Supporting Information

Development of New Antimicrobial Agents from Cationic PG-surfactants containing oligo-Lys peptide

Ryosuke Kimura, Shibata Masahide, Shuhei Koeda, Atsushi Miyagawa, Hatsuo Yamamura, and Toshihisa Mizuno*

Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya, Aichi 466-8555, Japan

Figure S1. Minimum inhibitory concentration (MIC) assay of the PG-surfactants for gram-positive and -negative bacteria

Figure S2. Comparison of antimicrobial activity (MIC) and hemolytic activity (HC₅₀) of the PG-surfactants DKDKC₁₂K₃, DKDKC₁₂K₄, DKDKC₁₂K₅, K₃-DKDKC₁₂, K₃-DKDKC₁₂K₃, K₃C₁₂, K₄C₁₂, and DKDKC₁₂R₃

Figure S3. Changes in NPN fluorescence intensity (10 μ M) due to addition of the PG-surfactants (100 μ M) for 10 min.

HPLC profile and ESI-MS data of the series of PG-surfactants in this study

K₃C₁₂

Linear gradient for 30 min. from [MeCN+0.1%TFA]/[H₂O+0.1%TFA] = 30/70 to ~ 90/10.

Linear gradient for 30 min. from [MeCN+0.1%TFA]/[H₂O+0.1%TFA] = 30/70 to ~ 90/10.

DKDKC₁₂K

Linear gradient for 30 min. from [MeCN+0.1%TFA]/[H₂O+0.1%TFA] = 30/70 to ~ 90/10.

DKDKC₁₂K₂

Linear gradient for 30 min. from [MeCN+0.1%TFA]/[H₂O+0.1%TFA] = 40/70 to ~ 80/20.

DKDKC₁₂K₃

Linear gradient for 30 min. from [MeCN+0.1%TFA]/[H₂O+0.1%TFA] = 30/70 to ~ 70/30.

DKDKC₁₂K₄

Linear gradient for 30 min. from [MeCN+0.1%TFA]/[H₂O+0.1%TFA] = 35/65 to ~ 75/25.

DKDKC₁₂K₅

Linear gradient for 30 min. from [MeCN+0.1%TFA]/[H₂O+0.1%TFA] = 30/70 to ~ 70/30.

DKDKC₁₂D₅

Linear gradient for 30 min. from [MeCN+0.1%TFA]/[H₂O+0.1%TFA] = 30/70 to ~ 90/10.

DKDKC₁₂C₁K₃

Linear gradient for 30 min. from [MeCN+0.1%TFA]/[H₂O+0.1%TFA] = 30/70 to ~ 70/30.

DKDKC₁C₁₂K₃

Linear gradient for 30 min. from [MeCN+0.1%TFA]/[H₂O+0.1%TFA] = 30/70 to ~ 70/30.

DKDKC₁₂R₃

Linear gradient for 30 min. from [MeCN+0.1%TFA]/[H₂O+0.1%TFA] = 30/70 to ~ 90/10.

K₃-DKDKC₁₂

Linear gradient for 30 min. from [MeCN+0.1%TFA]/[H₂O+0.1%TFA] = 30/70 to ~ 80/20.

K₃-DKDKC₁₂K₃

Linear gradient for 30 min. from [MeCN+0.1%TFA]/[H₂O+0.1%TFA] = 30/70 to ~ 70/30.

