SUPPORTING INFORMATION

Stable Isotope labeling of Prodiginines and Serratamolides Produced by *Serratia marcescens* Directly on Agar and Simultaneous Visualization by Matrix-Assisted Laser Desorption/Ionization Imaging High-Resolution Mass Spectrometry

Dennis Eckelmann^{†,‡}, Souvik Kusari,^{†,*} and Michael Spiteller

Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Chair of Environmental Chemistry and Analytical Chemistry, TU Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany

[†]D.E. and S.K. contributed equally.

[‡]Present address: Bayer AG Division Crop Science, Alfred-Nobel-Straße 50, 40789 Monheim am Rhein, Germany

*Corresponding Author

Email: <a>souvik.kusari@tu-dortmund.de (S. Kusari);

Tel.: +49-231-755-4086, Fax: +49-231-755-4084

TABLE OF CONTENTS

I. METHODS

II. SUPPLEMENTARY FIGURES

Fig. S1. Chemical structures of secondary metabolites produced by endophytic *S. marcescens* MSRBB2.

Fig. S2. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (1 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

Fig. S3. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (1 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

Fig. S4. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (1 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

Fig. S5. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (1 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

Fig. S6. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (1 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled

prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

Fig. S7. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (1 mg/mL). Optical image with assigned scan areas and comparison of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm).

Fig. S8. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with ¹⁵NH₄Cl (1 mg/mL). Optical image with assigned scan area and localization of labeled, unlabeled, and natural ¹³C-isotopic prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm)

Fig. S9. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with $[1-^{13}C]$ -L-proline (1 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin $C_{19}^{13}CH_{23}N_{3}O$ (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

Fig. S10. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with ¹⁵N-L-serine (1 mg/mL). Optical image with assigned scan area and localization of labeled, unlabeled, and natural ¹³C-isotopic prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm)

Fig. S11. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (0.5 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

Fig. S12. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (0.5 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

Fig. S13. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (2

mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

Fig. S14. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (2 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

Fig. S15. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (2 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

Fig. S16. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (1 mg/mL). Optical image with assigned scan area (C) and localization of labeled (A) and unlabeled (B) prodiginines ($[M+H]^+ \pm 2$ ppm).

Fig. S17. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (1 mg/mL). Optical image with assigned scan area and localization of characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin $C_{20}H_{23}D_3N_3O$ (**3**, $[M+H]^+ \pm 3$ ppm).

Fig. S18. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (1 mg/mL). Optical image with assigned scan area (C) and localization of labeled (A) and unlabeled (B) prodiginines ($[M+H]^+ \pm 2$ ppm).

Fig. S19. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (1 mg/mL). Optical image with assigned scan area and localization of characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin $C_{20}H_{23}D_3N_3O$ (**3**, $[M+H]^+ \pm 3$ ppm).

Fig. S20. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine

(1 mg/mL). Optical image with assigned scan area (C) and localization of labeled (A) and unlabeled (B) prodiginines ($[M+H]^+ \pm 2$ ppm).

Fig. S21. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (1 mg/mL). Optical image with assigned scan area and localization of characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin $C_{20}H_{23}D_3N_3O$ (**3**, $[M+H]^+ \pm 3$ ppm).

Fig. S22. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with ¹⁵NH₄Cl (1 mg/mL). Optical image with assigned scan area and localization of labeled, unlabeled, and natural ¹³C-isotopic prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm).

Fig. S23. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with $[1-^{13}C]$ -L-proline (1 mg/mL). Optical image with assigned scan area (C) and localization of labeled (A) and unlabeled (B) prodiginines ($[M+H]^+ \pm 2$ ppm).

Fig. S24. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with $[1-^{13}C]$ -L-proline (1 mg/mL). Optical image with assigned scan area (C) and localization of labeled (A) and unlabeled (B) prodiginines ($[M+H]^+ \pm 2$ ppm).

Fig. S25. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with ¹⁵N-L-serine (1 mg/mL). Optical image with assigned scan area and localization of labeled, unlabeled, and natural ¹³C-isotopic prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm)

Fig. S26. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with ¹⁵N-L-serine (1 mg/mL). Optical image with assigned scan area and localization of labeled, unlabeled, and natural ¹³C-isotopic prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm)

Fig. S27. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with ¹⁵N-L-serine (1 mg/mL). Optical image with assigned scan area and localization of labeled, unlabeled, and natural ¹³C-isotopic prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm)

Fig. S28. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (0.5 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

Fig. S29. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (0.5 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

Fig. S30. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (2 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

Fig. S31. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (2 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

Fig. S32. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (2 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

Fig. S33. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (2 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

Fig. S34. MALDI-imaging-HRMS control of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar without stable isotope supplements. Optical image with assigned scan area and localization of labeled, unlabeled, and natural ¹³C-isotopic prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm).

Fig. S35. MALDI-imaging-HRMS control of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar without stable isotope supplements for 14 days. Optical image with assigned scan area and localization of labeled, unlabeled, and natural ¹³C-isotopic prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm).

Fig. S36. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **1** $[M+H]^+$: *m/z* 299, C₁₈H₁₉D₃N₃O).

Fig. S37. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **2** $[M+H]^+$: *m/z* 313, C₁₉H₂₁D₃N₃O).

Fig. S38. HRMS spectra of prodigiosin with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound 3 $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).

Fig. S39. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **4** $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).

Fig. S40. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **5** $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).

Fig. S41. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl from labeled nutrient agar (compound **1** $[M+H]^+$: m/z 297, C₁₈H₂₂N₂¹⁵NO).

Fig. S42. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl from labeled nutrient agar (compound **2** $[M+H]^+$: m/z 311, C₁₉H₂₄N₂¹⁵NO).

Fig. S43. HRMS spectra of prodigiosin with incorporated ¹⁵N derived from ¹⁵NH₄Cl from labeled nutrient agar (compound **3** $[M+H]^+$: m/z 325, C₂₀H₂₆N₂¹⁵NO).

Fig. S44. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl from labeled nutrient agar (compound 4 $[M+H]^+$: m/z 339, C₂₁H₂₈N₂¹⁵NO).

Fig. S45. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl from labeled nutrient agar (compound **5** $[M+H]^+$: m/z 353, C₂₂H₃₀N₂¹⁵NO).

Fig. S46. HRMS spectra of 2-methyl-3-octyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl from labeled nutrient agar (compound **6** $[M+H]^+$: m/z 367, C₂₃H₃₂N₂¹⁵NO).

Fig. S47. HRMS spectra of 2-methyl-3-nonyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl from labeled nutrient agar (compound 7 $[M+H]^+$: m/z 381, C₂₄H₃₄N₂¹⁵NO).

Fig. S48. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated $[1^{-13}C]$ -L-proline from labeled nutrient agar (compound 1 [M+H]⁺: m/z 297, $C_{17}^{-13}CH_{22}N_3O$).

Fig. S49. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated $[1^{-13}C]$ -L-proline from labeled nutrient agar (compound 2 $[M+H]^+$: m/z 311, $C_{18}^{13}CH_{24}N_3O$).

Fig. S50. HRMS spectra of prodigiosin with incorporated $[1^{-13}C]$ -L-proline from labeled nutrient agar (compound **3** $[M+H]^+$: m/z 325, $C_{19}^{13}CH_{26}N_3O$).

Fig. S51. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated $[1^{-13}C]$ -L-proline from labeled nutrient agar (compound 4 $[M+H]^+$: m/z 339, $C_{20}^{-13}CH_{28}N_3O$).

Fig. S52. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated $[1^{-13}C]$ -L-proline from labeled nutrient agar (compound **5** $[M+H]^+$: m/z 353, $C_{21}^{-13}CH_{30}N_3O$).

Fig. S53. HRMS spectra of 2-methyl-3-octyl prodiginine with incorporated $[1^{-13}C]$ -L-proline from labeled nutrient agar (compound 6 $[M+H]^+$: m/z 367, $C_{22}^{-13}CH_{32}N_3O$).

Fig. S54. HRMS spectra of 2-methyl-3-nonyl prodiginine with incorporated $[1^{-13}C]$ -L-proline from labeled nutrient agar (compound **7** $[M+H]^+$: m/z 381, $C_{23}^{-13}CH_{34}N_3O$).

Fig. S55. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound $\mathbf{1}$ [M+H]⁺: m/z 296, C₁₈H₂₂N₃O).

Fig. S56. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound 2 $[M+H]^+$: m/z 310, C₁₉H₂₄N₃O).

Fig. S57. HRMS spectra of prodigiosin with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **3** $[M+H]^+$: m/z 324, $C_{20}H_{26}N_3O$).

Fig. S58. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound 4 $[M+H]^+$: m/z 338, C₂₁H₂₈N₃O).

Fig. S59. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **5** $[M+H]^+$: m/z 352, C₂₂H₃₀N₃O).

Fig. S60. HRMS spectra of 2-methyl-3-octyl prodiginine with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **6** $[M+H]^+$: m/z 366, C₂₃H₃₂N₃O).

Fig. S61. HRMS spectra of 2-methyl-3-nonyl prodiginine with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound 7 $[M+H]^+$: m/z 380, C₂₄H₃₄N₃O).

Fig. S62. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **1** $[M+H]^+$: m/z 299, C₁₈H₁₉D₃N₃O).

Fig. S63. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **2** $[M+H]^+$: m/z 313, C₁₉H₂₁D₃N₃O).

Fig. S64. HRMS spectra of prodigiosin with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound 3 $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).

Fig. S65. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound 4 $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).

Fig. S66. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **5** $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).

Fig. S67. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **1** $[M+H]^+$: *m/z* 299, C₁₈H₁₉D₃N₃O).

Fig. S68. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **2** $[M+H]^+$: *m/z* 313, C₁₉H₂₁D₃N₃O).

Fig. S69. HRMS spectra of prodigiosin with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **3** $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).

Fig. S70. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **4** $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).

Fig. S71. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **5** $[M+H]^+$: *m/z* 355, C₂₂H₂₇D₃N₃O).

Fig. S72. HRMS spectra of 2-methyl-3-octyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **6** $[M+H]^+$: *m/z* 369, C₂₃H₂₉D₃N₃O).

Fig. S73. HRMS spectra of 2-methyl-3-nonyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **7** $[M+H]^+$: *m/z* 383, C₂₄H₃₁D₃N₃O).

Fig. S74. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 1 $[M+H]^+$: m/z 299, C₁₈H₁₉D₃N₃O).

Fig. S75. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **2** $[M+H]^+$: m/z 313, C₁₉H₂₁D₃N₃O).

Fig. S76. HRMS spectra of prodigiosin with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 3 $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).

Fig. S77. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **4** $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).

Fig. S78. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **5** $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).

Fig. S79. HRMS spectra of 2-methyl-3-nonyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **7** $[M+H]^+$: m/z 383, C₂₄H₃₁D₃N₃O).

Fig. S80. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl from labeled potato dextrose agar (compound **1** $[M+H]^+$: m/z 297, C₁₈H₂₂N₂¹⁵NO).

Fig. S81. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl from labeled potato dextrose agar (compound **2** $[M+H]^+$: m/z 311, C₁₉H₂₄N₂¹⁵NO).

Fig. S82. HRMS spectra of prodigiosin with incorporated ¹⁵N derived from ¹⁵NH₄Cl from labeled potato dextrose agar (compound **3** $[M+H]^+$: m/z 325, $C_{20}H_{26}N_2^{15}NO$).

Fig. S83. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl from labeled potato dextrose agar (compound 4 $[M+H]^+$: m/z 339, C₂₁H₂₈N₂¹⁵NO).

Fig. S84. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl from labeled potato dextrose agar (compound **5** $[M+H]^+$: m/z 353, C₂₂H₃₀N₂¹⁵NO).

Fig. S85. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated $[1^{-13}C]$ -L-proline from labeled potato dextrose agar (compound **1** $[M+H]^+$: m/z 297, $C_{17}^{13}CH_{22}N_3O$).

Fig. S86. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated $[1^{-13}C]$ -L-proline from labeled potato dextrose agar (compound **2** $[M+H]^+$: m/z 311, $C_{18}^{13}CH_{24}N_3O$).

Fig. S87. HRMS spectra of prodigiosin with incorporated $[1^{-13}C]$ -L-proline from labeled potato dextrose agar (compound **3** $[M+H]^+$: m/z 325, $C_{19}^{-13}CH_{26}N_3O$).

Fig. S88. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated $[1^{-13}C]$ -L-proline from labeled potato dextrose agar (compound 4 $[M+H]^+$: m/z 339, $C_{20}^{-13}CH_{28}N_3O$).

Fig. S89. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated $[1^{-13}C]$ -L-proline from labeled potato dextrose agar (compound **5** $[M+H]^+$: m/z 353, $C_{21}^{13}CH_{30}N_3O$).

Fig. S90. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **1** $[M+H]^+$: m/z 296, C₁₈H₂₂N₃O).

Fig. S91. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **2** $[M+H]^+$: m/z 310, $C_{19}H_{24}N_3O$).

Fig. S92. HRMS spectra of prodigiosin with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **3** $[M+H]^+$: m/z 324, C₂₀H₂₆N₃O).

Fig. S93. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound 4 $[M+H]^+$: m/z 338, C₂₁H₂₈N₃O).

Fig. S94. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **5** $[M+H]^+$: m/z 352, $C_{22}H_{30}N_3O$).

Fig. S95. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 1 $[M+H]^+$: m/z 299, C₁₈H₁₉D₃N₃O).

Fig. S96. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **2** $[M+H]^+$: m/z 313, C₁₉H₂₁D₃N₃O).

Fig. S97. HRMS spectra of prodigiosin with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 3 $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).

Fig. S98. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 4 [M+H]⁺: m/z 341, C₂₁H₂₅D₃N₃O).

Fig. S99. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **5** $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).

Fig. S100. HRMS spectra of 2-methyl-3-nonyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 7 $[M+H]^+$: m/z 383, C₂₄H₃₁D₃N₃O).

Fig. S101. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 1 $[M+H]^+$: m/z 299, C₁₈H₁₉D₃N₃O).

Fig. S102. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **2** $[M+H]^+$: m/z 313, C₁₉H₂₁D₃N₃O).

Fig. S103. HRMS spectra of prodigiosin with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **3** $[M+H]^+$: *m/z* 327, C₂₀H₂₃D₃N₃O).

Fig. S104. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 4 $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).

Fig. S105. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **5** $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).

Fig. S106. HRMS spectra of 2-methyl-3-nonyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 7 $[M+H]^+$: m/z 383, C₂₄H₃₁D₃N₃O).

Fig. S107. HRMS spectra of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **8** $[M+H]^+$: m/z 192, $C_{10}H_{11}N^{15}NO_2$).

Fig. S108. HRMS spectra of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **8** $[M+H]^+$: m/z 194, C₁₀H₈D₃N₂O₂).

Fig. S109. HRMS spectra of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **8** $[M+H]^+$: m/z 194, C₁₀H₈D₃N₂O₂).

Fig. S110. HRMS spectra of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **8** $[M+H]^+$: m/z 194, C₁₀H₈D₃N₂O₂).

Fig. S111. HRMS spectra of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) with incorporated $[1-^{13}C]$ -L-proline from labeled nutrient agar (compound **8** $[M+H]^+$: m/z 192, $C_9^{13}CH_{11}N_2O_2$).

Fig. S112. HRMS spectra of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **8** $[M+H]^+$: *m/z* 192, C₁₀H₁₁N¹⁵NO₂).

Fig. S113. HRMS spectra of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **8** $[M+H]^+$: m/z 194, C₁₀H₈D₃N₂O₂).

Fig. S114. HRMS spectra of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **8** $[M+H]^+$: m/z 194, C₁₀H₈D₃N₂O₂).

Fig. S115. HRMS spectra of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **8** $[M+H]^+$: m/z 194, C₁₀H₈D₃N₂O₂).

Fig. S116. HRMS spectra of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) with incorporated $[1^{-13}C]$ -L-proline from labeled potato dextrose agar (compound **8** [M+H]⁺: m/z 192, C₉¹³CH₁₁N₂O₂).

Fig. S117. HRMS² of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **2** $[M+H]^+$: m/z 313, C₁₉H₂₁D₃N₃O).

Fig. S118. HRMS² of prodigiosin with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **3** $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).

Fig. S119. HRMS² of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **4** $[M+H]^+$: *m/z* 341, C₂₁H₂₅D₃N₃O).

Fig. S120. HRMS² of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **5** $[M+H]^+$: *m/z* 355, C₂₂H₂₇D₃N₃O).

Fig. S121. HRMS² of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **2** $[M+H]^+$: m/z 313, C₁₉H₂₁D₃N₃O).

Fig. S122. HRMS² of prodigiosin with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **3** $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).

Fig. S123. HRMS² of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **4** $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).

Fig. S124. HRMS² of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **5** $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).

Fig. S125. HRMS² of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **1** $[M+H]^+$: *m/z* 299, C₁₈H₁₉D₃N₃O).

Fig. S126. HRMS² of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **2** $[M+H]^+$: m/z 313, C₁₉H₂₁D₃N₃O).

Fig. S127. HRMS² of prodigiosin with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **3** $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).

Fig. S128. HRMS² of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **4** $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).

Fig. S129. HRMS² of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **5** $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).

Fig. S130. HRMS² of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 1 $[M+H]^+$: m/z 299, C₁₈H₁₉D₃N₃O).

Fig. S131. HRMS² of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **2** $[M+H]^+$: m/z 313, C₁₉H₂₁D₃N₃O).

Fig. S132. HRMS² of prodigiosin with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **3** $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).

Fig. S133. HRMS² of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **4** $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).

Fig. S134. HRMS² of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **5** $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).

Fig. S135. HRMS² of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 1 $[M+H]^+$: m/z 299, C₁₈H₁₉D₃N₃O).

Fig. S136. HRMS² of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **2** $[M+H]^+$: m/z 313, C₁₉H₂₁D₃N₃O).

Fig. S137. HRMS² of prodigiosin with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 3 $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).

Fig. S138. HRMS² of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **4** $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).

Fig. S139. HRMS² of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **5** $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).

Fig. S140. HRMS² of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 1 $[M+H]^+$: m/z 299, C₁₈H₁₉D₃N₃O).

Fig. S141. HRMS² of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **2** $[M+H]^+$: m/z 313, C₁₉H₂₁D₃N₃O).

Fig. S142. HRMS² of prodigiosin with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **3** $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).

