| 1  | Enhanced Performance and Conversion Pathway for Catalytic                                                                                      |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | <b>Ozonation of Methyl Mercaptan on Single-Atom Ag Deposited</b>                                                                               |
| 3  | Three-Dimensional Ordered Mesoporous MnO <sub>2</sub>                                                                                          |
| 4  |                                                                                                                                                |
| 5  | Dehua Xia <sup>a, b,</sup> , Wenjun Xu <sup>a, e,</sup> , Yunchen Wang <sup>a</sup> , Jingling Yang <sup>a</sup> , Yajing Huang <sup>a</sup> , |
| 6  | Lingling Hu <sup>a</sup> , Chun He <sup>a, b, *</sup> , Dong Shu <sup>c</sup> , Dennis Y.C. Leung <sup>d,**</sup> , Zhihua Pang <sup>e</sup>   |
| 7  |                                                                                                                                                |
| 8  | <sup>a</sup> School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou,                                               |
| 9  | 510275, China                                                                                                                                  |
| 10 | <sup>b</sup> Guangdong Provincial Key Laboratory of Environmental Pollution Control and                                                        |
| 11 | Remediation Technology, Guangzhou, 510275, China                                                                                               |
| 12 | <sup>c</sup> Key Lab of Technology on Electrochemical Energy Storage and Power Generation in                                                   |
| 13 | Guangdong Universities, School of Chemistry and Environment, South China Normal                                                                |
| 14 | University, Guangzhou, 510006, China                                                                                                           |
| 15 | <sup>d</sup> Department of Mechanical Engineering, The University of Hong Kong, Pokfulam                                                       |
| 16 | Road, Hong Kong                                                                                                                                |
| 17 | <sup>e</sup> South China Institute of Environmental Science, Ministry of Environmental Protection                                              |
| 18 | (MEP), Guangzhou 510655, PR China                                                                                                              |
| 19 |                                                                                                                                                |
| 20 |                                                                                                                                                |
| 21 | (26 Pages including supplementary 8 Texts, 5 Table and 9 Figures)                                                                              |
| 22 |                                                                                                                                                |

<sup>\*</sup>Corresponding author: School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China. Email address: <u>hechun@mail.sysu.edu.cn</u> (C. He); <u>ycleung@hku.hk</u> (D.Y.C. Leung).

- **Text S1.** Materials and Synthesis of MnO<sub>2</sub> PHMSs.
- 24 **Text S2.** Characterization of Ag/MnO<sub>2</sub> PHMSs.
- 25 **Text S3.** CV curves.
- 26 Text S4. Conclusion of characterization.
- 27 **Text S5.** Relationship between adsorption and catalytic ozonation.
- **Text S6.** Influence of humidity on activity of Ag/MnO<sub>2</sub> PHMSs.
- **29** Text S7. Reusability and Regeneration of Ag/MnO<sub>2</sub> PHMSs.
- **30 Text S8.** Conclusion of pathway.
- Table S1. Specific surface area and degradation rate constants of  $MnO_2$  and Ag/MnO<sub>2</sub> PHMSs.
- **Table S2.** Physical parameters, chemical and surface compositions of Mn, O and Ag in
- $34 \qquad Ag/MnO_2 PHMSs.$
- **Table S3.** Reduction temperatures and  $H_2$  consumptions of the samples.
- **Table S4.** TOFs for catalytic ozonation of  $CH_3SH$  for  $MnO_2$  and  $Ag/MnO_2$  PHMSs.
- Table S5. Physical parameters, chemical and surface compositions of S in Ag/MnO<sub>2</sub>
  PHMSs.
- **Figure S1.** Schematic illustration of the preparation of Ag/MnO<sub>2</sub> PHMSs.
- 40 **Figure S2.** Schematic diagram of system for removal of CH<sub>3</sub>SH.
- 41 **Figure S3.** (a) N<sub>2</sub> adsorption-desorption isotherm and (b) pore size distribution curves of
- 42 MnO<sub>2</sub> and 0.3%Ag/MnO<sub>2</sub> PHMs.
- **Figure S4.** EDS spectra of 0.3% Ag/MnO<sub>2</sub> sample.
- 44 **Figure S5**. (a) CH<sub>3</sub>SH removal efficiency in Ag/O<sub>3</sub> system and (b) Influence of humidity
- 45 on the activity of 0.3% Ag/MnO<sub>2</sub> PHMSs.
- 46 Figure S6. Performances in adsorption and catalytic ozonation of CH<sub>3</sub>SH in different
- 47 system (pre-sorbed  $N_2$ ).
- **Figure S7**. (a) Reusability of 0.3% Ag/MnO<sub>2</sub> PHMSs, and (b) CH<sub>3</sub>SH removal efficiency
- 49 in 20 cycle runs using regenerated 0.3% Ag/MnO<sub>2</sub> PHMSs by ethanol.

