Supporting Information

Differential Metal Ion Sensing By An Antipyrine Derivative In Aqueous And β-Cyclodextrin Media: Selectivity–Tuning By β-Cyclodextrin

Govindaraj Tamil Selvan,¹ Sumathi Poomalai,² Sivaraj Ramasamy,¹ Paulraj Mosae Selvakumar,¹ Israel V Muthu Vijayan Enoch,^{1,3}* Sara Gracia Lanas,⁴ Andrea Melchior⁴*

¹Chemistry Research Lab, Department of Chemistry, ³Nanotoxicology Research Lab, Department of Nanoscience, Karunya Institute of Technology & Sciences, Coimbatore 641114, Tamil Nadu, India.

Table of contents

Figures	Caption	Page No.
Figure S1	¹ H NMR Spectrum of Compound 1	S-2
Figure S2	¹³ C NMR Spectrum of Compound 1	S-3
Figure S3	Mass Spectrum of Compound 1	S-4
Figure S4	(A) Benesi–Hildebrand plot of 1 –VO ²⁺ 1:1 complex. (B) Jobs plot, of the 1 –VO ²⁺ complex formation, made using fluorescence intensities	S-5
Figure S5	(A) Fluorescence spectra used for the determination of detection limit of Compound 1 with VO^{2+} Metal ion sensing and (B) Compound 1 in β -CD solution with Al^{3+} Metal ion sensing.	S-6
Figure S6	Structure of the metal complexes of Compound 1 in open and β -CD-bound forms.	S-7
Figure S7	(A) Benesi–Hildebrand plot of Compound 1 in β -CD solution assuming 1:1 binding with Al ³⁺ ion pH =7.4 (B) Jobs plot, of the 1 –Al ³⁺ complex formation, made using fluorescence intensities.	S-8
Figure S8	¹ H NMR Spectrum of Compound 1 , 1 –β-CD, and 1 –β-CD with Al ³⁺ ion.	S-9

²Department of Chemistry, Muthayammal College of Arts and Science, Namakkal District, Tamil Nadu, India.

³University of Udine, Polytechnic Department of Engineering, Chemistry Laboratories via del Cotonificio 108, 33100 Udine, Italy.

^{*}Corresponding authors, E-mail addresses: drisraelenoch@gmail.com (IVMVE); andrea.melchior@uniud.it (AM).