Fig. S143. HRMS² of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 4 $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).

Fig. S144. HRMS² of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **5** $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).

Fig. S145. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound 1 $[M+H]^+$: *m/z* 296, C₁₈H₂₂N₃O).

Fig. S146. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound 2 $[M+H]^+$: m/z 310, C₁₉H₂₄N₃O).

Fig. S147. HRMS spectra of prodigiosin with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **3** $[M+H]^+$: m/z 324, C₂₀H₂₆N₃O).

Fig. S148. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound 4 $[M+H]^+$: m/z 338, C₂₁H₂₈N₃O).

Fig. S149. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **5** $[M+H]^+$: *m/z* 352, C₂₂H₃₀N₃O).

Fig. S150. HRMS spectra of 2-methyl-3-nonyl prodiginine with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound 7 $[M+H]^+$: m/z 380, C₂₄H₃₄N₃O).

Fig. S151. HRMS spectra of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **8** $[M+H]^+$: m/z 192, C₁₀H₁₁N¹⁵NO₂).

Fig. S152. HRMS spectra of 2-methyl-3-amylpyrrole (MAP) with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **9** [M+H]⁺: m/z 153, C₁₀H₁₈¹⁵N).

Fig. S153. HRMS² spectra of 2-methyl-3-propyl prodiginine with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **1** $[M+H]^+$: m/z 297, C₁₈H₂₂N₂¹⁵NO).

Fig. S154. HRMS² spectra of 2-methyl-3-butyl prodiginine with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound 2 $[M+H]^+$: m/z 311, C₁₉H₂₄N₂¹⁵NO).

Fig. S155. HRMS² spectra of prodigiosin with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **3** $[M+H]^+$: *m/z* 325, C₂₀H₂₆N₂¹⁵NO).

Fig. S156. HRMS² spectra of 2-methyl-3-hexyl prodiginine with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound 4 $[M+H]^+$: m/z 339, $C_{21}H_{28}N_2^{15}NO$).

Fig. S157. HRMS² spectra of 2-methyl-3-heptyl prodiginine with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound 5 $[M+H]^+$: m/z 353, C₂₂H₃₀N₂¹⁵NO).

Fig. S158. MALDI-imaging-HRMS of abundant serratamolides (A: serrawettin W1 (10); B: $C_{10}+C_{12}$ (12); C: $C_{10}+C_{12:1}$ (16)) produced by *S. marcescens* MSRBB2 on potato dextrose agar supplemented with [¹⁵N]-L-serine. Optical image with assigned scan area and localization of unlabeled serratamolides along with one and two incorporations of [¹⁵N]-L-serine ([M+K]⁺ ± 3 ppm).

Fig. S159. MALDI-imaging-HRMS of abundant serratamolides (A: serrawettin W1 (10); B: $C_{10}+C_{12}$ (12); C: $C_{10}+C_{12:1}$ (16)) produced by *S. marcescens* MSRBB2 on potato dextrose agar supplemented with [¹⁵N]-L-serine. Optical image with assigned scan area and localization of unlabeled serratamolides along with one and two incorporations of [¹⁵N]-L-serine ([M+K]⁺ ± 3 ppm).

Fig. S160. HRMS of serrawettin W1 / serratamolide $C_{10}+C_{10}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **10** [M+H]⁺: m/z 515, $C_{26}H_{47}N_2O_8$).

Fig. S161. HRMS of serratamolide $C_{10}+C_{11}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **11** [M+H]⁺: m/z 529, $C_{27}H_{49}N_2O_8$).

Fig. S162. HRMS of serratamolide $C_{10}+C_{12}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **12** $[M+H]^+$: m/z 543, $C_{28}H_{51}N_2O_8$).

Fig. S163. HRMS of serratamolide $C_{11}+C_{12}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **13** $[M+H]^+$: m/z 557, $C_{29}H_{53}N_2O_8$).

Fig. S164. HRMS of serratamolide $C_{12}+C_{12}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **14** [M+H]⁺: m/z 571, $C_{30}H_{55}N_2O_8$).

Fig. S165. HRMS of serratamolide $C_{10}+C_{11:1}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **15** $[M+H]^+$: m/z 527, $C_{27}H_{47}N_2O_8$).

Fig. S166. HRMS of serratamolide $C_{10}+C_{12:1}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **16** [M+H]⁺: m/z 541, $C_{28}H_{49}N_2O_8$).

Fig. S167. HRMS of serratamolide $C_{11}+C_{12:1}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **17** $[M+H]^+$: m/z 555, $C_{29}H_{51}N_2O_8$).

Fig. S168. HRMS of serratamolide $C_{12}+C_{12:1}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **18** [M+H]⁺: m/z 569, $C_{30}H_{53}N_2O_8$).

Fig. S169. HRMS of ring-opened serratamolide $C_{10}+C_{10}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **19** $[M+H]^+$: m/z 533, $C_{26}H_{49}N_2O_9$).

Fig. S170. HRMS of ring-opened serratamolide $C_{10}+C_{11}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **20** [M+H]⁺: m/z 547, $C_{27}H_{51}N_2O_9$).

Fig. S171. HRMS of ring-opened serratamolide $C_{10}+C_{12}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **21** [M+H]⁺: m/z 561, $C_{28}H_{53}N_2O_9$).

Fig. S172. HRMS of ring-opened serratamolide $C_{10}+C_{12:1}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **22** $[M+H]^+$: m/z 559, $C_{28}H_{51}N_2O_9$).

Fig. S173. HRMS² of ring-opened serratamolide $C_{10}+C_{13}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **23** [M+H]⁺: m/z 575, $C_{29}H_{55}N_2O_9$).

Fig. S174. HRMS of ring-opened serratamolide $C_{12}+C_{12}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **24** [M+H]⁺: m/z 589, $C_{30}H_{57}N_2O_9$).

Fig. S175. HRMS of ring-opened serratamolide $C_{12}+C_{13}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **25** [M+H]⁺: m/z 603, $C_{31}H_{59}N_2O_9$).

Fig. S176. HRMS of ring-opened serratamolide $C_{10}+C_{13:1}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **26** [M+H]⁺: m/z 573, $C_{29}H_{53}N_2O_9$).

Fig. S177. HRMS of ring-opened serratamolide $C_{12}+C_{12:1}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **27** $[M+H]^+$: m/z 587, $C_{30}H_{55}N_2O_9$).

Fig. S178. HRMS of ring-opened serratamolide $C_{13}+C_{12:1}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **28** [M+H]⁺: m/z 601, $C_{31}H_{57}N_2O_9$).

Fig. S179. HRMS of serratamic acid with incorporated ¹⁵N-L-serine from labeled nutrient agar (N-(D-3-hydroxydecanoyl)-L-serine, compound **29** $[M+H]^+$: m/z 276, C₁₃H₂₆NO₅).

Fig. S180. HRMS of serratamic acid derivative with incorporated ¹⁵N-L-serine from labeled nutrient agar (hydroxydodecanoyl-serine, compound **30** $[M+H]^+$: m/z 304, C₁₅H₃₀NO₅).

Fig. S181. HRMS of serratamic acid derivative with double bond with incorporated ¹⁵N-Lserine from labeled nutrient agar (hydroxydodecenoyl-serine, compound **31** $[M+H]^+$: m/z 302, $C_{15}H_{28}NO_5$).

Fig. S182. HRMS of serrawettin W1 / serratamolide $C_{10}+C_{10}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **10** [M+H]⁺: m/z 515, $C_{26}H_{47}N_2O_8$).

Fig. S183. HRMS of serratamolide $C_{10}+C_{11}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **11** [M+H]⁺: m/z 529, $C_{27}H_{49}N_2O_8$).

Fig. S184. HRMS of serratamolide $C_{10}+C_{12}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **12** [M+H]⁺: m/z 543, $C_{28}H_{51}N_2O_8$).

Fig. S185. HRMS of serratamolide $C_{11}+C_{12}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **13** $[M+H]^+$: m/z 557, $C_{29}H_{53}N_2O_8$).

Fig. S186. HRMS of serratamolide $C_{12}+C_{12}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **14** [M+H]⁺: m/z 571, $C_{30}H_{55}N_2O_8$).

Fig. S187. HRMS of serratamolide $C_{10}+C_{11:1}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **15** $[M+H]^+$: m/z 527, $C_{27}H_{47}N_2O_8$).

Fig. S188. HRMS of serratamolide $C_{10}+C_{12:1}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **16** [M+H]⁺: m/z 541, $C_{28}H_{49}N_2O_8$).

Fig. S189. HRMS of serratamolide $C_{11}+C_{12:1}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **17** $[M+H]^+$: m/z 555, $C_{29}H_{51}N_2O_8$).

Fig. S190. HRMS of serratamolide $C_{12}+C_{12:1}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **18** [M+H]⁺: m/z 569, $C_{30}H_{53}N_2O_8$).

Fig. S191. HRMS of ring-opened serratamolide $C_{10}+C_{10}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **19** $[M+H]^+$: m/z 533, $C_{26}H_{49}N_2O_9$).

Fig. S192. HRMS of ring-opened serratamolide $C_{10}+C_{11}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **20** [M+H]⁺: m/z 547, $C_{27}H_{51}N_2O_9$).

Fig. S193. HRMS of ring-opened serratamolide $C_{10}+C_{12}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **21** [M+H]⁺: m/z 561, $C_{28}H_{53}N_2O_9$).

Fig. S194. HRMS of ring-opened serratamolide $C_{10}+C_{12:1}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **22** [M+H]⁺: m/z 559, $C_{28}H_{51}N_2O_9$).

Fig. S195. HRMS² of ring-opened serratamolide $C_{10}+C_{13}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **23** [M+H]⁺: m/z 575, $C_{29}H_{55}N_2O_9$).

Fig. S196. HRMS of ring-opened serratamolide $C_{12}+C_{12}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **24** [M+H]⁺: m/z 589, $C_{30}H_{57}N_2O_9$).

Fig. S197. HRMS of ring-opened serratamolide $C_{12}+C_{13}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **25** $[M+H]^+$: m/z 603, $C_{31}H_{59}N_2O_9$).

Fig. S198. HRMS of ring-opened serratamolide $C_{10}+C_{13:1}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **26** [M+H]⁺: m/z 573, $C_{29}H_{53}N_2O_9$).

Fig. S199. HRMS of ring-opened serratamolide $C_{12}+C_{12:1}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **27** [M+H]⁺: m/z 587, $C_{30}H_{55}N_2O_9$).

Fig. S200. HRMS of ring-opened serratamolide $C_{13}+C_{12:1}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **28** [M+H]⁺: m/z 601, $C_{31}H_{57}N_2O_9$).

Fig. S201. HRMS of serratamic acid with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (N-(D-3-hydroxydecanoyl)-L-serine, compound **29** $[M+H]^+$: m/z 276, C₁₃H₂₆NO₅).

Fig. S202. HRMS of serratamic acid derivative with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (hydroxydodecanoyl-serine, compound **30** $[M+H]^+$: m/z 304, C₁₅H₃₀NO₅).

Fig. S203. HRMS of serratamic acid derivative with double bond with incorporated ¹⁵N-Lserine from labeled potato dextrose agar (hydroxydodecenoyl-serine, compound **31** $[M+H]^+$: m/z 302, C₁₅H₂₈NO₅).

Fig. S204. HRMS of serrawettin W1 / serratamolide $C_{10}+C_{10}$ with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound 10 [M+H]⁺: m/z 515, $C_{26}H_{47}N_2O_8$).

Fig. S205. HRMS of serratamolide $C_{10}+C_{11}$ with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **11** [M+H]⁺: m/z 529, $C_{27}H_{49}N_2O_8$).

Fig. S206. HRMS of serratamolide $C_{10}+C_{12}$ with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **12** [M+H]⁺: m/z 543, $C_{28}H_{51}N_2O_8$).

Fig. S207. HRMS of serratamolide $C_{11}+C_{12}$ with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **13** [M+H]⁺: m/z 557, $C_{29}H_{53}N_2O_8$).

Fig. S208. HRMS of serratamolide $C_{12}+C_{12}$ with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **14** [M+H]⁺: m/z 571, C_{30} H₅₅N₂O₈).

Fig. S209. HRMS of serratamolide $C_{10}+C_{12:1}$ with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **16** [M+H]⁺: m/z 541, $C_{28}H_{49}N_2O_8$).

Fig. S210. HRMS of serratamolide $C_{12}+C_{12:1}$ with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **18** [M+H]⁺: m/z 569, $C_{30}H_{53}N_2O_8$).

Fig. S211. HRMS of ring-opened serratamolide $C_{10}+C_{10}$ with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **19** [M+H]⁺: m/z 533, $C_{26}H_{49}N_2O_9$).

Fig. S212. HRMS of ring-opened serratamolide $C_{10}+C_{12}$ with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **21** [M+H]⁺: m/z 561, $C_{28}H_{53}N_2O_9$).

Fig. S213. HRMS of ring-opened serratamolide $C_{10}+C_{12:1}$ with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound 22 [M+H]⁺: m/z 559, $C_{28}H_{51}N_2O_9$).

Fig. S214. HRMS of ring-opened serratamolide $C_{12}+C_{12}$ with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **24** [M+H]⁺: m/z 589, $C_{30}H_{57}N_2O_9$).

Fig. S215. HRMS of ring-opened serratamolide $C_{12}+C_{12:1}$ with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound 27 [M+H]⁺: m/z 587, $C_{30}H_{55}N_2O_9$).

Fig. S216. HRMS of serratamic acid with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (N-(D-3-hydroxydecanoyl)-L-serine, compound **29** $[M+H]^+$: *m/z* 276, C₁₃H₂₆NO₅).

Fig. S217. HRMS of serratamic acid derivative with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (hydroxydodecanoyl-serine, compound **30** $[M+H]^+$: m/z 304, C₁₅H₃₀NO₅).

Fig. S218. HRMS of serratamic acid derivative with double bond with incorporated ¹⁵N-Lserine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (hydroxydodecenoyl-serine, compound **31** $[M+H]^+$: m/z 302, C₁₅H₂₈NO₅).

Fig. S219. MALDI-imaging-HRMS control of abundant serratamolides (A: serrawettin W1 (10); B: $C_{10}+C_{12}$ (12); C: $C_{10}+C_{12:1}$ (16)) produced by *S. marcescens* MSRBB2 on potato dextrose agar. Optical image with assigned scan area and localization of unlabeled serratamolides along with one and two incorporations of $[^{15}N]$ -L-serine ($[M+K]^+ \pm 3$ ppm).

III. SUPPLEMENTARY TABLES

Table S1. Peak height ratios obtained from HPLC-HRMS by comparison of labeled and unlabeled prodiginines and MBC produced by *S. marcescens*. Different labeling studies with ¹⁵NH₄Cl, [1-¹³C]-L-proline, [methyl-D₃]-L-methionine, and [¹⁵N]-L-serine on nutrient agar (NA) and potato dextrose agar (PDA).

Table S2. Peak height ratios obtained from HPLC-HRMS by comparison of labeled $(1x^{15}N)$ and unlabeled serratamolides produced by *S. marcescens*. Different labeling studies with $[^{15}N]$ -L-serine on nutrient agar (NA) and potato dextrose agar (PDA), as well as nutrient broth (NB) incubation under static conditions.

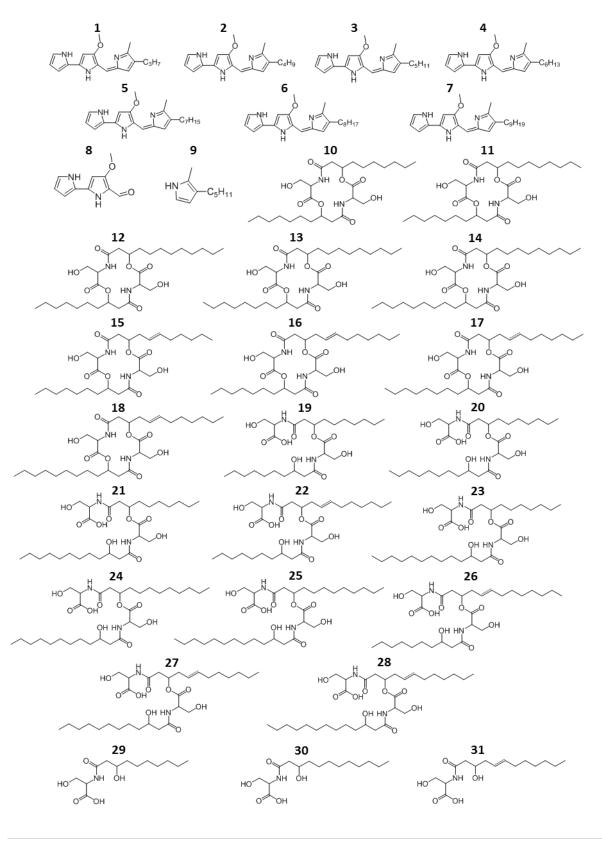
IV. SUPPLEMENTARY REFERENCES

I. METHODS

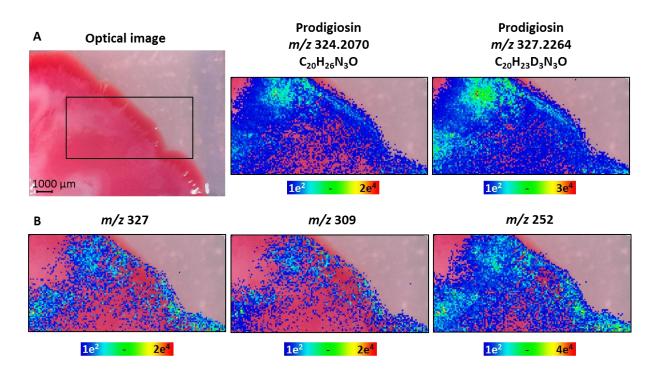
Labeling studies with stable isotope precursors on agar (see Figure 1 in the manuscript for a schematic representation of the workflow).