- 50 **Figure S8.** (a) IC analysis of final catalytic products of CH<sub>3</sub>SH using Ag/MnO<sub>2</sub> HPMSs;
- 51 (b) FT-IR spectra of Ag/MnO<sub>2</sub> PHMSs after reaction and regeneration.
- **Figure S9.**  $O_3$  decomposition by MnO<sub>2</sub> and Ag/MnO<sub>2</sub> PHMSs.
- **Text S1.** Materials and Synthesis of  $MnO_2$  PHMSs.

The chemical reagents for synthesizing Ag/MnO<sub>2</sub> PHMSs were analytical grade and used without any further purification. Mn(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O, AgNO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub>, KMnO<sub>4</sub> and HCl were purchased from Tianjing Yongda Chemical Reagent Co. Ltd., Shanghai Boda Chemical Industry Co. Ltd., Shantou Xilong Chemical Industry Co. Ltd., Tianjing

58 Fuchen Chemical Reagent Co. Ltd. and Guangzhou Reagent Chemical Industry Co. Ltd.,

respectively.  $CH_3SH$  gas source with a traceable concentration of 2000 ppm in  $N_2$  was obtained from Foshan Kedi Chemical Industry Co. Ltd. Deionized water was used

61 throughout this study.

As shown in Figure S1, Firstly, 0.01 mol Mn(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O and 0.015 mol Na<sub>2</sub>CO<sub>3</sub> were added to form white precipitates (MnCO<sub>3</sub>). Secondly, the resultant MnCO<sub>3</sub> was transferred into 0.0002 M KMnO<sub>4</sub> solution to form MnO<sub>2</sub> shell with stirring for 4 min. Thirdly, the remaining MnCO<sub>3</sub> was removed by 0.01 M HCl. Finally, MnO<sub>2</sub> PHMSs were obtained by calcination in a furnace at 400 °C for 4 h.

#### 68 **Text S2.** Characterization of Ag/MnO<sub>2</sub> PHMSs

The X-ray diffraction (XRD) patterns of the catalysts were collected using a Rigaku 69 D/max 2200PC diffractometer with Cu Ka radiation. Raman spectra was obtained using a 70 Laser Micro-Raman Spectrometer (Renishaw inVia, British) with a 514.5 nm laser 71 source. The morphology of the catalysts was taken by JEM 2100F and H-7650 72 Transmission electronic microscopy (TEM) at both bright and dark fields. The images of 73 spherical aberration-corrected high angle angular dark field scanning transmission 74 electron microscopy (Cs-corrected HAADF-STEM) were taken from a JEM ARM 200F 75 instrument. The chemical compositions of the catalysts were determined by X-ray 76 photoelectron spectroscopy (XPS, ESCALAB 250, Thermo Fisher Scientific, USA). The 77 specific surface area (BET) was determined with an ASAP2010 adsorption instrument 78 79 (USA). Hydrogen temperature-programmed reduction (H<sub>2</sub>-TPR) was performed on the BELCAT-B (Japan) instrument. Fourier transform infrared spectrometer (FT-IR) patterns 80 were collected using an EQUIMNO2X 55 FTIR spectrometer with 0.2  $\text{cm}^{-1}$  resolution. 81 The resultant products were analyzed by an ion chromatography (IC, 882 Compact IC) 82 plus-Anion, Switzerland). In situ diffused Fourier transform infrared spectroscopy (in situ 83 DRIFTS) was recorded in Thermo Fisher 6700. The mass fraction of Ag in the Ag/MnO<sub>2</sub> 84 PHMSs was determined by an Inductively Coupled Plasma Optical Emission 85 Spectrometer (ICP-OES). 86

