mathrm{H}), 4.97(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{td}, J=10,4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.38(\mathrm{~m}, 3 \mathrm{H}), 4.29(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 4.14-3.93(\mathrm{~m}, 15 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~m}, 1 \mathrm{H}), 3.40$, 3.39, and $3.37(\mathrm{~s}, 9 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.43-1.19(\mathrm{~m}, 48 \mathrm{H}), 0.91-0.82(\mathrm{~m}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 155.96,155.00,154.96,154.71,154.60,154.58,154.52,154.20,153.96$, $138.53,132.26,129.35,128.69,96.86,96.85,96.60,96.46,76.55,73.89,73.83,73.59,73.54$, $73.05,73.00,71.37,71.31,71.27,71.24,71.21,71.19,70.05,69.44,69.07,69.06,69.05,67.03$, $67.00,66.84,66.27,65.61,55.79,55.70,55.59,38.94,38.88,30.16,30.14,30.09,29.00,28.95$, 28.92, 23.57, 23.51, 23.06, 21.34, 14.16, 10.96, 10.92. FT-IR(ATR): 3502, 2932, 2870, 2168, $1752,1458,1389,1242,1173,1034,972,779 \mathrm{~cm}^{-1}$. Yield: $30 \% . T_{\mathrm{g}}=4{ }^{\circ} \mathrm{C} . \mathrm{TGA}$ in Ar: 197$365^{\circ} \mathrm{C}, 81 \%$ mass loss.

GC(EHEHC) tetramer: ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.28$ and $7.16\left(\mathrm{AB}_{\mathrm{q}}, J=8 \mathrm{~Hz}\right.$, $4 \mathrm{H}), 5.35(\mathrm{dd}, J=10,10 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 5.29(\mathrm{dd}, J=10,10 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.08(\mathrm{~m}, 3 \mathrm{H})$, $5.04-4.96(\mathrm{~m}, 4 \mathrm{H}), 4.93-4.79(\mathrm{~m}, 3 \mathrm{H}), 4.78-4.65(\mathrm{~m}, 4 \mathrm{H}), 4.49-4.19(\mathrm{~m}, 8 \mathrm{H}), 4.15-3.93$ $(\mathrm{m}, 21 \mathrm{H}), 3.84(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 1 \mathrm{H}), 3.42,3.40$ and $3.37(\mathrm{~s}, 12 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.43-1.21(\mathrm{~m}$, $64 \mathrm{H}), 0.92-0.84(\mathrm{~m}, 48 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 155.90,155.00,154.96$, $154.72,154.61,154.60,154.58,154.57,154.49,154.19,153.95,153.93,138.51,132.27,129.35$, $128.69,96.86,96.60,96.46,76.53,74.39,73.94,73.90,73.87,73.62,73.59,73.57,73.51,73.11$, $73.01,71.36,71.34,71.31,71.28,71.27,71.23,71.21,71.18,70.03,69.47,69.01,67.07,67.03$, $66.71,66.43,66.35,66.27,65.62,65.51,55.82,55.74,55.68,55.57,38.94,38.88,30.16,30.12$, $30.09,29.00,28.96,28.95,28.92,23.57,23.52,23.50,23.06,21.33,14.17,14.15,10.96,10.94$, 10.91. FT-IR(ATR): $3502,2932,2870,1751,1458,1389,1234,1173,1034,964,779 \mathrm{~cm}^{-1}$. Yield: $17 \% . T_{\mathrm{g}}=8^{\circ} \mathrm{C}$. TGA in Ar: $187-363{ }^{\circ} \mathrm{C}, 80 \%$ mass loss.