Nutrient agar (NA) and potato dextrose agar (PDA) was prepared as per producers specifications in Petri dishes (60 x 15 mm²) with a thickness of approximately 4 mm (Fig. 1, step 1). We used small Petri dishes (60 x 15 mm²) instead of the standard sized dishes (94 x 16 mm²) to reduce the amounts of labeled compounds required. At the onset, we optimized the thickness of agar to 4-5 mm required for easy, accurate and reproducible MALDIimaging-HRMS. Thinner agar would break or crack during the drying and/or matrix application process and thicker agar would waste media and compounds supplemented in the agar. After the agar has solidified, another thin layer (ca. 1-2 mm, 2-3 mL per Petri dish) of the respective agar amended with respective stable isotope labeled supplement(s) was poured on top (Fig. 1, step 2). ¹⁵NH₄Cl (98% ¹⁵N), [1-¹³C]-L-proline (99% ¹³C), [methyl-D₃]-Lmethionine (98% D), and [¹⁵N]-L-serine (98% ¹⁵N) (Cambridge Isotope Laboratories, Inc., Tewksbury, USA) were used with a concentration of 1 mg/mL as supplements. The labeled compounds were added to the media before autoclaving. Additionally, experiments were performed with [methyl-D₃]-L-methionine in concentrations of 0.5 and 2 mg/mL. The agar was allowed to solidify and then inoculated with S. marcescens [1] and incubated at 30°C for 3 (NA) or 7 (PDA) days, respectively (Fig. 1, step 3). For MALDI-imaging studies, the samples were photographed with the digital microscope VHX-5000 (Keyence Deutschland GMBH, Germany), cut to a square sample size of approx. 8 x 8 mm, transferred to a glass slide, fixed with a thin 25 µm adhesive tape, and dried under a N₂ gas flow (Fig. 1, steps 4 and 5). Note that the agar containing seeded bacterium samples were cut out as square samples (square agar plugs), because during the drying process the agar can shrink by losing its water content. For a square samples, the size reduction is uniform for all sides and the measured ion images fits onto the original optical images. In contrast, rectangular samples are more likely to be deformed during the drying. We achieved an optimum and homogenous drying of the samples amenable to MALDI-imaging-HRMS using a constant flow of nitrogen gas. The matrix application and MALDI-imaging measurements were performed under previously published methods [1] (Fig. 1, steps 5-10). Briefly, we utilized a SMALDI Prep spray device (TransMIT GmbH, Germany) for matrix application. The matrix used was HCCA (alphacyano-4-hydroxycinnamic acid, 7 mg/mL) in acetone:water 1:1 (v:v) containing 0.1 % FA, which was sprayed using the following parameters: 20 µL/min matrix flow rate, 3 L/min gas (N₂) flow rate, 30 min spray cycle, and 100 rpm sample plate revolution speed.

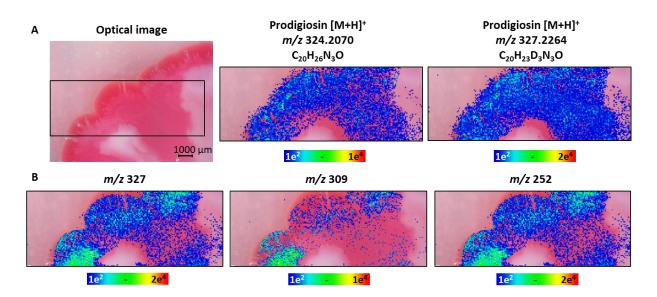
The MALDI-imaging high resolution mass spectrometry experiments were carried out with an atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization source (AP-SMALDI) (TransMIT GmbH, Germany) coupled to a Q Exactive high-resolution mass spectrometer (Thermo Scientific Inc., Bremen, Germany) with a 60 Hz pulsed N₂ laser MNL 100 series (LTB Lasertechnik GmbH, Germany) for UV beam generation at 337.1 nm [1]. The scan resolution was adjusted to 40 µm for each sample and measured in full scan positive ion mode at m/z 100–1000 mass range with internal lock mass correction utilizing the exact mass of $[HCCA+K]^+$ at m/z 228.00575. The measurements were performed with a mass resolution of 140000 @ m/z 200, S-lens level 65, a spray voltage of 2.0 kV, an injection time of 200-300 ms, and the attenuator value of the AP ion source was set at 20°. MS² measurements of deuterium labeled prodigiosin [M+H]⁺ were executed with an ion filter of m/z 327.2264 \pm 0.5 amu with a scan range of m/z 100 – 340, higher-energy collisional dissociation (HCD, 45 eV) and a resolution of 35 000 @ m/z 200. The mapping of mass pixels corresponding to the target compounds or fragments, and the data processing was done with the software package ImageQuest (v. 1.1.0; Thermo Fisher Scientific, Germany). Mass pixels are shown as false colors.

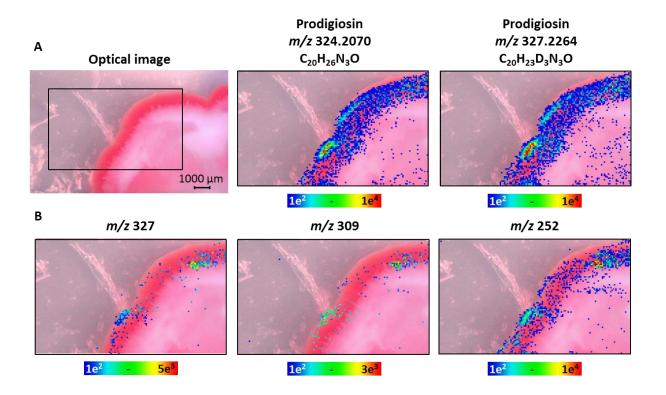

In addition to the MALDI experiments, one or two incubated plates were extracted with methanol (thrice with 15 min ultra-sonication) after 3 (NA) or 7 (PDA) days, respectively, concentrated and analyzed by HPLC-HRMS using previously established procedures [1].

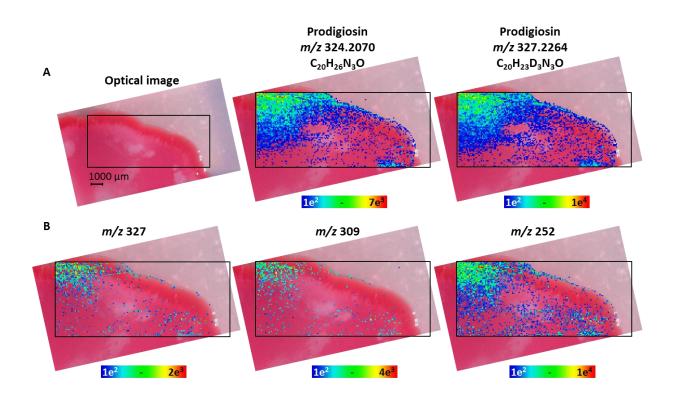
Feeding study of ¹⁵N-L-serine in nutrient broth.

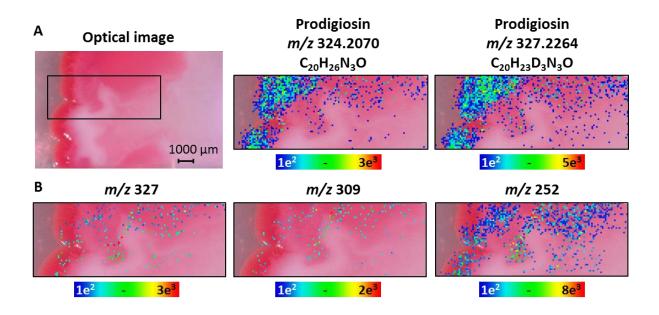

The bacterial endophyte *S. marcescens* was incubated with 50 mL diluted nutrient broth (1/2 strength of the specified composition) (Nutrient broth No 1, Sigma-Aldrich, Steinheim, Germany) at 30°C under stationary (static) conditions, with addition of 100 mg of filter-sterilized ¹⁵N-L-serine (98% ¹⁵N, Cambridge Isotope Laboratories, Inc., Tewksbury, USA) after 3 days of seeding the bacterium. After 10 days, the water was evaporated using a rotary evaporator (Laborota 4001, Heidolph, Schwabach, Germany) in a 40 °C water bath at 150 rpm. The extracts were dissolved in methanol and analyzed by HPLC-HRMS using previously established procedures [1].

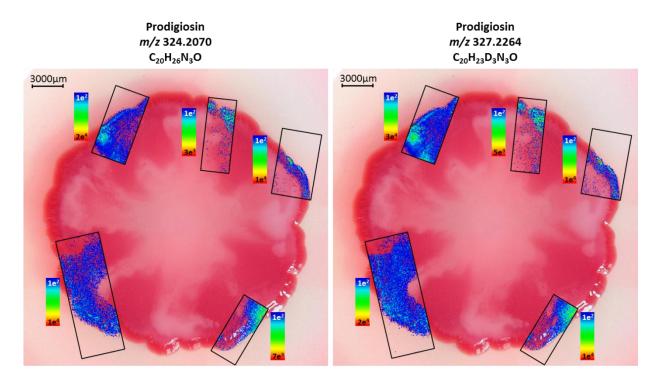
II. SUPPLEMENTARY FIGURES

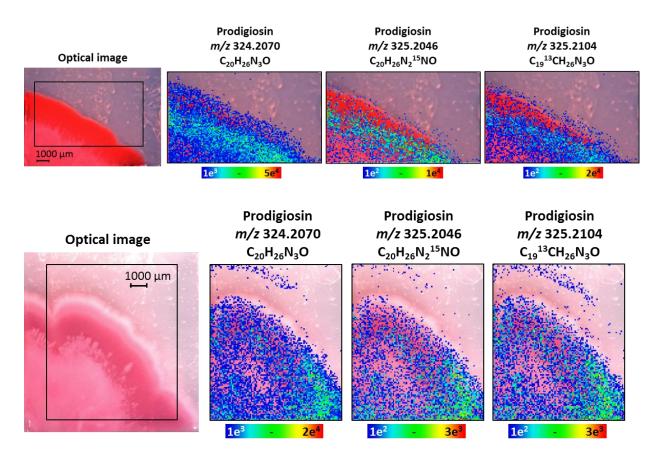

Fig. S1. Chemical structures of secondary metabolites produced by endophytic *S. marcescens* MSRBB2.

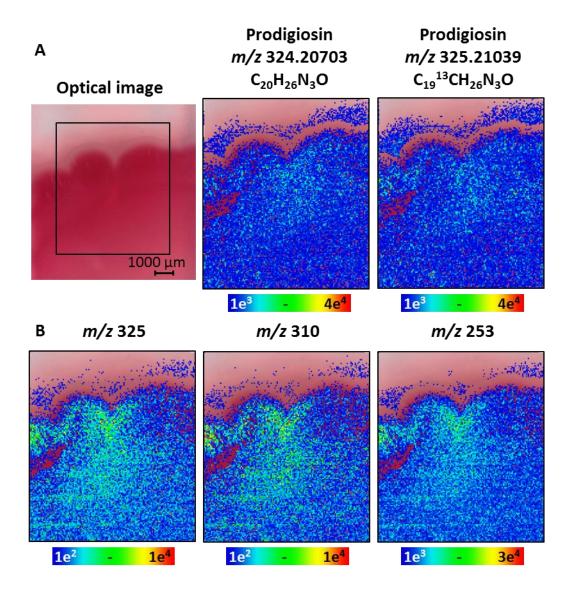

Fig. S2. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (1 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

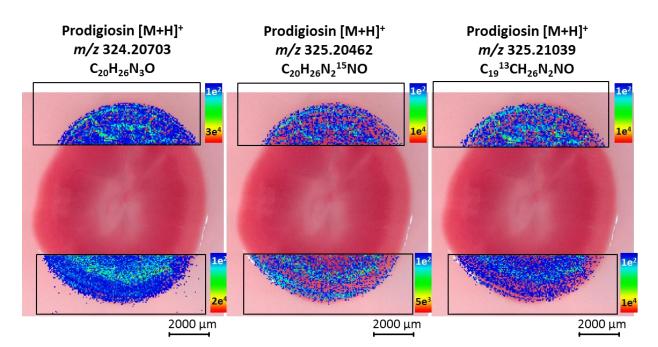

Fig. S3. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (1 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

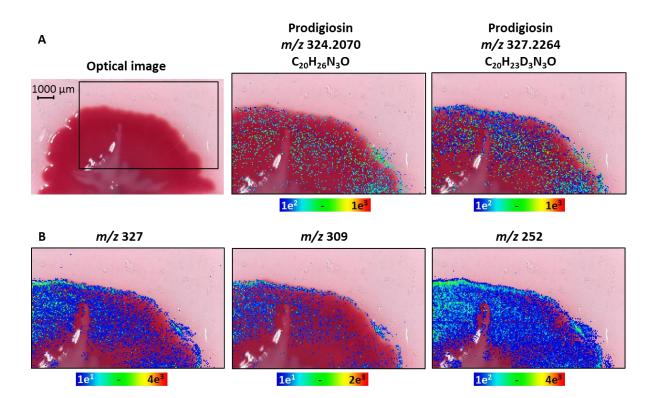

Fig. S4. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (1 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

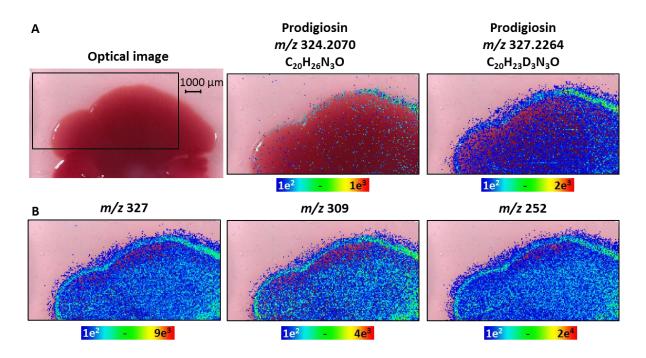

Fig. S5. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (1 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

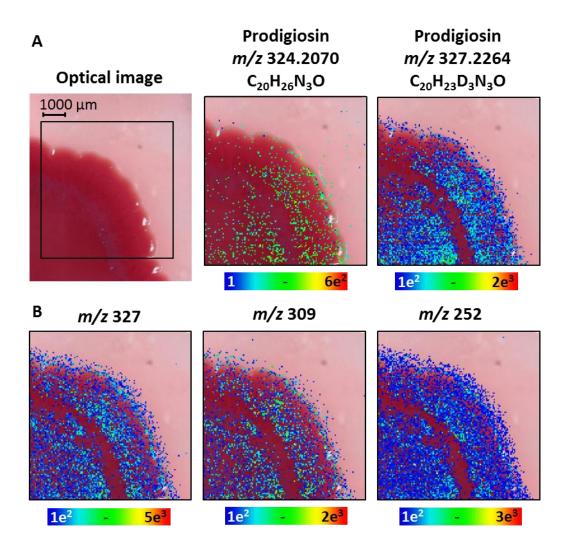

Fig. S6. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (1 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

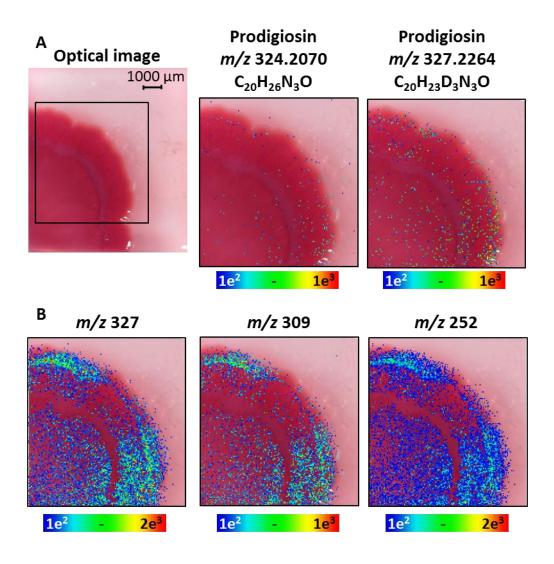

Fig. S7. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (1 mg/mL). Optical image with assigned scan areas and comparison of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm).

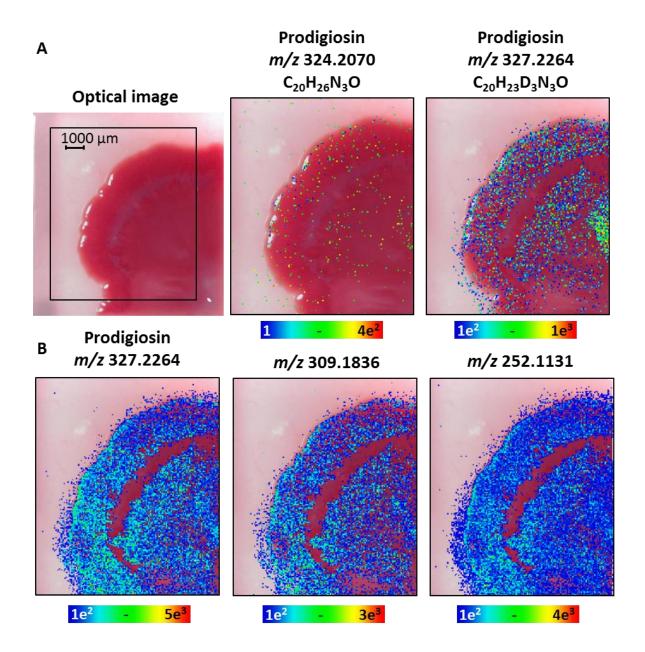

Fig. S8. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with ¹⁵NH₄Cl (1 mg/mL). Optical image with assigned scan area and localization of labeled, unlabeled, and natural ¹³C-isotopic prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm)


Fig. S9. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with $[1-^{13}C]$ -L-proline (1 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin $C_{19}^{13}CH_{23}N_3O$ (**3**, $[M+H]^+ \pm 3$ ppm, (B)).


Fig. S10. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with ¹⁵N-L-serine (1 mg/mL). Optical image with assigned scan area and localization of labeled, unlabeled, and natural ¹³C-isotopic prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm)


Fig. S11. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (0.5 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).


Fig. S12. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (0.5 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).