The degradation efficiency of  $CH_3SH$  was calculated as follow, in which  $[CH_3SH]_{in}$ and  $[CH_3SH]_{out}$  represent the concentration of  $CH_3SH$  in the inlet steam and outlet stream, respectively.

90 CH<sub>3</sub>SH degradation (%) = 
$$\left(1 - \frac{[CH_3SH]_{out}}{[CH_3SH]_{in}}\right) \times 100\%$$

92 Text S3. CV curves

To investigate the interaction of Ag and MnO<sub>2</sub> on the electron transfer progress and 93 the redox ability, the CV curves of MnO<sub>2</sub> and Ag/MnO<sub>2</sub> PHMSs are studied in a 0.1 M 94 Na<sub>2</sub>SO<sub>4</sub> solution at water-catalyst interface with ozone purging and shown in Figure 1d. 95 The measurements were conducted in a conventional H-type electrochemical Pyrex cell 96 97 with a standard three-electrode assembly. This assembly had a MnO<sub>2</sub> or Ag/MnO<sub>2</sub> PHMSs working electrode, a Pt wire as a counter electrode (area,  $0.5 \times 1.0 \text{ cm}^2$ ), and a 98 saturated calomel electrode (SCE) as a reference electrode. To prepare MnO<sub>2</sub> electrodes 99 100 and Ag/MnO<sub>2</sub> PHMSs electrodes, the MnO<sub>2</sub> or Ag/MnO<sub>2</sub> PHMSs slurry were prepared by dispersing 20.0 mg catalysts into 5 mL water containing 3 wt.% poly(vinyl alcohol) 101 102 (PVA). ITO (sheet resistance  $\approx 20 \ \Omega \ cm^{-2}$ ) was employed as the substrate of MnO<sub>2</sub> or Ag/MnO<sub>2</sub> PHMSs electrode. 103

The electron transfer progress and the redox ability between Ag and MnO<sub>2</sub> are 104 105 important for heterogeneous catalytic ozonation [46]. To investigate the interaction of Ag and MnO<sub>2</sub> on the electron transfer progress and the redox ability, the CV curves of 106 Ag/MnO<sub>2</sub> PHMSs are studied in a 0.1 M Na<sub>2</sub>SO<sub>4</sub> solution at water-catalyst interface with 107 ozone purging and shown in Figure 1d. After Ag deposition, the current of Ag/MnO<sub>2</sub> 108 PHMSs are much higher than that of MnO<sub>2</sub> PHMSs, verifying the presence of higher 109 surface charge on Ag/MnO<sub>2</sub> PHMSs than MnO<sub>2</sub> PHMSs. Moreover, in the presence of 110 ozone, it is obvious to observe that current intensity of both curves was increased and the 111 peak potential shifted positive, suggesting a possible reduction process occurred on the 112

surface of catalysts with the decomposition of ozone. Similarly, the reduction current in
case of Ag/MnO<sub>2</sub> PHMSs was significantly increased as compared to MnO<sub>2</sub> PHMSs,
confirming that the Ag/MnO<sub>2</sub> PHMSs exhibit a favorable performance for interfacial
electron transfer than MnO<sub>2</sub> PHMSs [47].