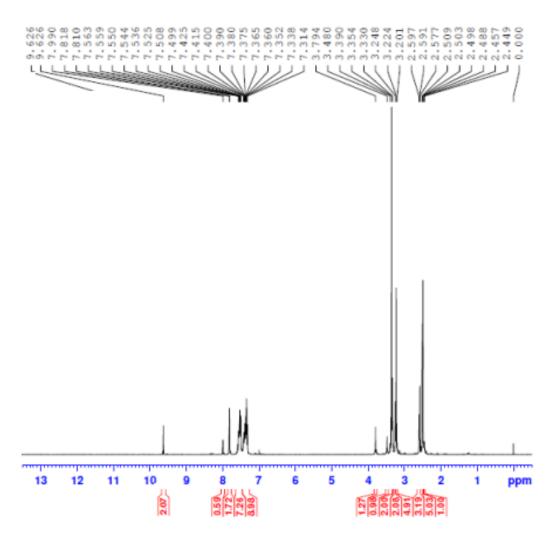


Figure S1. ¹H NMR Spectrum of Compound 1

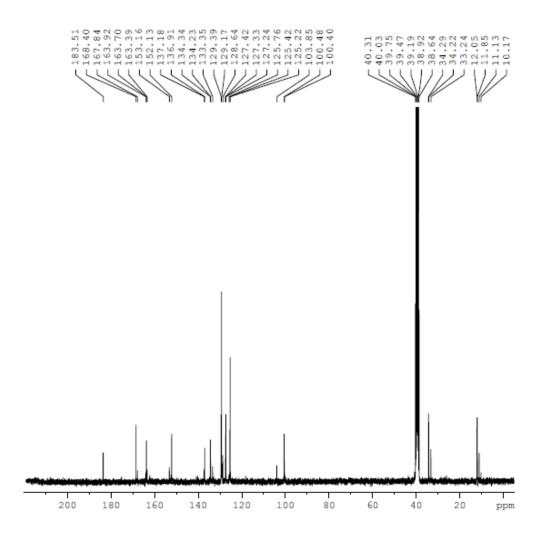


Figure S2. ¹³C NMR Spectrum of Compound 1

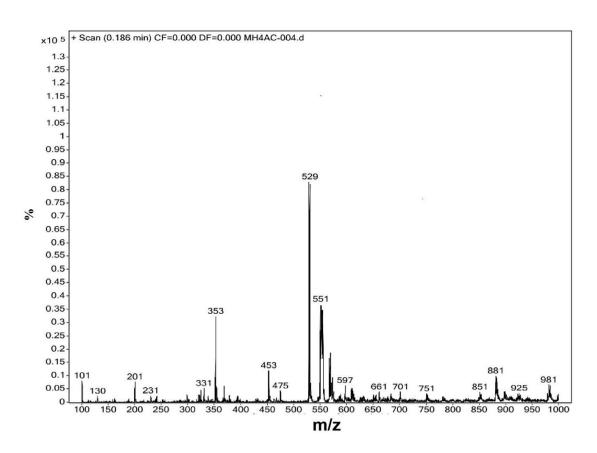
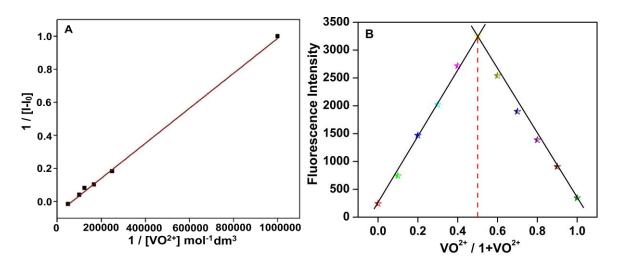



Figure S3. Mass Spectrum of Compound 1

Figure S4. (A) Benesi–Hildebrand plot of **1**–VO²⁺ 1:1 complex. (B) Jobs plot, of the **1**–VO²⁺ complex formation, made using fluorescence intensities.

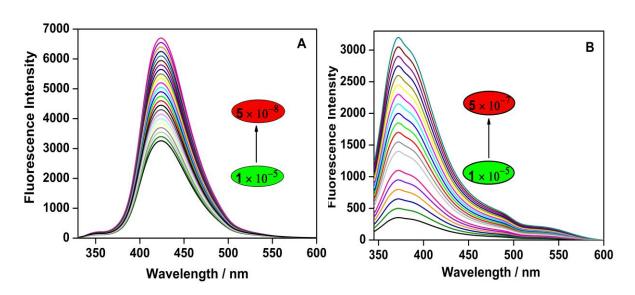


Figure S5. (A) Fluorescence spectra used for the determination of detection limit of Compound 1 with VO^{2+} Metal ion sensing (B) Compound 1 in β -CD solution with Al^{3+} Metal ion sensing.

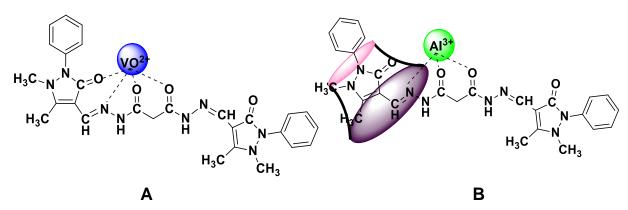
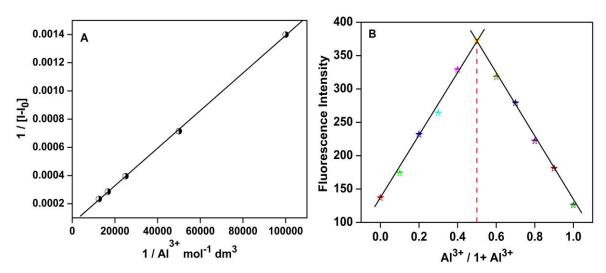
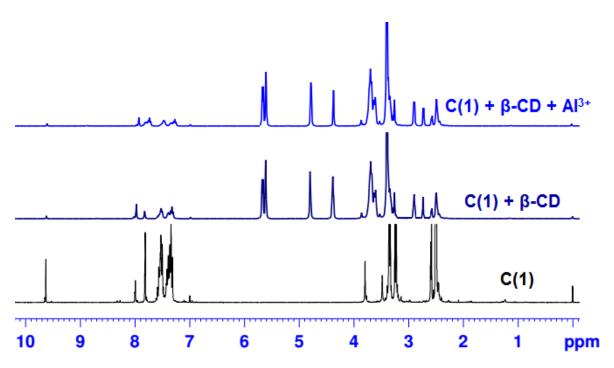




Figure S6. Structure of the metal complexes of Compound 1 in open and β -CD-bound forms.

Figure S7. (A) Benesi–Hildebrand plot of **1**–β-CD complex solution assuming 1:1 binding with Al³⁺ ion pH =7.4 (B) Jobs plot, of the **1**–β-CD-Al³⁺ complex formation, made using fluorescence intensities.

Figure S8. ¹H NMR Spectrum of Compound **1**, **1**– β -CD and **1**– β -CD with Al³⁺ ion.