Fig. S13. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (2 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

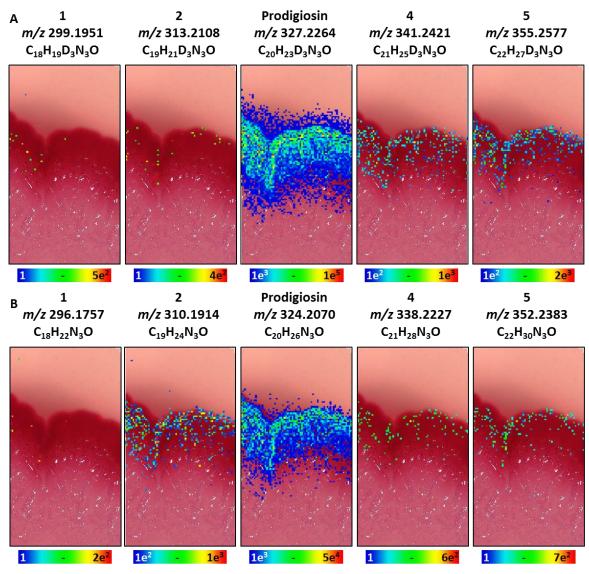
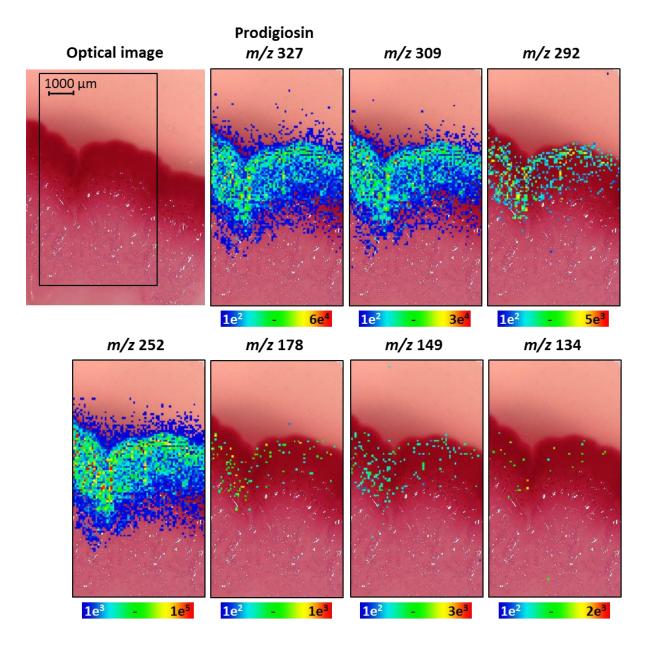

Fig. S14. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (2 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

Fig. S15. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (2 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).


Fig. S16. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (1 mg/mL). Optical image with assigned scan area (C) and localization of labeled (A) and unlabeled (B) prodiginines ($[M+H]^+ \pm 2$ ppm).

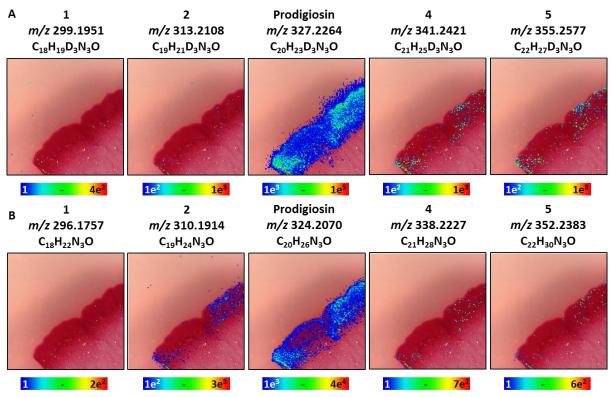
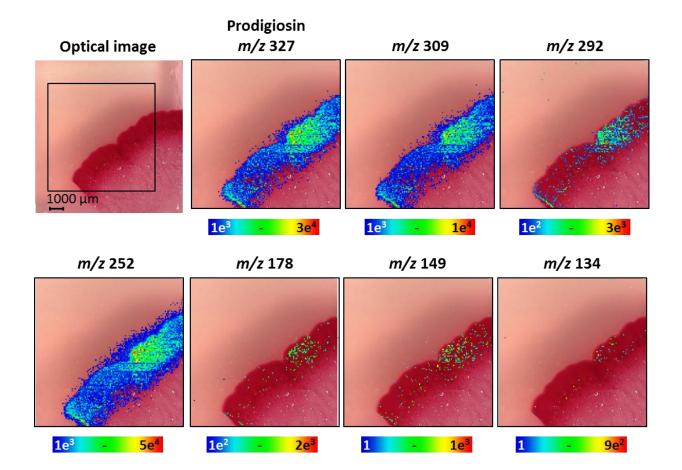

C Optical image

Fig. S17. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (1 mg/mL). Optical image with assigned scan area and localization of characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin $C_{20}H_{23}D_3N_3O$ (**3**, $[M+H]^+ \pm 3$ ppm).


Fig. S18. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (1 mg/mL). Optical image with assigned scan area (C) and localization of labeled (A) and unlabeled (B) prodiginines ($[M+H]^+ \pm 2$ ppm).

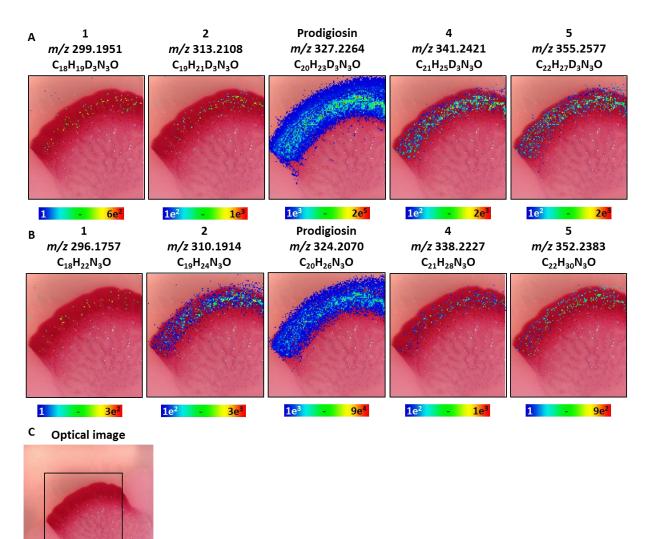

C Optical image

Fig. S19. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (1 mg/mL). Optical image with assigned scan area and localization of characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin $C_{20}H_{23}D_3N_3O$ (**3**, $[M+H]^+ \pm 3$ ppm).

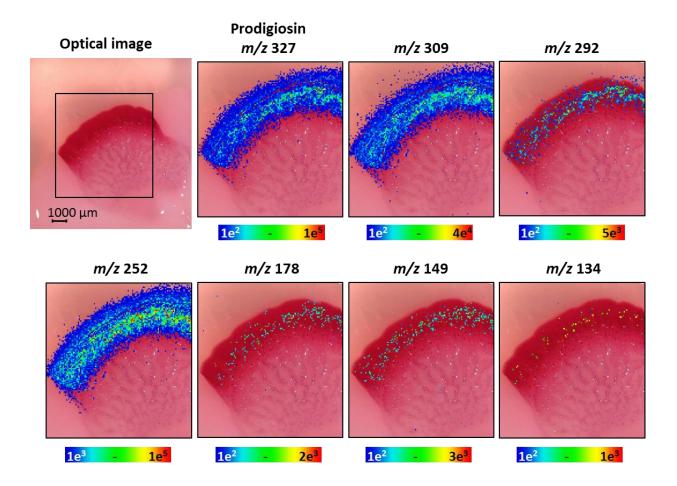
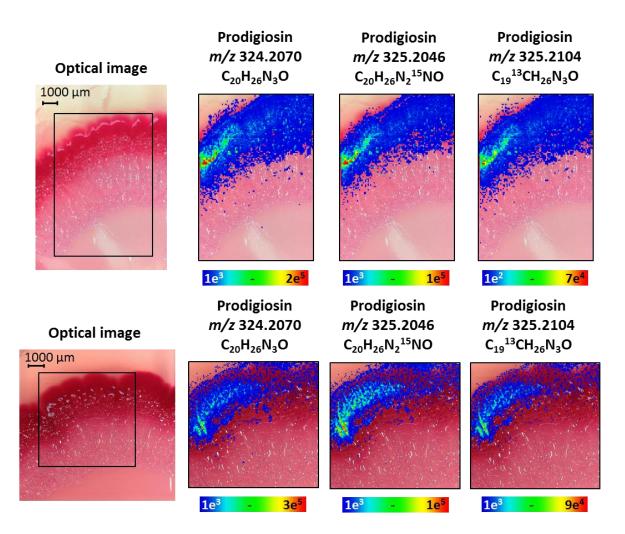
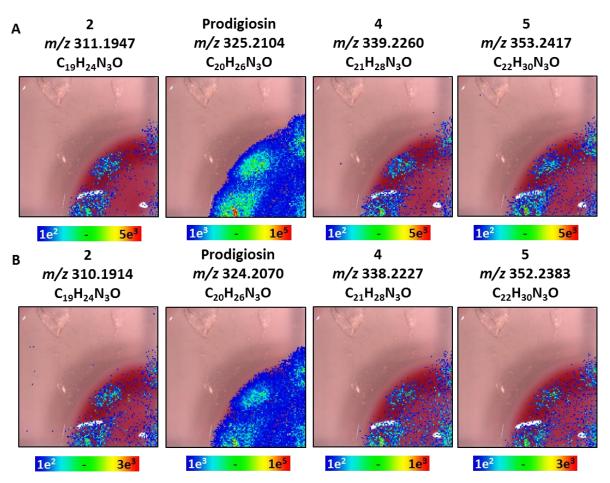
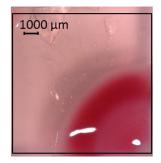


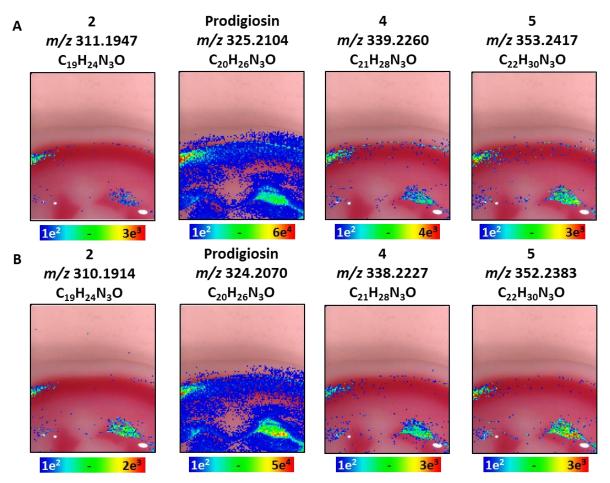
Fig. S20. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (1 mg/mL). Optical image with assigned scan area (C) and localization of labeled (A) and unlabeled (B) prodiginines ($[M+H]^+ \pm 2$ ppm).

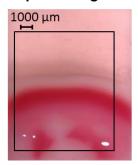


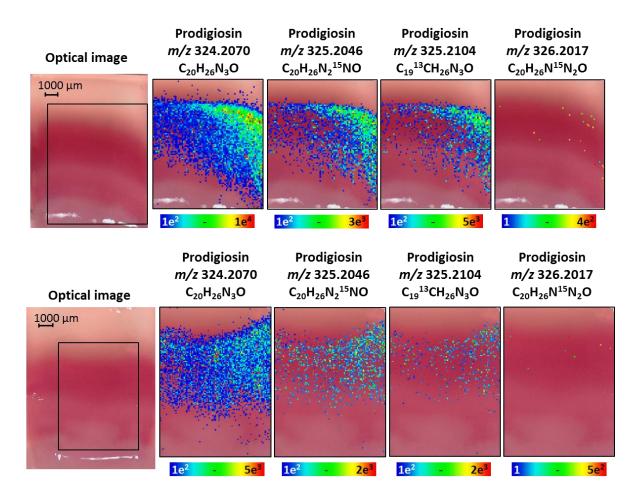
1000 µm

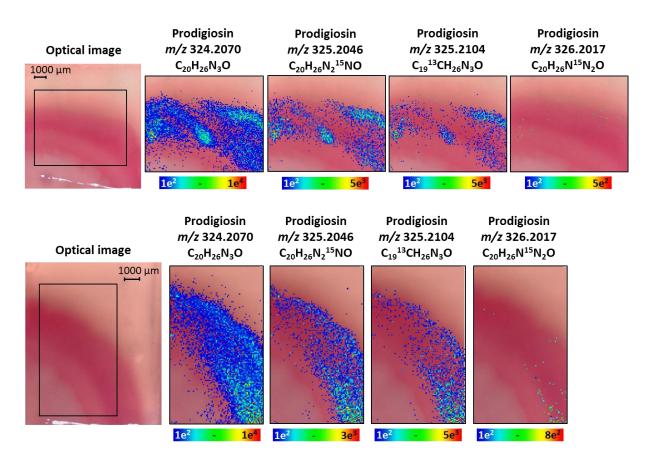

Fig. S21. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (1 mg/mL). Optical image with assigned scan area and localization of characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin $C_{20}H_{23}D_3N_3O$ (**3**, $[M+H]^+ \pm 3$ ppm).

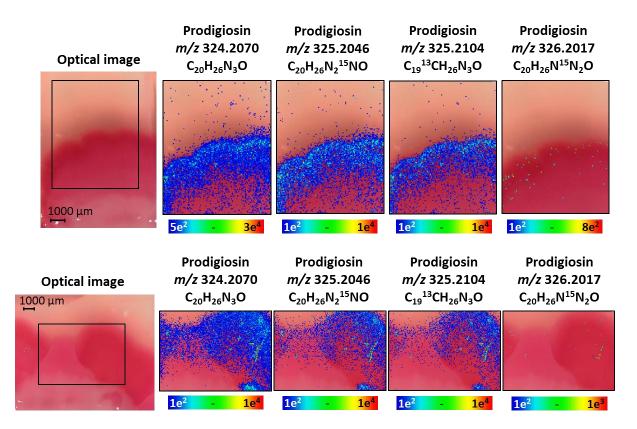

Fig. S22. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with ¹⁵NH₄Cl (1 mg/mL). Optical image with assigned scan area and localization of labeled, unlabeled, and natural ¹³C-isotopic prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm).

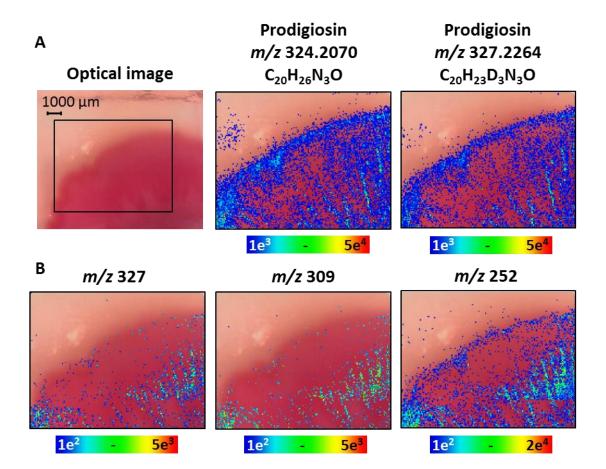

Fig. S23. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with $[1-^{13}C]$ -L-proline (1 mg/mL). Optical image with assigned scan area (C) and localization of labeled (A) and unlabeled (B) prodiginines ($[M+H]^+ \pm 2$ ppm).

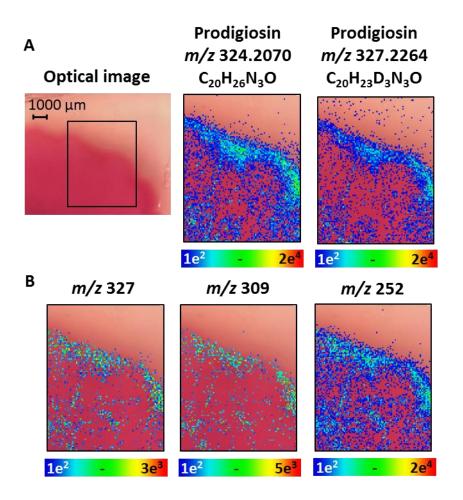

C Optical image

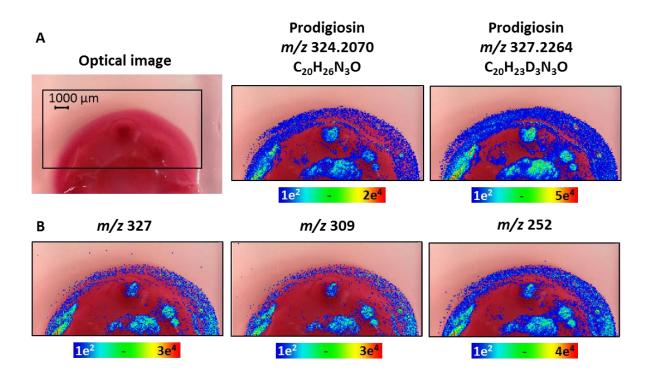

Fig. S24. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with $[1-^{13}C]$ -L-proline (1 mg/mL). Optical image with assigned scan area (C) and localization of labeled (A) and unlabeled (B) prodiginines ($[M+H]^+ \pm 2$ ppm).