118 Text S4. Conclusion of characterization

Based on the above structural analysis, it is expected that  $Ag/MnO_2$  PHMSs with higher density of oxygen vacancy, crystalline defect and  $O_L$  would demonstrate a better catalytic ability than  $MnO_2$  PHMSs. In other words, the crystalline defects and oxygen vacancies provide places for the decomposition of ozone and play a major role in the adsorption, activation and migration of oxygen species, together with  $O_L$  to allow the diffusion of surface activated oxygen species, resulting in a better catalytic activity [47].

**Text S5.** Relationship between adsorption and catalytic ozonation.

The Ag/MnO<sub>2</sub> catalysts were first adsorb N<sub>2</sub> to an equilibrium, and then purging ozone and CH<sub>3</sub>SH to start the catalytic ozonation. As shown in Fig. S5, the removal efficiency (74.76%) was much lower than that of catalytic ozonation of CH<sub>3</sub>SH directly (98%). This is mainly due to the pre-sorbed N<sub>2</sub> limit the interaction between CH<sub>3</sub>SH and Ag/MnO<sub>2</sub>, efficiently inactivating the adsorption and catalytic ozonation of CH<sub>3</sub>SH. It is reasonable to propose that the pre-adsorbed CH<sub>3</sub>SH can efficiently enhance the CH<sub>3</sub>SH degradation, vice versa. Moreover, attributed to the high adsorption by Ag/MnO<sub>2</sub> PHMs with 3D structure, it can prolong the retention and contact time of ozone and CH<sub>3</sub>SH, thus to make the oxidation more completely. 

149

150

## 151 **Text S6.** Influence of humidity on activity of Ag/MnO<sub>2</sub> PHMSs

Generally, humidity is beneficial for the catalytic ozonation [50]. As shown in Figure S4, when the humidity of the inflow CH<sub>3</sub>SH was increased from 5% to 67%, the removal efficiency of the optimal 0.3% Ag/MnO<sub>2</sub> PHMSs was further enhanced from 85% to ~100%. It is proposed that the decomposed ozone readily interact with surface OH/H<sub>2</sub>O to generate more reactive species like •OH for CH<sub>3</sub>SH oxidation. Moreover, the humid air stream can dissolve the accumulated intermediate and release active sites promptly [51].

159

#### 161 **Text S7.** Reusability and Regeneration of Ag/MnO<sub>2</sub> PHMSs

In industrial applications, the durability of the catalyst is essential for economic and high process efficiency. As shown in Figure S7a, the removal efficiency of CH<sub>3</sub>SH decreased to 86% for used Ag/MnO<sub>2</sub> PHMSs in the second run, indicating that Ag/MnO<sub>2</sub> PHMSs show little inactivation. This is mainly ascribed to the surface accumulated intermediates, which could inhibit the adsorption and cover the active sites.

The little inactivation of Ag/MnO<sub>2</sub> PHMSs is presumably due to the surface 167 accumulated intermediates, which could inhibit the adsorption and cover the active sites. 168 Therefore, FTIR was conducted to identify the residual species on the used Ag/MnO<sub>2</sub> 169 PHMSs. As shown in Figure S8, there were new bands occurred at 1164 cm<sup>-1</sup> (S=O 170 symmetrical stretching vibration) and 1058 cm<sup>-1</sup> (S-OH stretching vibration), confirming 171 the formation of methanesulfonic acid (CH<sub>3</sub>SO<sub>3</sub><sup>-</sup>) [52]. Meanwhile, other new bands were 172 also observed at 989 cm<sup>-1</sup> (C-O stretching vibration) and 780 cm<sup>-1</sup> (S-O stretching 173 vibration), suggesting the C-S bond of CH<sub>3</sub>SH was broken and formed into CO<sub>3</sub><sup>2-</sup> and 174 SO<sub>4</sub><sup>2-</sup> species [26, 52]. To regenerate the used Ag/MnO<sub>2</sub> PHMSs, ethanol and HCl were 175 utilized to remove the residual S ions. As shown in Figure S6a, after washing by ethanol 176 or HCl, the FTIR peaks of intermediates become weaker and even disappeared, indicating 177 both ethanol and HCl are efficient for the regeneration of Ag/MnO<sub>2</sub> PHMSs. Fortunately, 178 the CH<sub>3</sub>SH removal efficiency for the regenerated Ag/MnO<sub>2</sub> PHMSs was recovered from 179 87.3% to 90.4% (after HCl washing) and 90.6% (after ethanol washing) respectively 180 (Figure S7a)." 181

