Supporting information

Synthesis and Evaluation of Troponoids as a New Class of Antibiotics

Feng Cao^{†,*}, Cari Orth[†], Maureen J. Donlin[‡], Patrick Adegboyega[†], Marvin J. Meyers^{Δ}, Ryan P. Murelli^{II, ϕ}, Mohamed Elagawany^{§, ϵ}, Bahaa Elgendy^{§, ∞} and John E. Tavis^{\perp}

[†]John Cochran Division, Department of Veterans Affairs Medical Center, 915 North Grand Blvd., St. Louis, MO 63106, USA.

[‡]Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.

^ADepartment of Chemistry, Saint Louis University, St. Louis, MO 63104, USA.

^{II}Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, USA.

[•]PhD Program in Chemistry, The Graduate Center of The City University of New York, New York 10016, USA.

[§]Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO 63110, USA.

[€]Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Damanhour University,

Damanhour 31111, Egypt.

[∞]Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt.

^LDepartment of Molecular Microbiology and Immunology and the Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.

*Address correspondence to Feng Cao, <u>feng.cao@va.gov</u>

Keywords: Troponoids, antibacterial, Gram-positive, Gram-negative, multi-drug resistance

Table of Contents

I. Table S1. Troponoids tested for primary and quantitative anti-bacte	erial screening and
CC ₅₀ results	s-3
II. Figure S1. Structures of compounds	s-6
III. Synthesis and Characterization of compound 675-686	s-13

MIC ₈₀ (µM)					
Compound	S.aureus	E.coli	A.banmannii	P. aeruginosa	СС₅₀ (µМ)
Number	(ATCC 29213)	(ATCC35218)	(from a patient)	ATCC 27853	
46	19.8	44.4	100	>71.4	25
47	66.7	44.4	51.2	>71.4	66.4
48	66.7	58.1	100	>71.4	53.4
49	55.6	87.1	>100	>71.4	13.8
50	100	>71.4	>71.4	>71.4	78.6
51	16.5	>100	>71.4	>71.4	>100
52	>100	>71.4	>71.4	>71.4	>100
53	11.7	>100	>71.4	>71.4	>100
54	16.1	66.7	44.4	>71.4	95.6
55	44.4	46.9	>71.4	>71.4	4.2
56	44.4	66.7	>71.4	>71.4	35
57	>100	>71.4	>71.4	>71.4	57
60	>100	>71.4	>71.4	>71.4	
61	>100	>71.4	>71.4	>71.4	30.8
62	19.8	>100	83.4	>71.4	98.9
63	13.2	100	83.4	>100	99.5
106	66.7	>100	>71.4	>71.4	38
107	>100	>71.4	>71.4	>71.4	72.4
108	>100	>71.4	>71.4	>71.4	112.5
109	100	>71.4	>71.4	>71.4	93
110	100	71.4	66.7	>71.4	32
111	66.7	66.7	100	>71.4	35.5
112	66.7	>71.4	>71.4	>71.4	79
113	33.3	>100	71.4	>71.4	47
114	19.8	>71.4	71.4	>71.4	38.3
118	>100	>71.4	>71.4	>71.4	17.2
120	19.8	44.4	100	>71.4	42.4
143	100	>71.4	>71.4	>71.4	>100
144	>100	>71.4	>71.4	>71.4	>100
145	29.6	>71.4	>71.4	>71.4	6.3
146	19.8	>71.4	>71.4	>71.4	28.9
147	44.4	>71.4	>71.4	>71.4	86.8
172	66.7	66.7	>71.4	>100	95
173	44.4	>71.4	>71.4	71.4	76.6
195	>100	>71.4	>71.4	>71.4	92