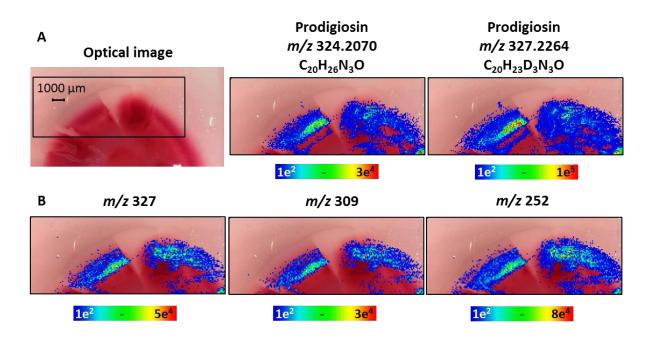

C Optical image

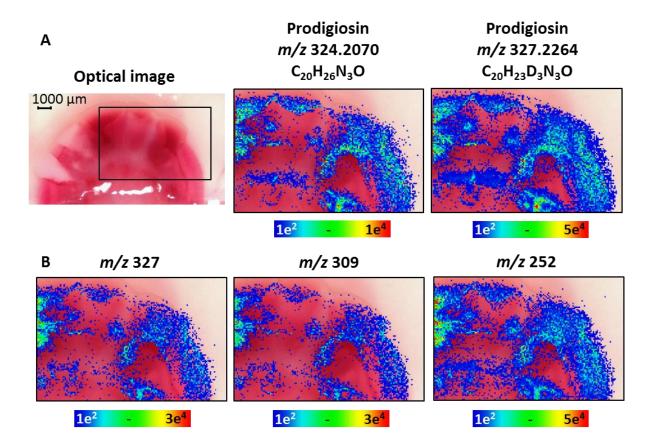

Fig. S25. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with ¹⁵N-L-serine (1 mg/mL). Optical image with assigned scan area and localization of labeled, unlabeled, and natural ¹³C-isotopic prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm)

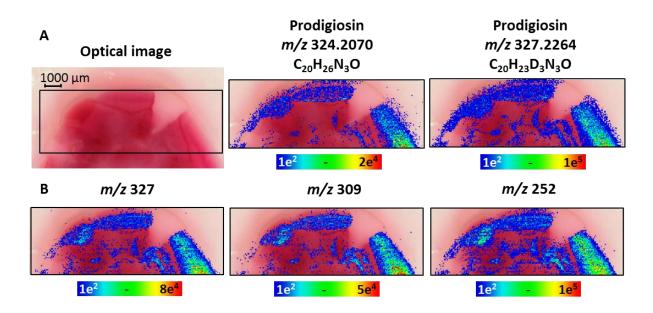

Fig. S26. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with ¹⁵N-L-serine (1 mg/mL). Optical image with assigned scan area and localization of labeled, unlabeled, and natural ¹³C-isotopic prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm)

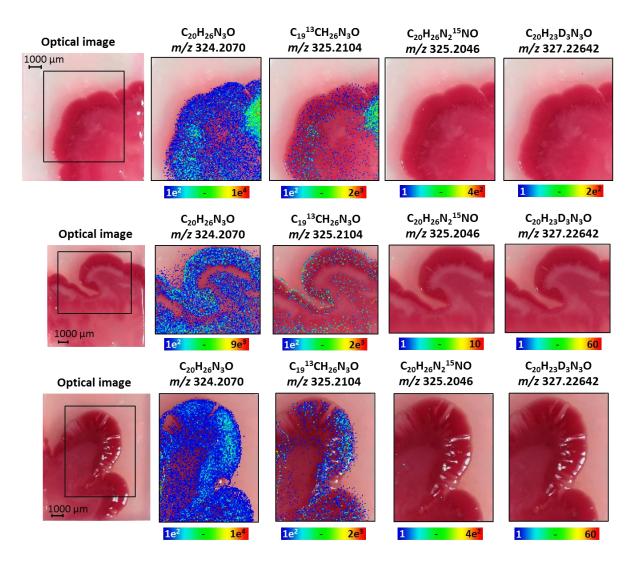

Fig. S27. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with ¹⁵N-L-serine (1 mg/mL). Optical image with assigned scan area and localization of labeled, unlabeled, and natural ¹³C-isotopic prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm)

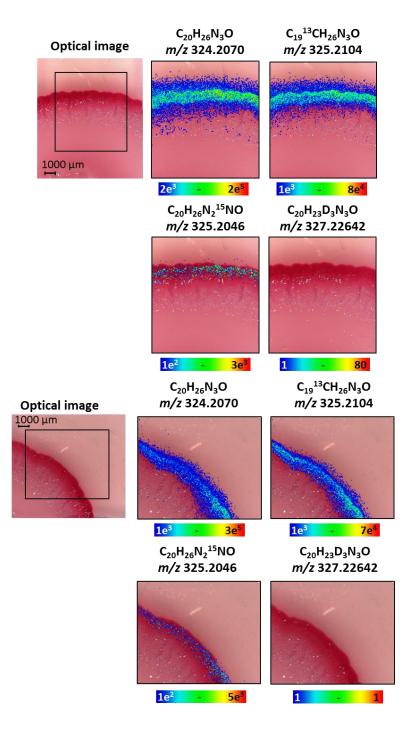

Fig. S28. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (0.5 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).


Fig. S29. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (0.5 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).


Fig. S30. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (2 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).


Fig. S31. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (2 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).


Fig. S32. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (2 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).


Fig. S33. MALDI-imaging-HRMS of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar with a thin layer of agar supplemented with [methyl-D₃]-L-methionine (2 mg/mL). Optical image with assigned scan area and localization of labeled and unlabeled prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm, (A)). Characteristic fragments of MALDI-imaging-HRMS² of labeled prodigiosin C₂₀H₂₃D₃N₃O (**3**, $[M+H]^+ \pm 3$ ppm, (B)).

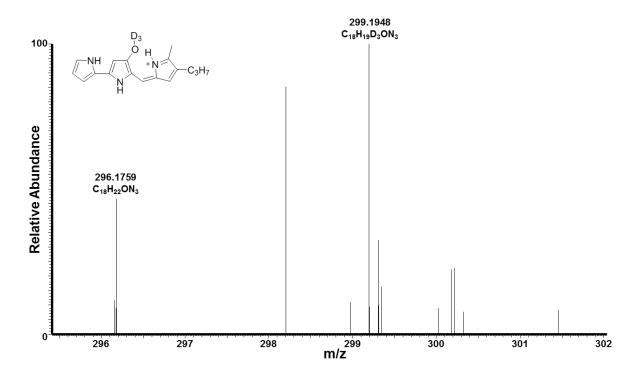
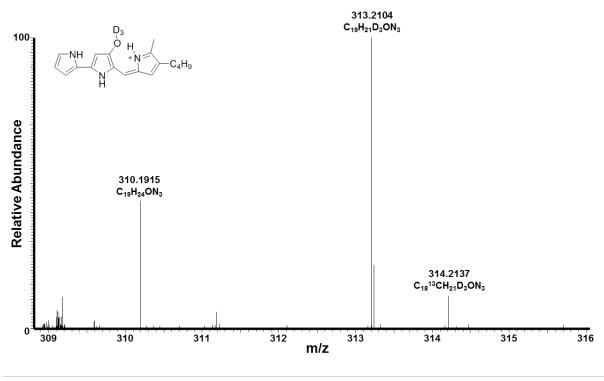
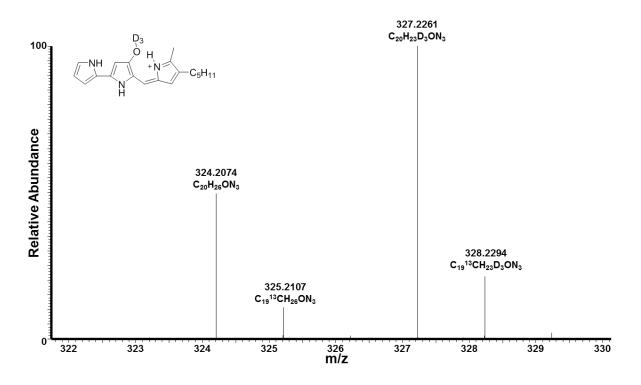
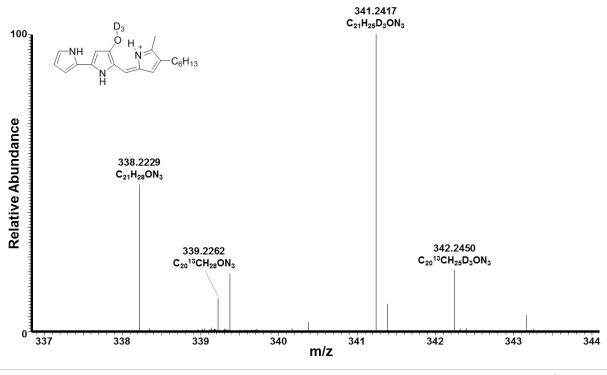
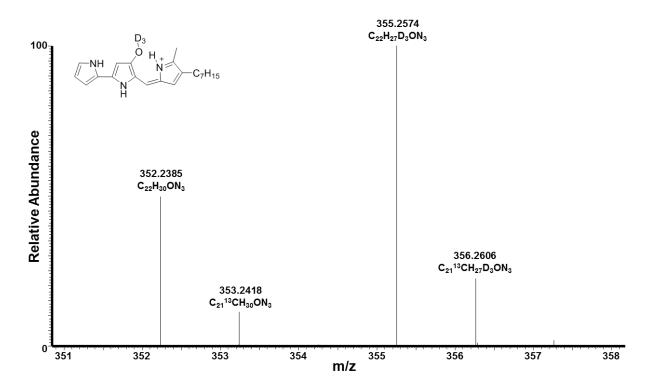

Fig. S34. MALDI-imaging-HRMS control of bacterial endophyte *S. marcescens* MSRBB2 grown on nutrient agar without stable isotope supplements. Optical image with assigned scan area and localization of labeled, unlabeled, and natural ¹³C-isotopic prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm).

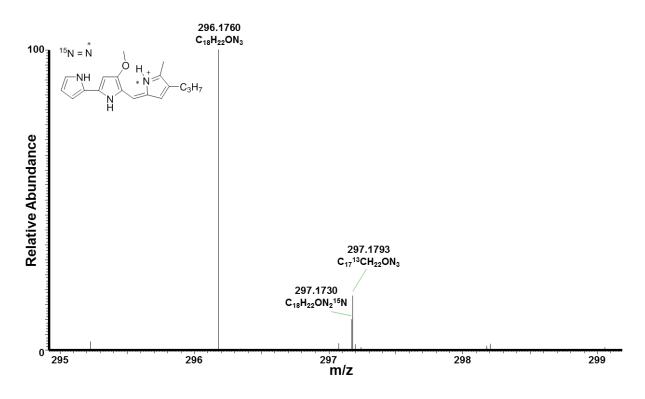
Fig. S35. MALDI-imaging-HRMS control of bacterial endophyte *S. marcescens* MSRBB2 grown on potato dextrose agar without stable isotope supplements for 14 days. Optical image with assigned scan area and localization of labeled, unlabeled, and natural ¹³C-isotopic prodigiosin (**3**, $[M+H]^+ \pm 2$ ppm).

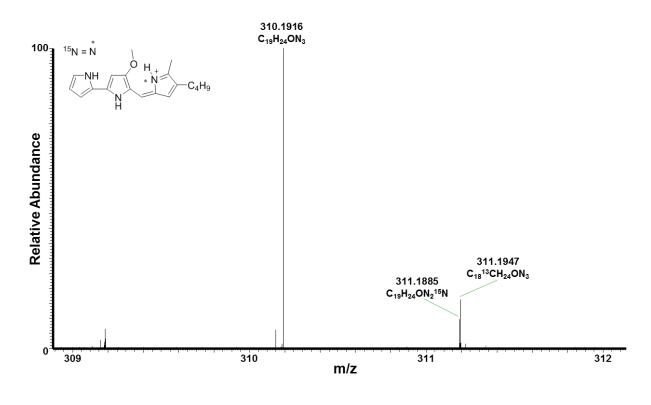
Fig. S36. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **1** $[M+H]^+$: m/z 299, C₁₈H₁₉D₃N₃O).

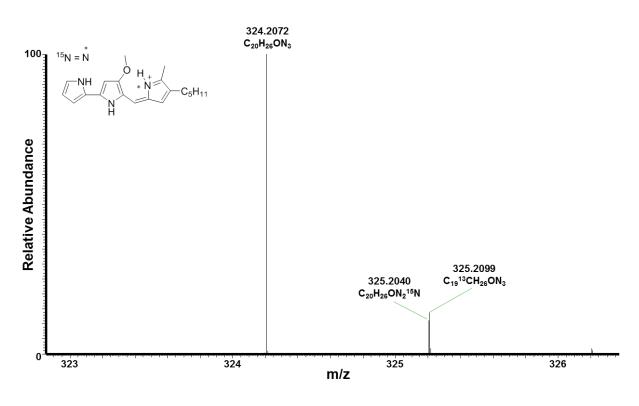
Fig. S37. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **2** $[M+H]^+$: *m/z* 313, C₁₉H₂₁D₃N₃O).

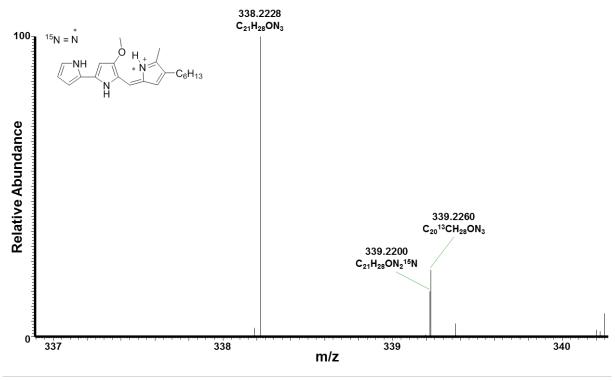




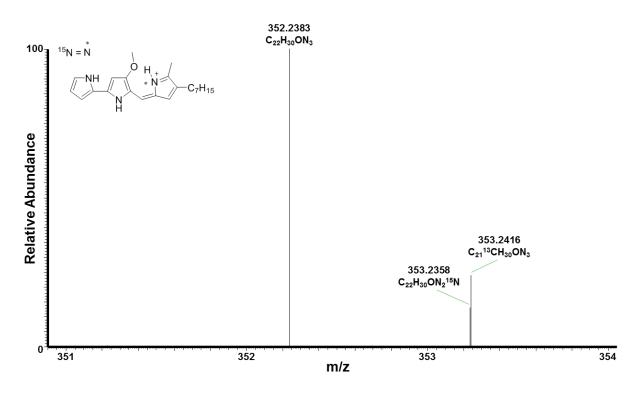

Fig. S38. HRMS spectra of prodigiosin with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound 3 $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).

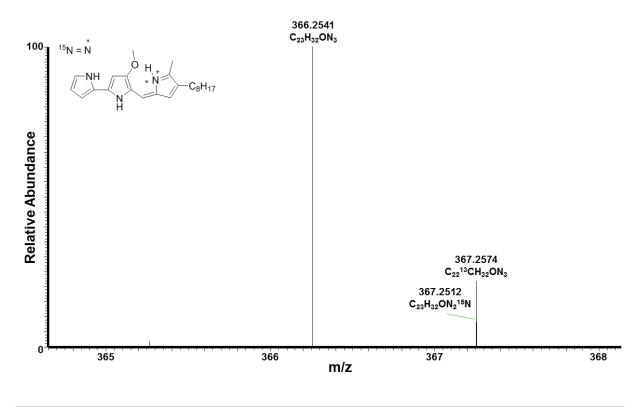

Fig. S39. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **4** $[M+H]^+$: *m/z* 341, C₂₁H₂₅D₃N₃O).


Fig. S40. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **5** $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).


Fig. S41. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl from labeled nutrient agar (compound **1** $[M+H]^+$: m/z 297, C₁₈H₂₂N₂¹⁵NO).


Fig. S42. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl from labeled nutrient agar (compound **2** $[M+H]^+$: m/z 311, C₁₉H₂₄N₂¹⁵NO).


Fig. S43. HRMS spectra of prodigiosin with incorporated ¹⁵N derived from ¹⁵NH₄Cl from labeled nutrient agar (compound **3** $[M+H]^+$: m/z 325, C₂₀H₂₆N₂¹⁵NO).


Fig. S44. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl from labeled nutrient agar (compound 4 $[M+H]^+$: m/z 339, C₂₁H₂₈N₂¹⁵NO).

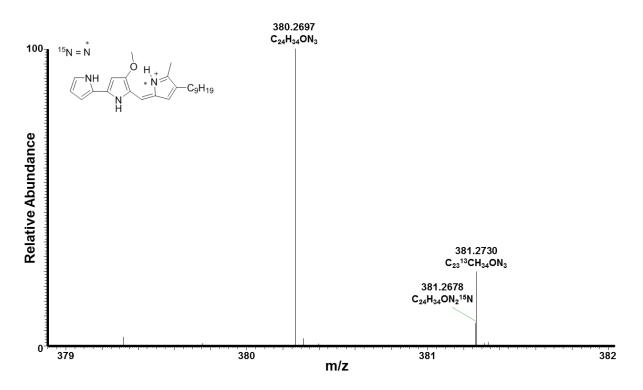

Fig. S45. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl from labeled nutrient agar (compound **5** $[M+H]^+$: m/z 353, C₂₂H₃₀N₂¹⁵NO).

Fig. S46. HRMS spectra of 2-methyl-3-octyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl from labeled nutrient agar (compound **6** $[M+H]^+$: m/z 367, C₂₃H₃₂N₂¹⁵NO).

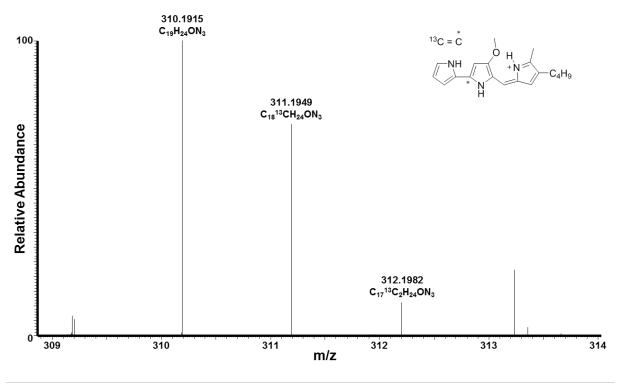

Fig. S47. HRMS spectra of 2-methyl-3-nonyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl from labeled nutrient agar (compound **7** $[M+H]^+$: m/z 381, C₂₄H₃₄N₂¹⁵NO).

Fig. S48. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated $[1^{-13}C]$ -L-proline from labeled nutrient agar (compound **1** $[M+H]^+$: m/z 297, $C_{17}^{13}CH_{22}N_3O$).

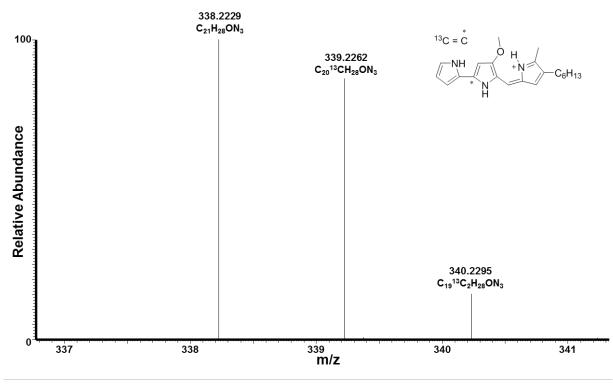

Fig. S49. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated $[1^{-13}C]$ -L-proline from labeled nutrient agar (compound **2** $[M+H]^+$: m/z 311, $C_{18}^{13}CH_{24}N_3O$).

Fig. S50. HRMS spectra of prodigiosin with incorporated $[1^{-13}C]$ -L-proline from labeled nutrient agar (compound **3** $[M+H]^+$: m/z 325, $C_{19}^{13}CH_{26}N_3O$).