The reusability and catalytic stability of Ag/MnO<sub>2</sub> PHMSs were evaluated in the long-term process of successive reusability test (20 cycle runs). Figure S7b shows CH<sub>3</sub>SH removal efficiency in 20 cycle runs using Ag/MnO<sub>2</sub> PHMSs. It can be seen that CH<sub>3</sub>SH removal efficiency for the regenerated Ag/MnO<sub>2</sub> PHMSs by ethanol washing was 84.7%. This result suggested that Ag/MnO<sub>2</sub> PHMSs displays a relatively stable catalytic performance for catalytic ozonation of CH<sub>3</sub>SH in 20 cycle runs with respect to
ethanol-washing regeneration and is a promising catalyst in the practical applications.

189

### **191 Text S8.** Conclusion of pathway

On the surface of single atomic Ag/MnO<sub>2</sub> PHMSs, a CH<sub>3</sub>SH molecule can be adsorbed 192 by the Ag-SH bond coupling (CH<sub>3</sub>S-Ag) and then be nucleophilically attacked by 193 neighboring Ag activated oxygen species. During catalytic ozonation, H<sub>2</sub>O first adsorbed 194 to form surface OH groups at the surface sites. Simultaneously, O<sub>3</sub> was interconnected 195 with the catalyst via electrostatic attraction or hydrogen bonding, facilitating electron 196 transfer. In the next phase, H-O and O-O bonds were simultaneously weakened to 197 decompose into  $\cdot O_2^-$ ,  $\cdot OH$  and  $^1O_2$  through a typical chain reaction. With a core 198 intermediate of CH<sub>3</sub>S<sup>-</sup>, the chemisorption and oxidation are continuously preceded and 199 ultimately mineralize CH<sub>3</sub>SH into SO<sub>4</sub><sup>2-</sup> and CO<sub>3</sub><sup>2-</sup> by the catalytic ozonation induced 200 ROSs. 201

|                           | <b>A</b>                       | G                              | Total amount of      | Degradation rate<br>constant                         |  |
|---------------------------|--------------------------------|--------------------------------|----------------------|------------------------------------------------------|--|
| Catalysts                 | Ag content                     | $S_{\text{BET}}$               | degradation          |                                                      |  |
|                           | wt.%                           | m <sup>2</sup> g <sup>-1</sup> | 10 <sup>-6</sup> mol | 10 <sup>-8</sup> mol g <sup>-1</sup> s <sup>-1</sup> |  |
| MnO <sub>2</sub>          | 0                              | 124.13                         | 1.90                 | 3.17                                                 |  |
| 0.1% Ag/MnO <sub>2</sub>  | 0.104                          | 120.87                         | 2.11                 | 3.51                                                 |  |
| 0.2% Ag/MnO <sub>2</sub>  | 0.2% Ag/MnO <sub>2</sub> 0.191 |                                | 2.39                 | 3.98                                                 |  |
| 0.3% Ag/MnO <sub>2</sub>  | 0.275                          | 104.11                         | 2.54                 | 4.24                                                 |  |
| 0.5% Ag/MnO <sub>2</sub>  | 0.492                          | 102.95                         | 2.27                 | 3.79                                                 |  |
| 0.75% Ag/MnO <sub>2</sub> | 0.787                          | 75.29                          | 1.98                 | 3.31                                                 |  |
| 1.0% Ag/MnO <sub>2</sub>  | 1.143                          | 66.17                          | 1.29                 | 2.16                                                 |  |

# Table S1. Specific surface area and degradation rate constants of $MnO_2$ and

Ag/MnO<sub>2</sub> PHMSs.