GC(EHEHC) pentamer: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.28$ and $7.16\left(\mathrm{AB}_{\mathrm{q}}, J=8 \mathrm{~Hz}\right.$, $4 \mathrm{H}), 5.39-5.31(\mathrm{~m}, 4 \mathrm{H}), 5.18-5.06(\mathrm{~m}, 3 \mathrm{H}), 5.05-4.95(\mathrm{~m}, 5 \mathrm{H}), 4.92-4.76(\mathrm{~m}, 4 \mathrm{H}), 4.76-$ $4.58(\mathrm{~m}, 5 \mathrm{H}), 4.49-4.15(\mathrm{~m}, 10 \mathrm{H}), 4.15-3.89(\mathrm{~m}, 26 \mathrm{H}), 3.41,3.40,3.39$ and $3.36(\mathrm{~s}, 15 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.18(\mathrm{~m}, 80 \mathrm{H}), 0.88(\mathrm{~m}, 60 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 155.88$, 154.97, 154.71, 154.59, 154.56, 154.48, 154.45, 154.18, 153.95, 153.91, 138.52, 132.27, 129.35, $128.69,96.83,96.59,96.44,74.43,74.41,73.94,73.88,73.62,73.58,73.54,73.50,73.04,73.01$, $72.99,71.31,71.20,71.16,70.03,69.48,69.00,67.07,66.87,66.67,66.40,66.23,65.62,55.79$, 55.77, 55.71, 55.67, 55.56, 38.93, 38.88, 30.21, 30.15, 30.11, 30.08, 29.84, 29.00, 28.93, 28.91, $23.56,23.50,23.06,21.33,14.17,14.15,10.96,10.94,10.91$. FT-IT(ATR): 2932, 2870, 1751, $1458,1389,1234,1172,1110,1034,964,779,678 \mathrm{~cm}^{-1}$. Yield: $6 \% . T_{\mathrm{g}}=11{ }^{\circ} \mathrm{C} . \mathrm{TGA}$ in Ar : $190-362{ }^{\circ} \mathrm{C}, 77 \%$ mass loss.

Supplemental Table:

Table S1. Data for PGC(RRC) with Different Alkyloxycarbonyl Side Chains

Entry	Polymer ${ }^{a}$	$\begin{gathered} M_{\mathrm{n}, \mathrm{SEC}}{ }^{b} \\ (\mathrm{kDa}) \end{gathered}$	$\pm^{\text {b }}$	$\begin{gathered} T_{\mathrm{g}}^{\mathrm{c}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} T_{\mathrm{d}}{ }^{\mathrm{d}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$
1	PGC(EEC) $)_{51}$	16.0	1.04	120	332
2	$\mathrm{PGC}(\mathrm{BBC})_{40}$	15.5	1.06	68	330
3	$\mathrm{PGC}(\mathrm{HHC})_{36}$	15.9	1.06	46	335
4	PGC(isoBBC) 42	14.9	1.05	85	341
5	PGC($\left.{ }^{\text {neoPPC }}\right)_{40}$	15.7	1.06	125	342
6	PGC(EHEHC) ${ }_{30}$	15.8	1.06	38	345

${ }^{a}$ Repeating units were calculated based on ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{b} M_{\mathrm{n}, \text { SEC }}$ and D were measured by SEC ${ }^{c} T_{\mathrm{g}}$ was measured by DSC, performed with a heating rate of 10 ${ }^{\circ} \mathrm{C} / \mathrm{min} .{ }^{d} T_{\mathrm{d}}$ was measured from the onset of TGA analysis, heating from 25 to $500^{\circ} \mathrm{C}$.

Table S2. Data for Oligo/PolyGC(neoPPC) (Entries 7-12) and Oligo/PolyGC(EHEHC) (Entries 13-19)

Entry	Oligo/Polymer ${ }^{\text {a }}$	$\begin{aligned} & M_{\mathrm{n}}{ }^{b} \\ & (\mathrm{Da}) \end{aligned}$	Đ	$\begin{gathered} T_{\mathrm{g}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} T_{\mathrm{d}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$
7	OGC(neoPPC) ${ }_{1}$	571	1.00	13	266
8	OGC($\left.{ }_{\text {neoPPC }}\right)_{2}$	1019	1.00	50	266
9	OGC($\left.{ }_{\text {neoPPC }}\right)_{3}$	1468	1.00	65	284
10	OGC($\left.{ }_{\text {neoPPC }}\right)_{4}$	1916	1.00	79	295
11	PGC(neoPPC) ${ }_{7}$	3020	1.07	85	328
12	PGC(neoPPC) ${ }_{20}$	8800	1.06	118	331
13	OGC(EHEHC) ${ }_{1}$	655	1.00	-25	254
14	OGC(EHEHC) 2_{2}	1187	1.00	-8	268
15	OGC(EHEHC) ${ }_{3}$	1720	1.00	4	270
16	OGC(EHEHC) ${ }_{4}$	2252	1.00	8	273
17	OGC(EHEHC) ${ }_{5}$	2785	1.00	11	271
18	PGC(EHEHC) ${ }_{10}$	5360	1.06	26	304
19	PGC(EHEHC) ${ }_{17}$	9080	1.06	32	322