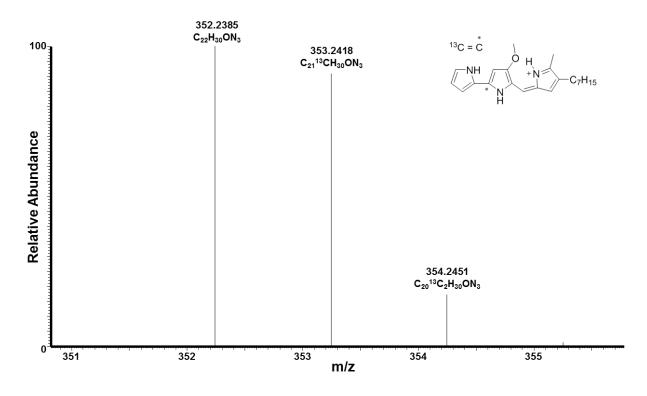
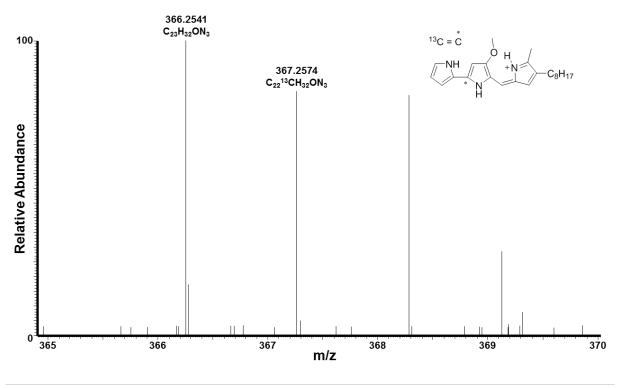


Fig. S51. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated $[1^{-13}C]$ -L-proline from labeled nutrient agar (compound 4 $[M+H]^+$: m/z 339, $C_{20}^{-13}CH_{28}N_3O$).



S-70 | Page

Fig. S52. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated $[1^{-13}C]$ -L-proline from labeled nutrient agar (compound **5** $[M+H]^+$: m/z 353, $C_{21}^{13}CH_{30}N_3O$).

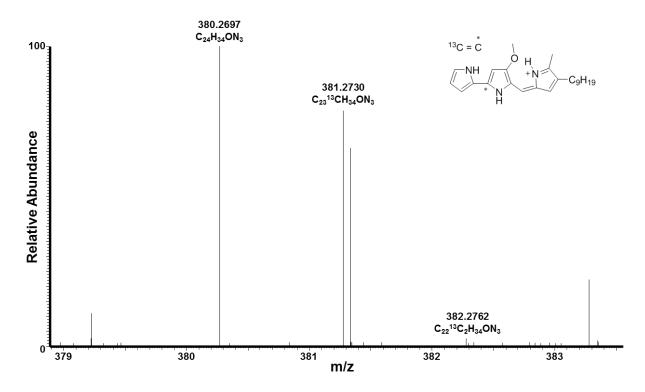
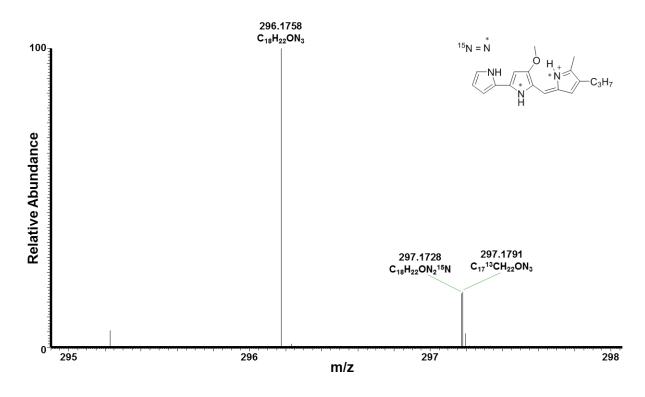


Fig. S53. HRMS spectra of 2-methyl-3-octyl prodiginine with incorporated $[1^{-13}C]$ -L-proline from labeled nutrient agar (compound 6 $[M+H]^+$: m/z 367, $C_{22}^{-13}CH_{32}N_3O$).



S-71 | Page

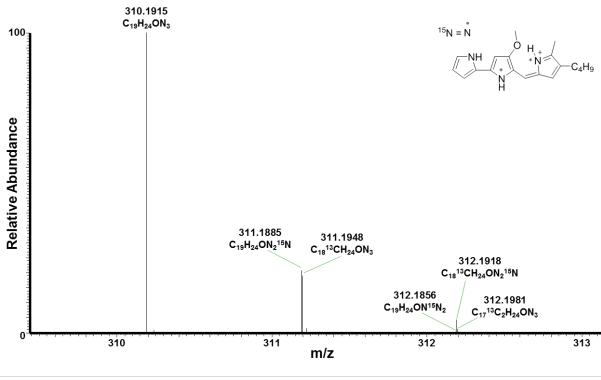

Fig. S54. HRMS spectra of 2-methyl-3-nonyl prodiginine with incorporated [1-¹³C]-L-proline from labeled nutrient agar (compound 7 [M+H]⁺: m/z 381, C₂₃¹³CH₃₄N₃O).

Fig. S55. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound $\mathbf{1} [M+H]^+$: m/z 296, $C_{18}H_{22}N_3O$).

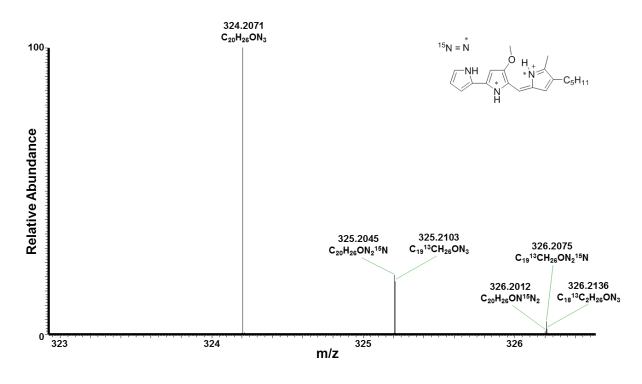
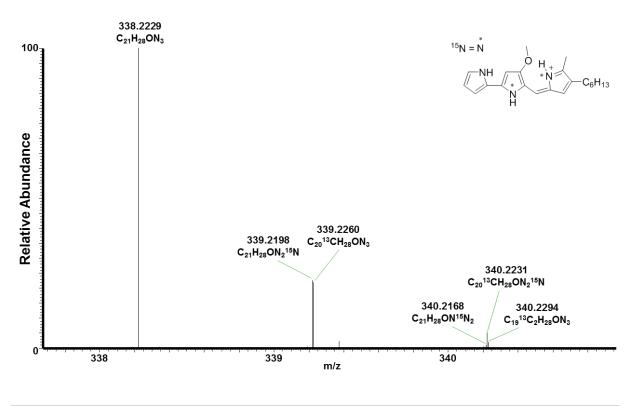
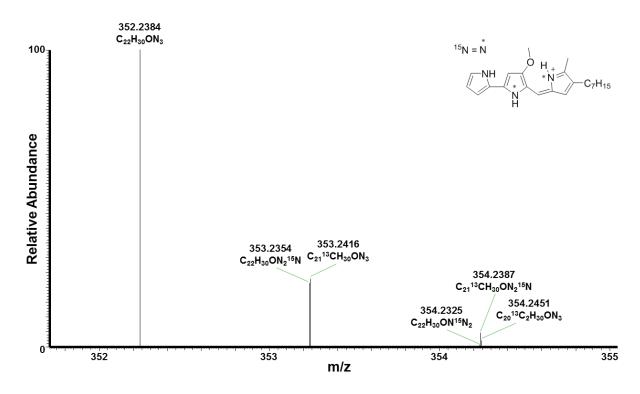


Fig. S56. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound 2 $[M+H]^+$: m/z 310, C₁₉H₂₄N₃O).



S-73 | Page


Fig. S57. HRMS spectra of prodigiosin with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **3** $[M+H]^+$: m/z 324, C₂₀H₂₆N₃O).

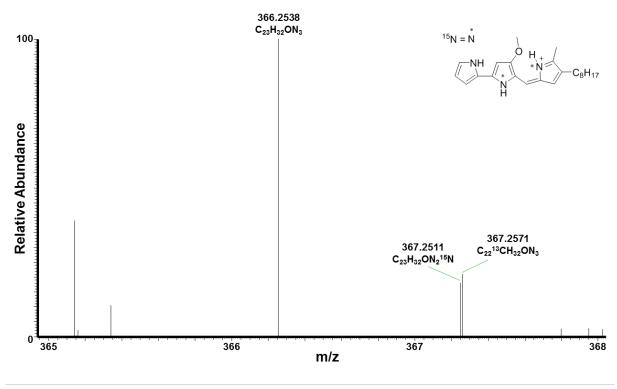

Fig. S58. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound 4 $[M+H]^+$: m/z 338, C₂₁H₂₈N₃O).

Fig. S59. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **5** $[M+H]^+$: m/z 352, $C_{22}H_{30}N_3O$).

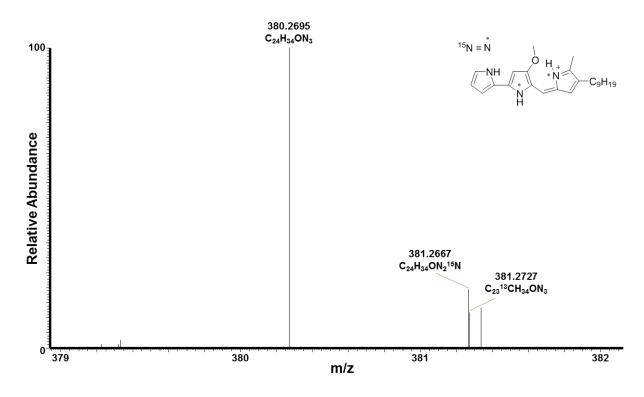
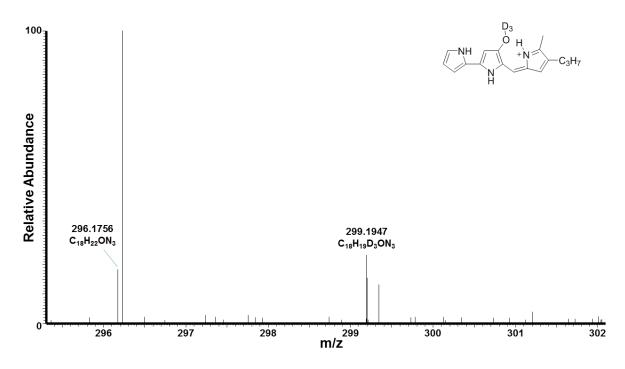


Fig. S60. HRMS spectra of 2-methyl-3-octyl prodiginine with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **6** $[M+H]^+$: m/z 366, C₂₃H₃₂N₃O).

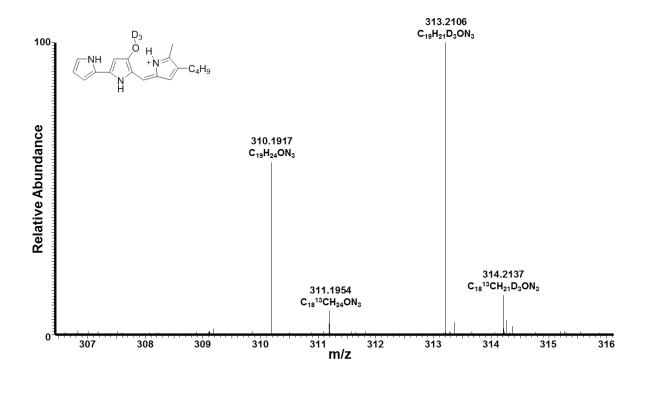
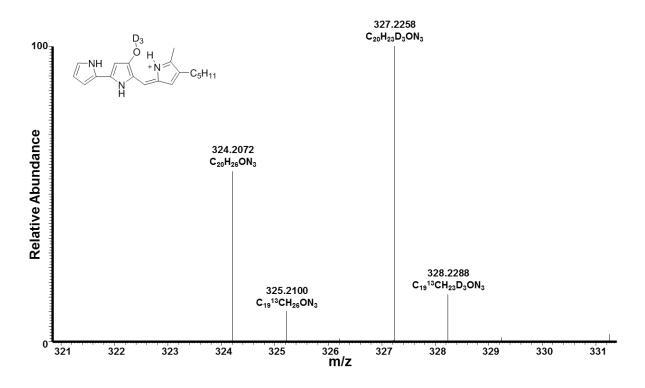
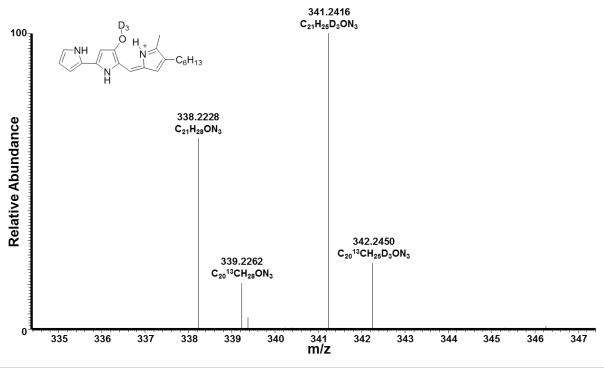


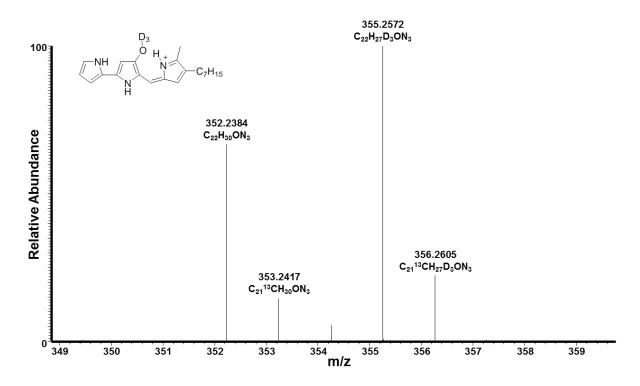
S-75 | Page

Fig. S61. HRMS spectra of 2-methyl-3-nonyl prodiginine with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound 7 $[M+H]^+$: m/z 380, C₂₄H₃₄N₃O).

Fig. S62. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **1** $[M+H]^+$: m/z 299, C₁₈H₁₉D₃N₃O).

Fig. S63. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **2** $[M+H]^+$: m/z 313, C₁₉H₂₁D₃N₃O).


Fig. S64. HRMS spectra of prodigiosin with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound 3 $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).

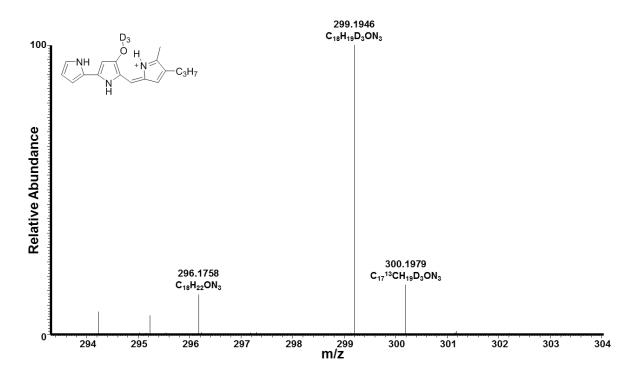
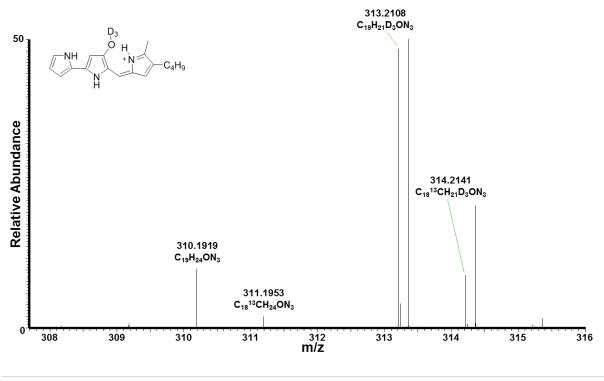
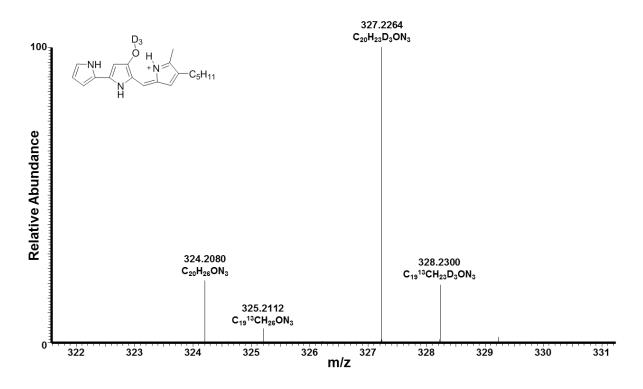
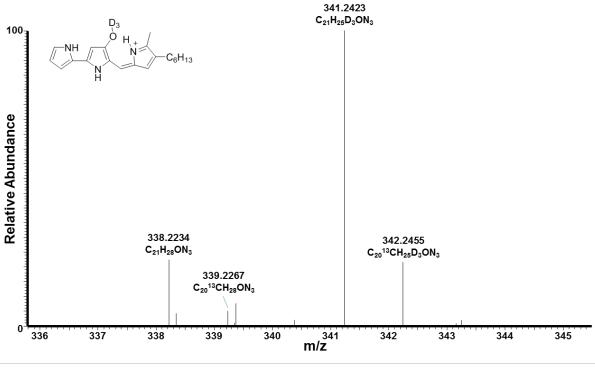
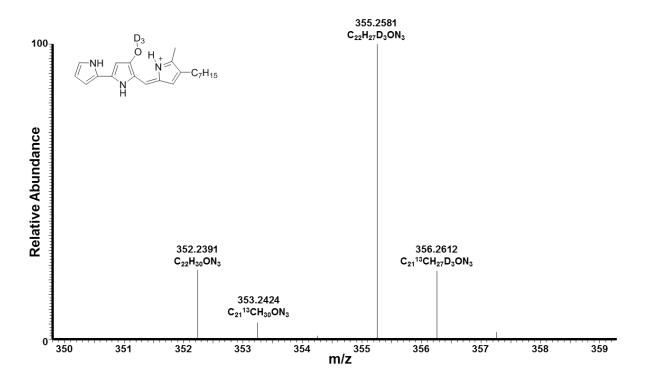

Fig. S65. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound 4 $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).