S13

|                                     |               |                      |               |                    |                      | 0 (0/)                | $D_{surf}$ (%) Ag <sup>0</sup> (%) | (%) Ag <sup>+</sup> (%) | Surface element molar ratio                          |                 |                 |
|-------------------------------------|---------------|----------------------|---------------|--------------------|----------------------|-----------------------|------------------------------------|-------------------------|------------------------------------------------------|-----------------|-----------------|
| Sample                              | $Mn^{2+}$ (%) | Mn <sup>3+</sup> (%) | $Mn^{4+}$ (%) | O <sub>L</sub> (%) | O <sub>ads</sub> (%) | O <sub>surf</sub> (%) |                                    |                         | Mn <sup>2+</sup> +Mn <sup>3+</sup> /Mn <sup>4+</sup> | $O_L / O_{ads}$ | $Ag^{0}/Ag^{+}$ |
| MnO <sub>2</sub>                    | 6.79          | 42.13                | 51.09         | 62.21              | 35.23                | 2.16                  |                                    |                         | 0.96                                                 | 1.78            |                 |
| Ag/MnO <sub>2</sub>                 | 9.96          | 41.68                | 48.36         | 67.94              | 32.06                | 0.00                  | 46.75                              | 53.25                   | 1.06                                                 | 2.12            | 0.88            |
| Ag/MnO <sub>2</sub><br>(adsorption) | 8.28          | 42.31                | 49.41         | 66.46              | 33.19                | 0.35                  | 38.69                              | 61.31                   | 1.02                                                 | 2.00            | 0.63            |
| Ag/MnO <sub>2</sub><br>(ozonation)  | 5.04          | 41.83                | 53.13         | 60.11              | 37.56                | 2.32                  | 40.73                              | 59.27                   | 0.88                                                 | 1.51            | 0.69            |

Table S2. Physical parameters, chemical and surface compositions of  $Mn_{\gamma}$  O and Ag in Ag/MnO<sub>2</sub> PHMSs.

| Cotalvata                | Reductio | n temperatu | res (°C) <sup>[a]</sup> | H <sub>2</sub> consumptions (mmol/g) <sup>[b]</sup> |        |      |  |
|--------------------------|----------|-------------|-------------------------|-----------------------------------------------------|--------|------|--|
|                          | peak 1   | peak 2      | peak 3                  | x 3 peak 1 peak 2                                   | peak 3 |      |  |
| MnO <sub>2</sub>         | 202      | 311         | 491                     | 0.79                                                | 0.68   | 3.34 |  |
| 0.3% Ag/MnO <sub>2</sub> | 114      | 155         | 253                     | 1.04                                                | 2.83   | 3.88 |  |

Table S3. Reduction temperatures and H<sub>2</sub> consumptions of the samples.

[a] Reduction temperatures corresponding to the maximum values of reduction peaks in the  $H_2$ -TPR result; [b]  $H_2$  consumptions calculated by reduction peak areas.

| Cotolyata           | TOF                               |
|---------------------|-----------------------------------|
| Catalysis           | ×10 <sup>-3</sup> S <sup>-1</sup> |
| MnO <sub>2</sub>    | 0.0437                            |
| Ag/MnO <sub>2</sub> | 2.28                              |

Table S4. TOFs for catalytic ozonation of CH<sub>3</sub>SH for MnO<sub>2</sub> and Ag/MnO<sub>2</sub> PHMSs.

Turnover frequency (TOF) is defined as the number of  $CH_3SH$  molecules converted per surface Ag or  $Mn^{4+}$  per second.