${ }^{a} D P_{\mathrm{n}}$ values for polymers were determined by SEC results. ${ }^{b} M_{\mathrm{n}}$ for discrete oligomers were calculated from $D P_{\mathrm{n}}$.

Supplementary Figures:

Figure S1. ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of $\mathrm{GC}(\mathrm{BBC})(\mathbf{2})$ in CDCl_{3}.

Figure S2. ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of $\mathrm{GC}(\mathrm{HHC})(3)$ in CDCl_{3}.

Figure S3. ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of GC(isoBBC) (4) in CDCl_{3}.

Figure S4. ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of GC(neoPPC) (5) in CDCl_{3}.

Figure S5. ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra of GC(EHEHC) (6) in CDCl_{3}.

Figure S6. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathrm{PGC}(\mathrm{EEC})_{51}$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathrm{PGC}(\mathrm{BBC})_{40}$.

Figure S8. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathrm{PGC}(\mathrm{HHC})_{36}$.

Figure S9. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathrm{PGC}(\text { isoBBC })_{42}$.

Figure S10. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathrm{PGC}(\text { neoPPC })_{40}$.

Figure S11. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathrm{PGC}(\mathrm{EHEHC})_{30}$.

Figure S12. FT-IR(ATR) spectra of PGC(RRC).

Figure S13. MALDI-TOF MS spectra of PGC(RRC): (a) PGC(EEC) $)_{51}$, (b) PGC(BBC) $)_{40}$, (c) PGC(HHC) $)_{36}$, (d) PGC(isoBBC) $)_{42}$, (e) PGC(neoPPC) $)_{40}$, and (f) PGC(EHEHC) $)_{30} . D P_{\mathrm{n}}$ values were calculated from ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Figure S14. TGA traces $\left(25-500^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C} / \mathrm{min}\right)$ of $\mathrm{PGC}(\mathrm{RRC})$.

Figure S15. SEC chromatograms (THF as eluent, $1.0 \mathrm{~mL} / \mathrm{min}$) of the crude mixtures of oligomers prepared by ROP of GC(neoPPC).

Figure S16. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of oligo/polyGC(neoPPC).

Figure S17. SEC chromatograms (THF as eluent, $1.0 \mathrm{~mL} / \mathrm{min}$) of the crude mixtures of oligomers prepared by ROP of GC(EHEHC).

Figure S18. ${ }^{1} \mathrm{H}$ NMR $\operatorname{spectra}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of oligo/polyGC(EHEHC).

Figure S19. MALDI-TOF MS spectra (with K^{+}as the adduct ion) of the discrete oligomers of GC(EHEHC).

Figure S20. Plots of (a) $T_{g} v s . \log M_{\mathrm{n}}$ and (b) $M_{\mathrm{n}}{ }^{-1}$ of oligo/polyGC(EHEHC).

Figure S21. Plots of (a) $T_{g} v s . M_{\mathrm{n}}$ for oligo/polyGC(neoPPC) and (b) oligo/polyGC(EHEHC).

Reference:
(1) Su, L.; Khan, S.; Fan, J. W.; Lin, Y. N.; Wang, H.; Gustafson, T. P.; Zhang, F. W.; Wooley, K. L., Functional sugar-based polymers and nanostructures comprised of degradable poly(Dglucose carbonate)s. Polym. Chem. 2017, 8 (10), 1699-1707.