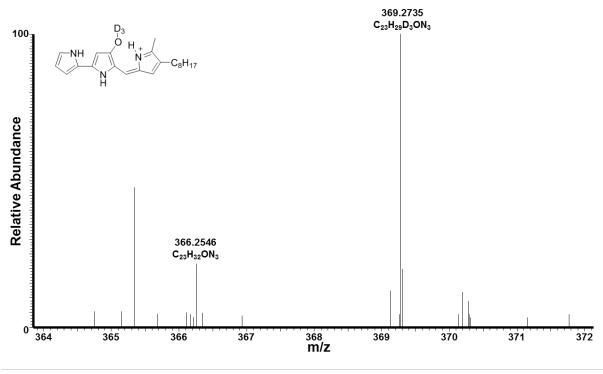
Fig. S66. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **5** $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).

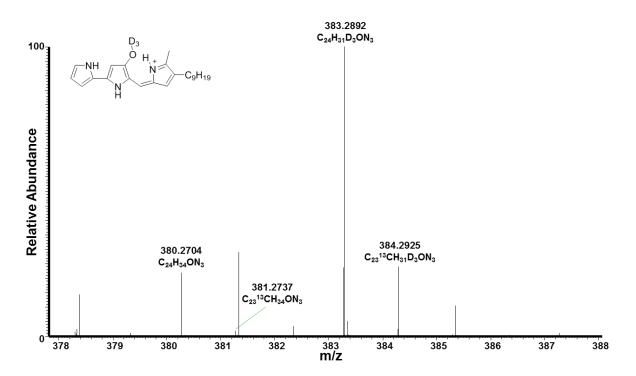
Fig. S67. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **1** $[M+H]^+$: m/z 299, C₁₈H₁₉D₃N₃O).

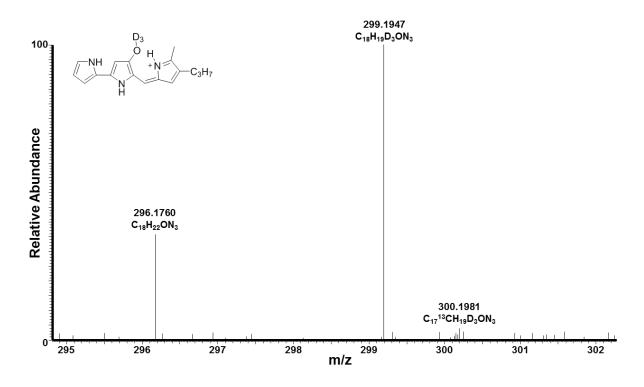
Fig. S68. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **2** $[M+H]^+$: *m/z* 313, C₁₉H₂₁D₃N₃O).

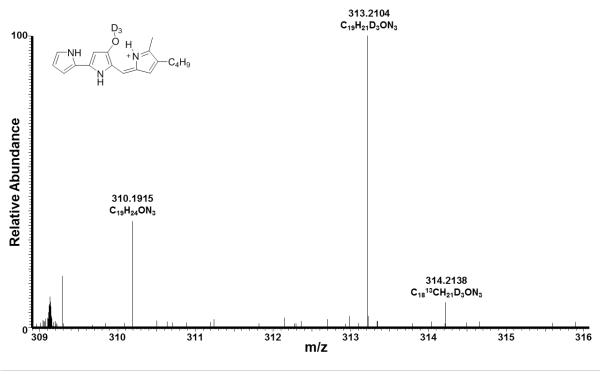




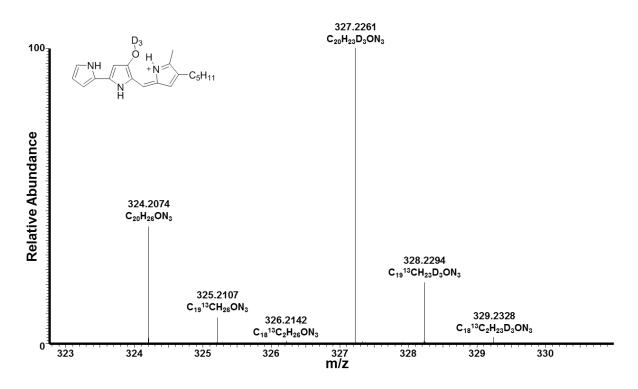

Fig. S69. HRMS spectra of prodigiosin with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound 3 $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).

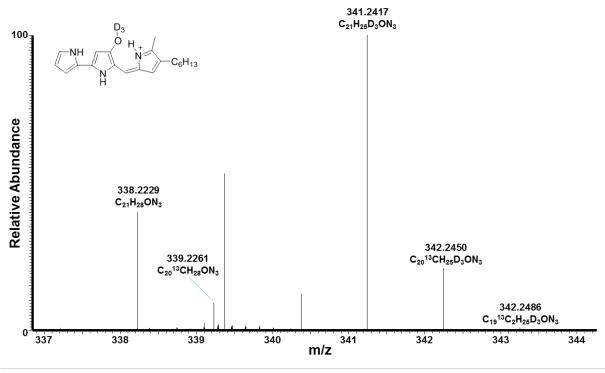

Fig. S70. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **4** $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).

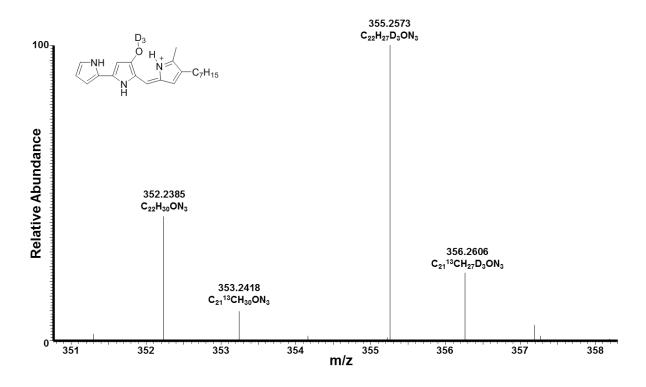

Fig. S71. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **5** $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).


Fig. S72. HRMS spectra of 2-methyl-3-octyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **6** $[M+H]^+$: m/z 369, C₂₃H₂₉D₃N₃O).


Fig. S73. HRMS spectra of 2-methyl-3-nonyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **7** $[M+H]^+$: m/z 383, C₂₄H₃₁D₃N₃O).


Fig. S74. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 1 $[M+H]^+$: m/z 299, C₁₈H₁₉D₃N₃O).


Fig. S75. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **2** $[M+H]^+$: m/z 313, C₁₉H₂₁D₃N₃O).


Fig. S76. HRMS spectra of prodigiosin with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **3** $[M+H]^+$: *m/z* 327, C₂₀H₂₃D₃N₃O).

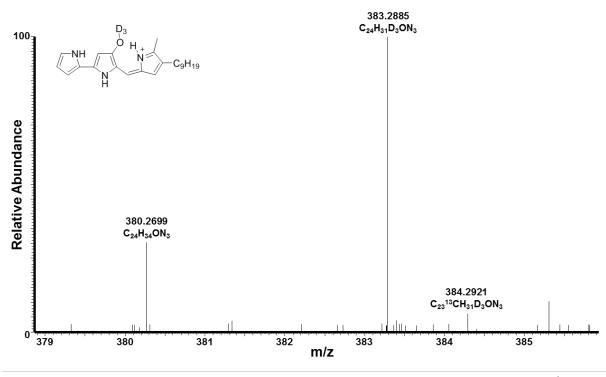

Fig. S77. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **4** $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).

Fig. S78. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **5** $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).

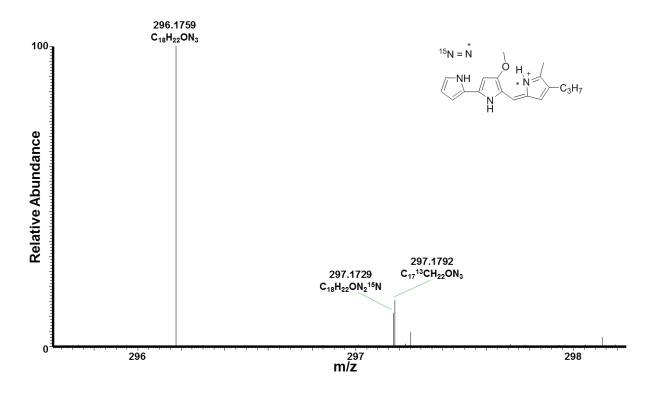
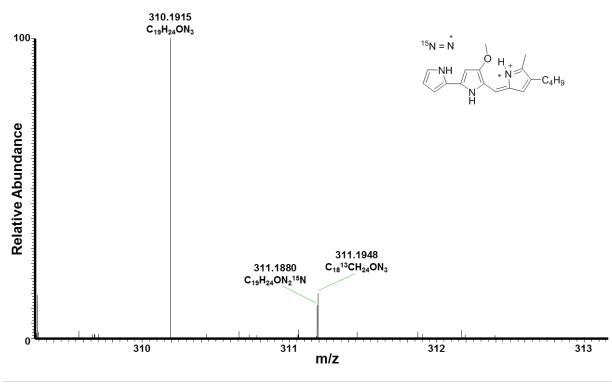


Fig. S79. HRMS spectra of 2-methyl-3-nonyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **7** $[M+H]^+$: m/z 383, C₂₄H₃₁D₃N₃O).



S-86 | Page

Fig. S80. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl from labeled potato dextrose agar (compound **1** $[M+H]^+$: m/z 297, C₁₈H₂₂N₂¹⁵NO).

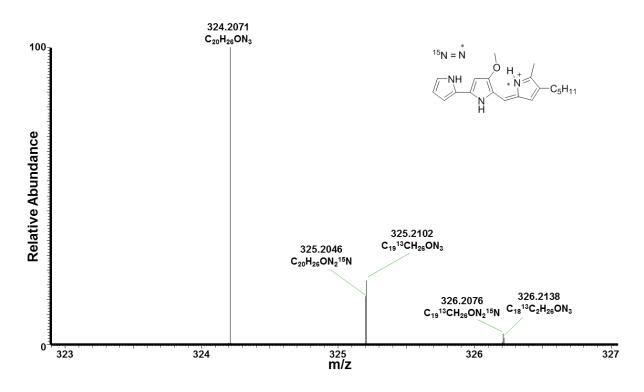
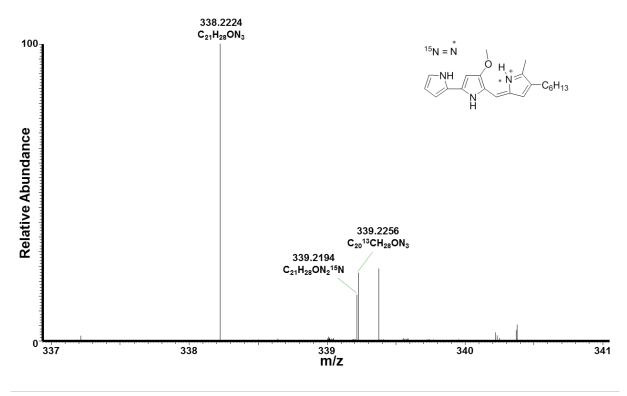


Fig. S81. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl from labeled potato dextrose agar (compound **2** $[M+H]^+$: m/z 311, C₁₉H₂₄N₂¹⁵NO).



S-87 | Page

Fig. S82. HRMS spectra of prodigiosin with incorporated ¹⁵N derived from ¹⁵NH₄Cl from labeled potato dextrose agar (compound **3** $[M+H]^+$: m/z 325, C₂₀H₂₆N₂¹⁵NO).

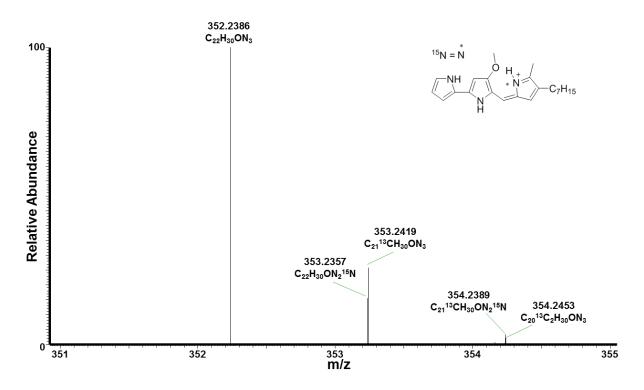
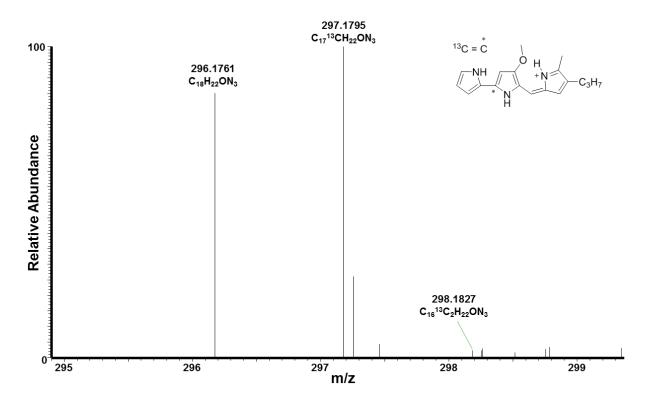
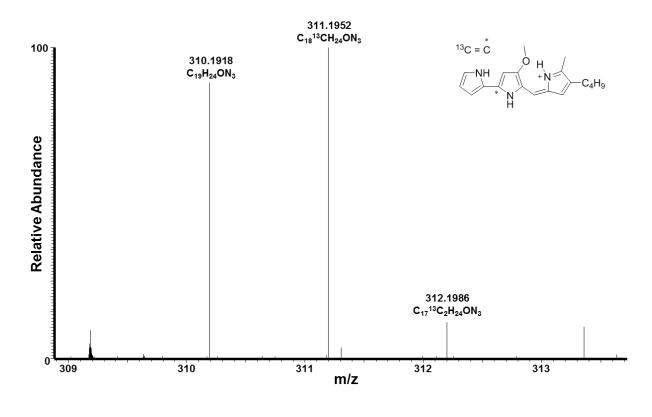
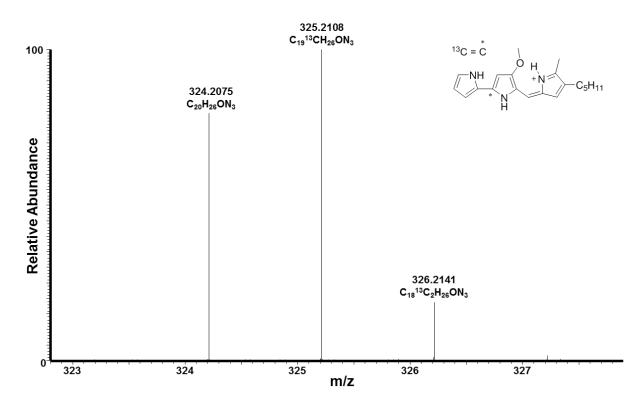


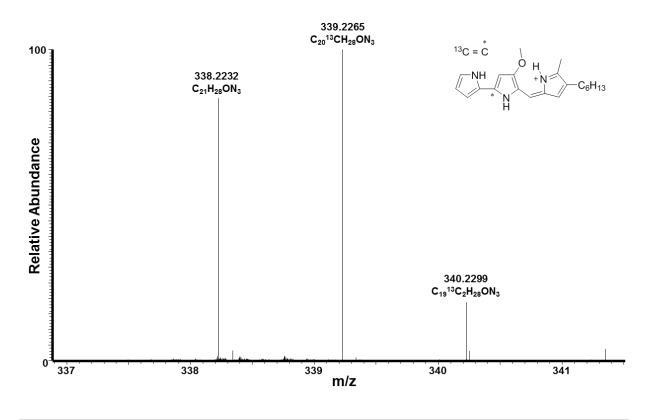
Fig. S83. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl from labeled potato dextrose agar (compound 4 $[M+H]^+$: m/z 339, $C_{21}H_{28}N_2^{15}NO$).

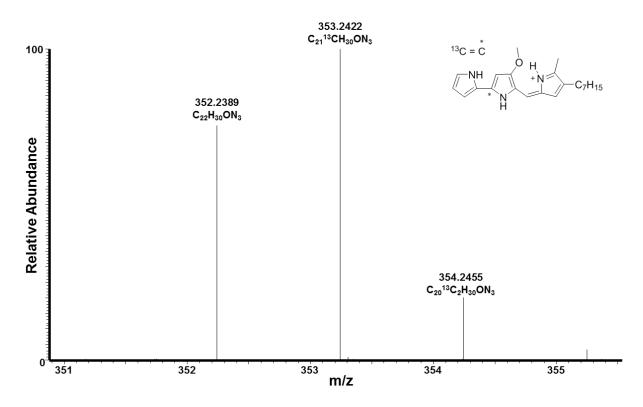


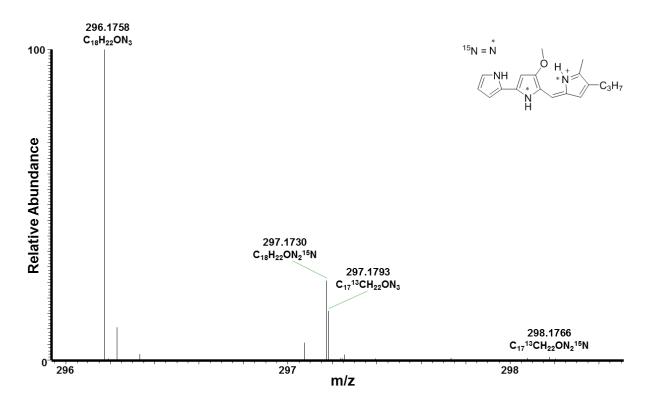
S-88 | Page

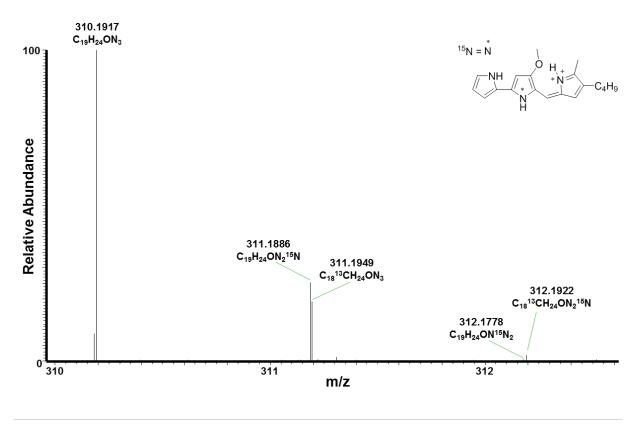

Fig. S84. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl from labeled potato dextrose agar (compound **5** $[M+H]^+$: m/z 353, C₂₂H₃₀N₂¹⁵NO).