Tureover rate = 
$$\frac{C_{\text{CH3SH}} \times X_{CH3SH} \times \text{Vgas}}{n}$$

where  $C_{CH3SH}$ : concentration of  $CH_3SH$  in gas mixture;  $X_{CH3SH}$ : conversion of  $X_{CH3SH}$ based on  $CO_2$  formation; Vgas: total molar flow rate; n: mole number of  $Mn^{4+}$  ions per gram of Ag/MnO<sub>2</sub> catalyst calculated by H<sub>2</sub>—TPR, or mole number of surface Ag of Ag/MnO<sub>2</sub> calculated by Ag dispersion. The Ag dispersions were estimated through a theory of hemisphere models. The calculation method is following.

Surface Ag atom number (nsurf) =  $\frac{4\pi r^2}{2} \cdot N_A \cdot N_{con}$ 

Total Ag atom number (n<sub>total</sub>)  $\frac{\rho_{Ag \cdot (\frac{4}{3}\pi r^3)}}{M_{Ag}} \cdot N_A =$ 

Dispersion (%) =  $\frac{n_{surf}}{n_{total}}$ 

where N<sub>A</sub>: Avogadro constant; r: the semidiameter of silver nanoparticles; N<sub>con</sub>: concentration constant of surface silver atoms (N<sub>con</sub> =  $1.15 \times 10^{19}$  m<sup>-2</sup>);  $\rho_{Ag}$ : density of silver; M<sub>Ag</sub>: molar mass of silver.

|                                     | S 2p BE(eV) |           |          |         | Ag-S I  | Dimethyl         | Sulfaria | Culfata |
|-------------------------------------|-------------|-----------|----------|---------|---------|------------------|----------|---------|
| Sample                              | Ag-S        | Dimethyl  | Sulfonic | Sulfate | species | disulfide<br>(%) | acid (%) | (%)     |
|                                     | species     | disulfide | acid     |         | (%)     |                  |          |         |
| Ag/MnO <sub>2</sub><br>(adsorption) | 162.61      | 164.44    | 168.30   | 169.52  | 2.33    | 29.64            | 48.29    | 19.74   |
| Ag/MnO <sub>2</sub><br>(ozonation)  | 162.60      | 164.43    | 168.19   | 169.46  | 1.55    | 13.74            | 52.71    | 32.00   |

**Table S5.** Physical parameters, chemical and surface compositions of S in Ag/MnO2PHMSs.



Figure S1. Schematic illustration of the preparation of Ag/MnO<sub>2</sub> PHMSs.



**Figure S2.** Schematic diagram of system for removal of  $CH_3SH$ . 1,  $CH_3SH$  gas source; 2,  $N_2$  gas source; 3,  $O_2$  gas source; 4, inlet mixing container; 5, ozone generator; 6, tube reactor; 7, exhaust gas absorption device; 8, sparger; 9, catalysts; F1-F5, gas flow meters; S1-S2, gas sensors of  $CH_3SH$ .



Figure S3. EDS spectra of 0.3% Ag/MnO<sub>2</sub> sample.



Fig. S4. (a)  $N_2$  adsorption-desorption isotherm and (b) pore size distribution curves of  $MnO_2$  and  $0.3\%Ag/MnO_2$  PHMs.



Figure S5. (a) CH<sub>3</sub>SH removal efficiency in Ag/O<sub>3</sub> system; (b) Influence of humidity on the activity of 0.3% Ag/MnO<sub>2</sub> PHMSs.



Figure S6. Performances in adsorption and catalytic ozonation of  $CH_3SH$  in different system (pre-sorbed  $N_2$ ).



Figure S7. (a) Reusability of 0.3% Ag/MnO<sub>2</sub> PHMSs, and (b) CH<sub>3</sub>SH removal efficiency in 20 cycle runs using regenerated 0.3% Ag/MnO<sub>2</sub> PHMSs by ethanol.



**Figure S8.** (a) IC analysis of final catalytic products of CH<sub>3</sub>SH using Ag/MnO<sub>2</sub> HPMSs; (b) FT-IR spectra of Ag/MnO<sub>2</sub> PHMSs after reaction and regeneration.



Figure S9. O<sub>3</sub> decomposition by MnO<sub>2</sub> and Ag/MnO<sub>2</sub> PHMSs.