I. Table S1. Troponoids tested for primary and quantitative anti-bacterial screening and CC₅₀ results

				i i	÷
210	>71.4	>71.4	71.4	>71.4	71
261	17.6	19.8	29.6	>71.4	58
262	19.8	66.7	100	>71.4	57.5
264	100	>71.4	>71.4	>71.4	20.5
265	29.6	44.4	44.4	>71.4	25.5
266	66.7	>71.4	>71.4	>71.4	20
267	44.4	>71.4	>71.4	>71.4	16.9
269	>100	>71.4	>71.4	>71.4	>100
270	44.4	66.7	100	>71.4	12.2
271	>100	>71.4	>71.4	>71.4	36.3
272	44.4	44.4	29.6	>71.4	10.1
273	44.4	>71.4	>71.4	>71.4	>100
274	44.4	>71.4	>71.4	>71.4	>100
280	>100	>71.4	>71.4	>71.4	88.2
281	65.8	>100	>71.4	>71.4	>100
282	18.2	>100	>71.4	>71.4	96.5
283	15.4	>100	>71.4	>71.4	94.6
284	13.2	24.1	55.6	>71.4	91
285	8.8	100	44.4	>71.4	>100
308	44.4	24.7	29.6	>71.4	25.8
309	44.4	>71.4	71.4	>71.4	40
310		29.6	29.6	>71.4	72.6
311	66.7	29.6	44.4	>71.4	31.7
312		71.4	71.4	>71.4	27.8
313	66.7	>71.4	>71.4	>71.4	45.4
314	66.7	>71.4	>71.4	>71.4	20
315	29.6	>71.4	>71.4	>71.4	28.5
316	29.6	>71.4	>71.4	>71.4	>100
318	>100	>71.4	>71.4	>71.4	100
319	>100	>71.4	>71.4	>71.4	50
335	100	>71.4	>71.4	>71.4	78.4
336	44.4	>71.4	100	>71.4	39.5
338	19.8	>71.4	>71.4	>71.4	>100
339	48.2	>100	>71.4	>71.4	>100
340	>100	>71.4	>71.4	>71.4	20
341	44.4	>71.4	>71.4	>71.4	17.1
342	100	>71.4	>71.4	>71.4	35.5
343	>100	>71.4	>71.4	>71.4	0.3
344	29.6	>71.4	>71.4	>71.4	1.6
345	>100	>71.4	>71.4	>71.4	100
346	>100	>71.4	>71.4	>71.4	

		1	1	1	
347	>100	>71.4	>71.4	>71.4	100
348	8.8	100	44.4	>71.4	100
349	83.4	>71.4	>71.4	>71.4	53.5
350	8.8	100	>71.4	>71.4	46
363	29.6	14.8	>100	>71.4	86
364	13.2	19.8	>71.4	>71.4	66.7
365	>100	>71.4	>71.4	>71.4	
677	100	19.8	>71.4	>71.4	8.6
678	>100	19.8	>71.4	>71.4	33.8
679	>100	>100	>71.4	>71.4	100
680	>100	19.8	>71.4	>71.4	95.7
681	>100	19.8	>71.4	>71.4	22.8
682	>100	66.7	>71.4	>71.4	56.1
684	>100	13.2	>71.4	>71.4	20.8
685	>100	19.8	>71.4	>71.4	9.6
686	>100	>100	>71.4	>71.4	42.6

II. Figure S1. Structures of compounds

Tropolones

#349 83.4 (Sa) #350 8.8 (Sa) 100 (Ec)

Tropones (1)

Tropones (2)

Alpha-hydroxytropolones (1)

Alpha-hydroxytropolones (2)

#313 66.7 (Sa)

#314 66.7 (Sa)

#315 29.6 (Sa)

Alpha-hydroxytropolones (3)

Figure S1. Structures of compounds. Part of the MIC_{80} value is listed on the bottom of each compound and the target organisms are listed in the parenthesis as abbreviations: *S. aureus* (Sa), *E. coli* (Ec) and *A. baumannii* (Ab).

III. Synthesis and Characterization of compound 675-682, 684-686

2-Mercaptocyclohepta-2,4,6-trien-1-one (675)

NaSH (4.0 g, 73 mmol) was added portion wise to a solution of **687** (4.0 g, 15 mmol) in ethanol (50 mL). The reaction mixture was stirred for 2 hr, the reaction was monitored by LCMS and TLC till completion. Ethanol was evaporated, and the resulting solid was dissolved in water and acidified with HCl (2 M) then extracted with DCM (3×50 mL) to yield the desired product (BE1100) together with its dimer. purification was performed by flash chromatography using mixture of Hexans/EtOAc to obtain the desired compound as an orange crystal (80%). ¹H NMR (400 MHz, Chloroform-*d*) δ 10.02 (s, 1H), 8.57 (d, *J* = 10.4 Hz, 1H), 7.68 – 7.55 (m, 2H), 7.53 – 7.41 (m, 2H).; ¹³C NMR (100 MHz, CDCl₃) δ 183.3, 173.3, 144.6, 139.9, 135.7, 134.9, 121.2; LC/MS m/z: 139 [M+H⁺].

General procedure for the synthesis of compounds 676-682 and 684-686

Acyl benzotriazole derivatives (0.5 mmol) was added to a solution of thiotropolone (0.525 mmol) and DMAP (0.5 mmol) in acetonitrile (5 mL). The reaction mixture was stirred for 1 hr, the reaction was monitored by LCMS and TLC till completion. The reaction mixture was concentrated under vacuo. The residue was dissolved in EtOAc (30 mL) and extracted with Na₂CO₃ solution (3 \times 20 mL). The organic layer was dried over Na₂SO₄, filtered and the solvent was evaporated in vacuo. The crude reaction mixture was purified by flash chromatography using Hexans/EtOAc to give the desired products (676-678, 680-682, and 686) in addition to two side products (684 and 685) in a pure form.

S-(7-Oxocyclohepta-1,3,5-trien-1-yl) benzothioate (676)

Yellow solid (39%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, *J* = 7.8 Hz, 2H), 7.86 (d, *J* = 8.2 Hz, 1H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 2H), 7.16 – 6.91 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 188.2, 183.6, 145.0, 142.6, 139.5, 136.5, 135.5, 135.4, 134.00, 132.4, 128.8, 127.7; LC/MS m/z: 265 [M+Na⁺].

S-(7-Oxocyclohepta-1,3,5-trien-1-yl) 2-(trifluoromethyl)benzothioate (677)

Brownish yellow solid (30%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 (d, J = 6.8 Hz, 1H), 7.94 (d, J = 6.1 Hz, 1H), 7.79 (d, J = 6.2 Hz, 1H), 7.73-7.61 (m, 2H), 7.35-7.07 (m, 4H).; ¹³C NMR (100 MHz, Chloroform-*d*) δ 189.4, 183.2, 144.8, 142.1, 139.7, 137.1, 135.7, 135.7, 132.6, 131.9, 131.6, 129.1, 127.0, 124.6, 121.8; LC/MS m/z: 333 [M + Na⁺]. HRMS (ESI⁺): Anal. Calcd for [M + Na⁺]: C₁₅H₉F₃O₂SNa⁺ 333.0168; Found 333.0165.

S-(7-Oxocyclohepta-1,3,5-trien-1-yl) 3-(trifluoromethyl)benzothioate (678)

Brownish yellow solid (31%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.29 (s, 1H), 8.24 (d, *J* = 7.9 Hz, 1H), 7.97 (d, *J* = 8.9 Hz, 1H), 7.88 (d, *J* = 7.6 Hz, 1H), 7.65 (t, *J* = 8.0 Hz, 1H), 7.28 – 7.05 (m, 4H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 187.2, 183.3, 144.3, 143.00, 139.7, 137.1, 135.9, 135.7, 132.4, 131.3, 130.9, 130.3, 129.5, 129.2, 124.6; LC/MS m/z: 333 [M + Na⁺]. HRMS (ESI⁺): Anal. Calcd for [M + Na⁺]: C₁₅H₉F₃O₂SNa⁺ 333.0168; Found 333.0165.

S-(7-Oxocyclohepta-1,3,5-trien-1-yl) 4-(trifluoromethyl)benzothioate (682)

Yellow solid (33%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.17 (d, J = 7.9 Hz, 2H), 7.97 (d, J = 8.6 Hz, 1H), 7.78 (d, J = 7.9 Hz, 2H), 7.30 – 7.04 (m, 4H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 187.5, 183.3, 144.3, 142.8, 139.8, 139.3, 135.8, 135.5, 132.3, 128.1, 125.9; LC/MS m/z: 333 [M + Na⁺]. HRMS (ESI⁺): Anal. Calcd for [M + Na⁺]: C₁₅H₉F₃O₂SNa⁺ 333.0168; Found 333.0166.

S-(7-Oxocyclohepta-1,3,5-trien-1-yl) 3-(trifluoromethoxy) benzothioate (679)

Brownish yellow solid (33%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.07 (d, J = 7.7 Hz, 1H), 7.98 (s, 1H), 7.64 – 7.46 (m, 4H), 7.27 – 7.00 (m, 3H). LC/MS m/z: 349 [M+Na⁺]. HRMS (ESI⁺): Anal. Calcd for [M₂ + Na⁺]: (C₁₅H₉F₃O₃S)₂Na⁺ 675.0341; Found 675.0337.

S-(7-Oxocyclohepta-1,3,5-trien-1-yl) 2-phenylethanethioate (680)

Brown solid (36%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (d, J = 8.6 Hz, 1H), 7.28-7.18 (m, 5H), 7.08 – 6.84 (m, 4H), 3.87 (s, 2H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.5, 183.4, 145.2, 141.7, 139.4, 135.6, 135.3, 132.9, 132.5, 129.7, 128.8, 127.7, 50.7; LC/MS m/z: 279 [M + Na⁺]. HRMS (ESI⁺): Anal. Calcd for [M + Na⁺]: C₁₅H₁₂O₂SNa⁺ 279.0450; Found 279.0449.

Yellow solid (32%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 (t, J = 8.4 Hz, 1H), 7.79 (s, 1H), 7.42 (d, J = 8.7 Hz, 1H), 7.19 – 6.92 (m, 6H), 3.92 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 186.1, 183.7, 156.9, 145.3, 142.7, 139.7, 135.5, 135.4, 133.9, 132.4, 129.6, 128.6, 125.8, 113.5, 56.2; LC/MS m/z: 328.9 [M + Na⁺]. HRMS (ESI⁺): Anal. Calcd for [M + Na⁺]: C₁₅H₁₁ClO₃SNa⁺ 329.0009; Found 329.0006.

S-(7-Oxocyclohepta-1,3,5-trien-1-yl) (2S,3S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)-amino)-3-methylpentanethioate (686)

Brown oil (32%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 (d, J = 7.7 Hz, 3H), 7.55 (t, J = 6.8 Hz, 2H), 7.31 (t, J = 7.4 Hz, 3H), 7.23 (t, J = 7.6 Hz, 2H), 7.12 – 6.85 (m, 4H), 5.33 (d, J = 9.5 Hz, 1H), 4.47 – 4.28 (m, 3H), 4.18 (t, J = 7.0 Hz, 1H), 2.10 – 1.95 (m, 1H), 1.59 – 1.44 (m, 1H), 1.17 – 1.07 (m, 1H), 0.96 (d, J = 6.8 Hz, 3H), 0.87 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 197.2, 183.3, 156.2, 144.7, 143.8, 143.6, 142.8, 141.4, 139.7, 135.6, 132.4, 127.8, 127.1, 125.1, 120.0, 67.3, 65.9, 47.2, 37.8, 24.4, 15.8, 11.7; LC/MS m/z: 496.1 [M + Na⁺]. HRMS (ESI⁺): Anal. Calcd for [M + Na⁺]: C₂₈H₂₇NO₄SNa⁺ 496.1553; Found 496.1553.

2,2'-Disulfanediylbis(cyclohepta-2,4,6-trien-1-one) (685)

Yellow solid (12-20%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 (d, J = 8.3 Hz, 2H), 7.34 – 7.26 (m, 2H), 7.12 – 6.97 (m, 6H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 184.3, 153.2, 137.4, 136.2, 133.0, 132.5, 129.7. LC/MS m/z: 275 [M + H⁺] and 296.9 [M + Na⁺]. HRMS (ESI⁺): Anal. Calcd for [M + Na⁺]: C₁₄H₁₀O₂S₂Na⁺ 297.0014; Found 297.0013.

2,2'-Thiobis(cyclohepta-2,4,6-trien-1-one) (684)

Canary yellow solid (15-20%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 (d, J = 8.9 Hz, 2H), 7.20 – 7.13 (m, 2H), 7.12 – 7.02 (m, 2H), 7.01 – 6.85 (m, 4H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 182.9, 152.2, 138.0, 136.4, 135.7, 133.6, 132.5. LC/MS m/z: 243 [M + H⁺] and 265 [M + Na⁺]. HRMS (ESI⁺): Anal. Calcd for [M + Na⁺]: C₁₄H₁₀O₂SNa⁺ 265.0294; Found 265.0292.