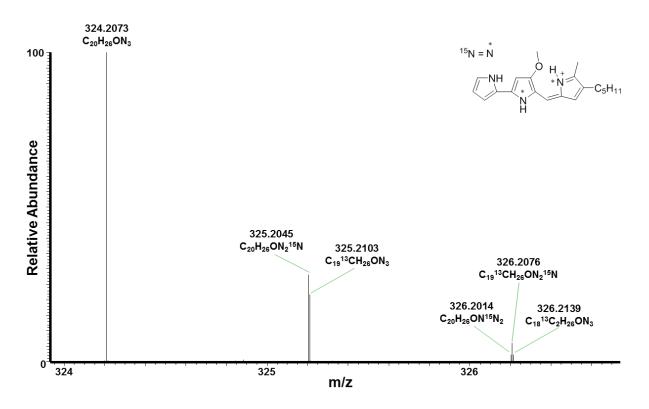

Fig. S85. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated $[1^{-13}C]$ -L-proline from labeled potato dextrose agar (compound **1** $[M+H]^+$: m/z 297, $C_{17}^{-13}CH_{22}N_3O$).


Fig. S86. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated $[1^{-13}C]$ -L-proline from labeled potato dextrose agar (compound 2 $[M+H]^+$: m/z 311, $C_{18}^{13}CH_{24}N_3O$).


Fig. S87. HRMS spectra of prodigiosin with incorporated $[1^{-13}C]$ -L-proline from labeled potato dextrose agar (compound **3** $[M+H]^+$: m/z 325, $C_{19}^{13}CH_{26}N_3O$).


Fig. S88. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated $[1^{-13}C]$ -L-proline from labeled potato dextrose agar (compound 4 $[M+H]^+$: m/z 339, $C_{20}^{-13}CH_{28}N_3O$).


Fig. S89. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated $[1^{-13}C]$ -L-proline from labeled potato dextrose agar (compound **5** $[M+H]^+$: m/z 353, $C_{21}^{13}CH_{30}N_3O$).


Fig. S90. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **1** $[M+H]^+$: m/z 296, C₁₈H₂₂N₃O).

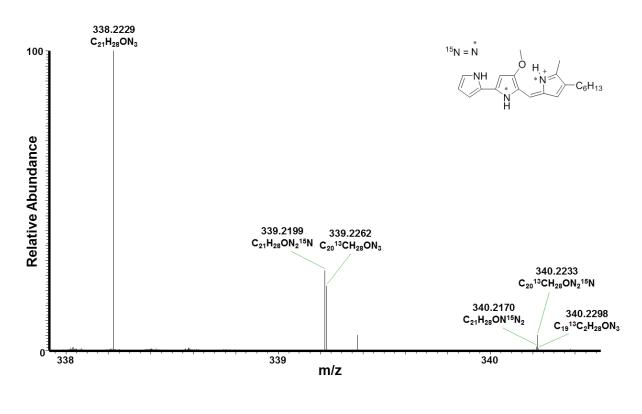

Fig. S91. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **2** $[M+H]^+$: m/z 310, C₁₉H₂₄N₃O).

Fig. S92. HRMS spectra of prodigiosin with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **3** $[M+H]^+$: m/z 324, C₂₀H₂₆N₃O).

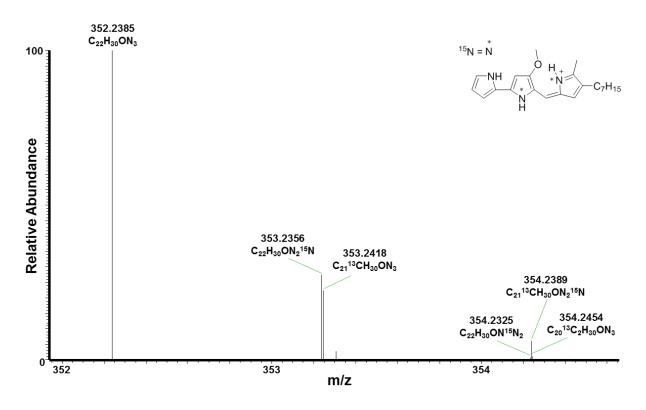
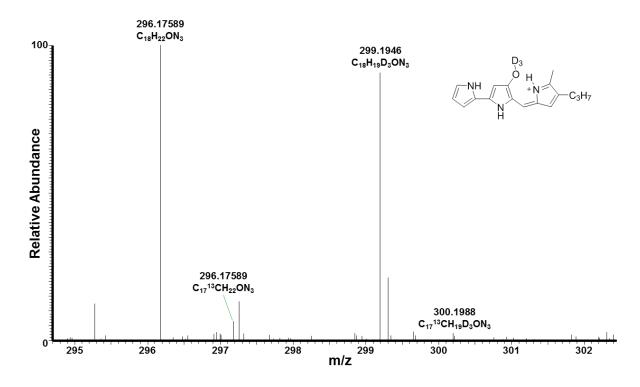


Fig. S93. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound 4 $[M+H]^+$: m/z 338, C₂₁H₂₈N₃O).

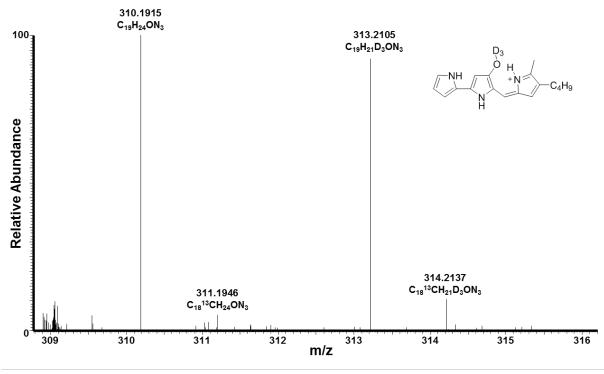
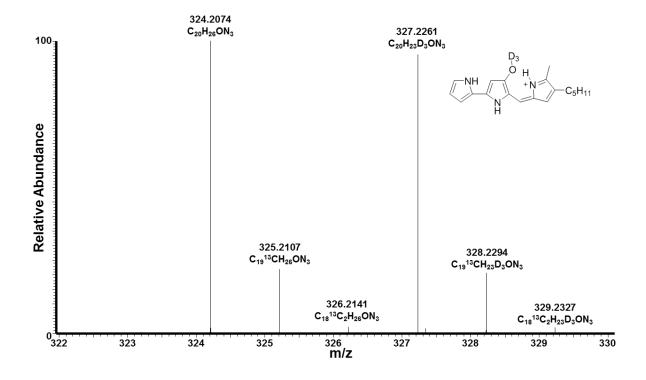
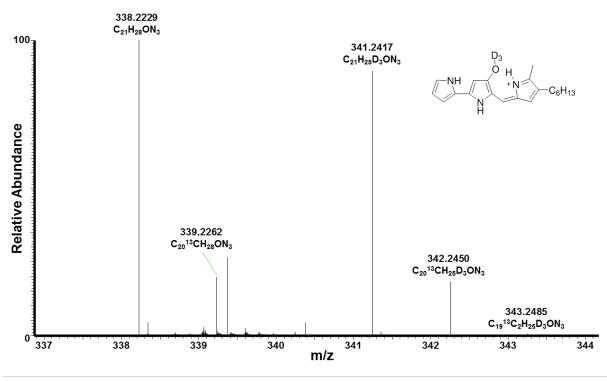


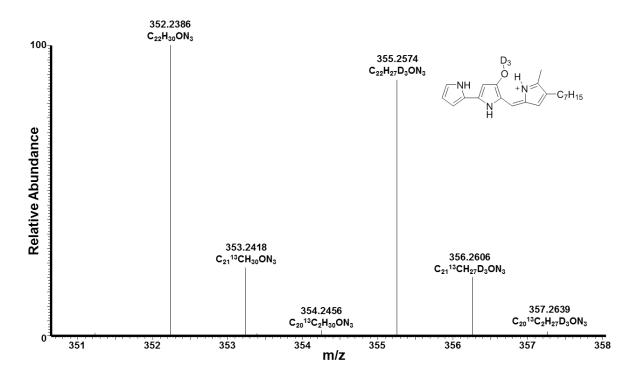
S-94 | Page

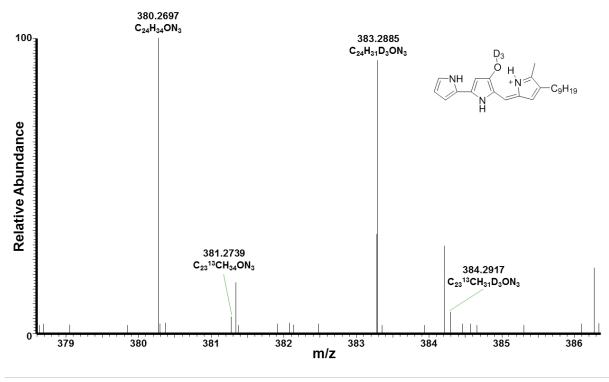
Fig. S94. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **5** $[M+H]^+$: m/z 352, $C_{22}H_{30}N_3O$).

Fig. S95. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 1 $[M+H]^+$: m/z 299, C₁₈H₁₉D₃N₃O).

Fig. S96. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **2** $[M+H]^+$: m/z 313, C₁₉H₂₁D₃N₃O).


Fig. S97. HRMS spectra of prodigiosin with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 3 $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).


Fig. S98. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 4 $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).

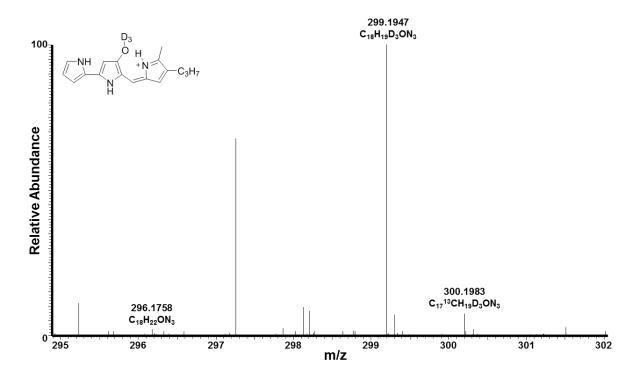
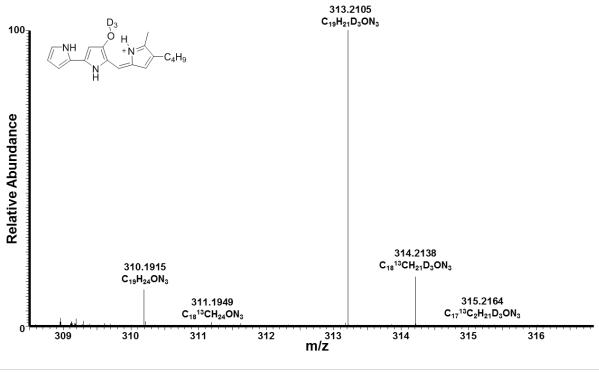
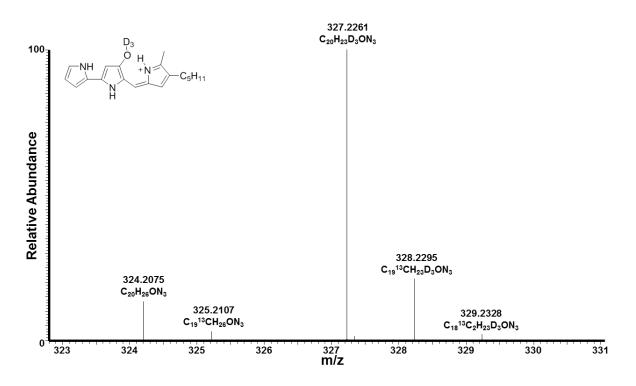
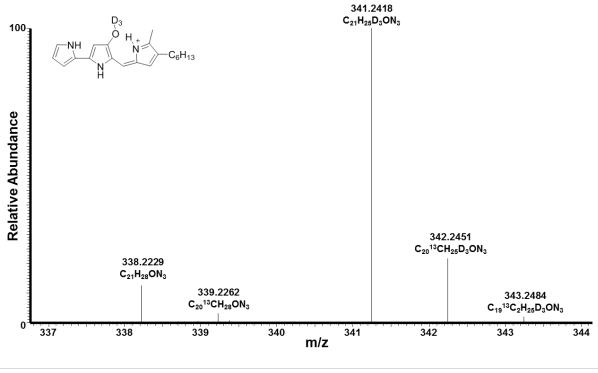

Fig. S99. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 5 $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).

Fig. S100. HRMS spectra of 2-methyl-3-nonyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 7 $[M+H]^+$: m/z 383, C₂₄H₃₁D₃N₃O).

Fig. S101. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 1 $[M+H]^+$: m/z 299, C₁₈H₁₉D₃N₃O).

Fig. S102. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **2** $[M+H]^+$: m/z 313, C₁₉H₂₁D₃N₃O).

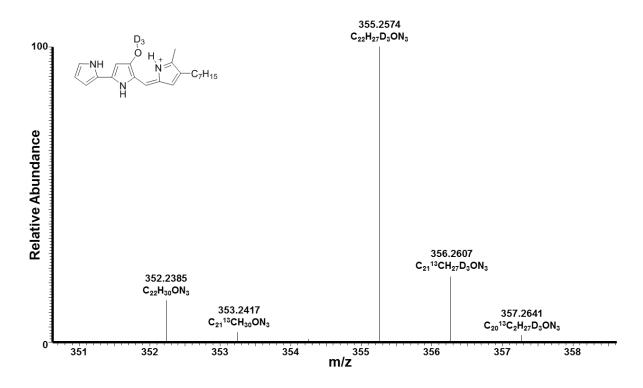
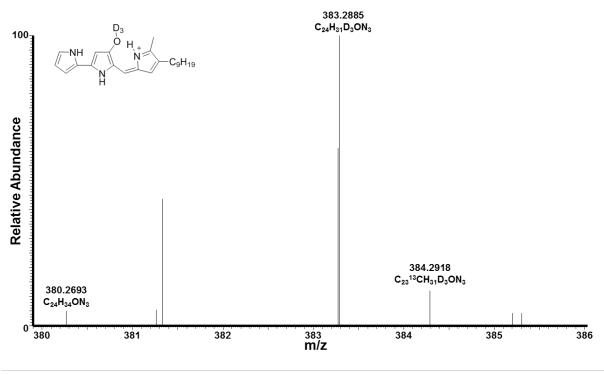
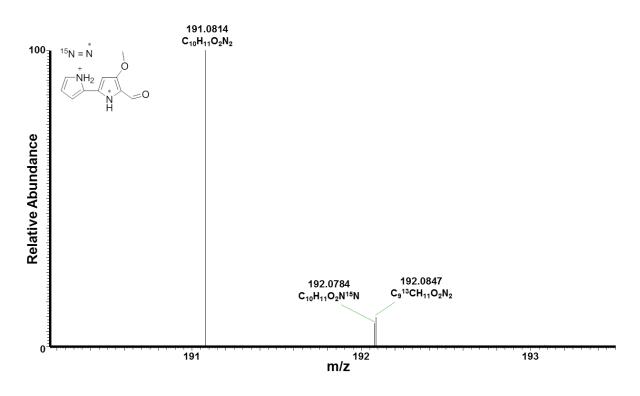
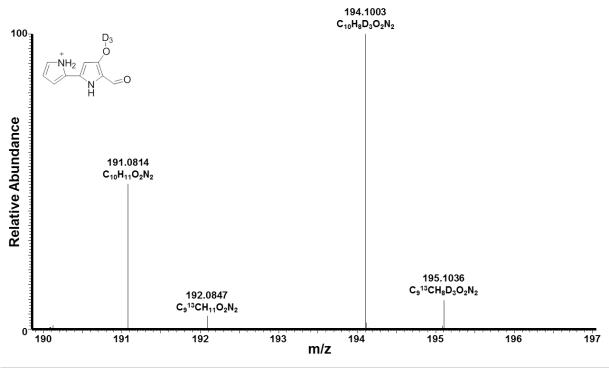
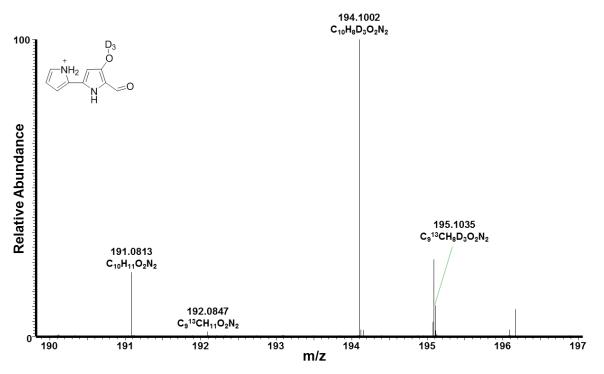

Fig. S103. HRMS spectra of prodigiosin with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 3 $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).

Fig. S104. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **4** $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).

Fig. S105. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **5** $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).

Fig. S106. HRMS spectra of 2-methyl-3-nonyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **7** $[M+H]^+$: m/z 383, C₂₄H₃₁D₃N₃O).


Fig. S107. HRMS spectra of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound 8 $[M+H]^+$: m/z 192, C₁₀H₁₁N¹⁵NO₂).

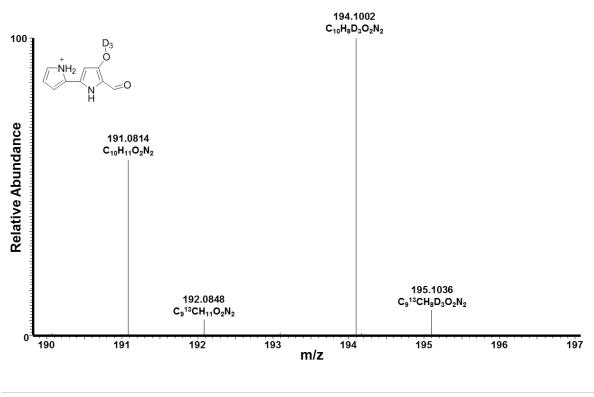
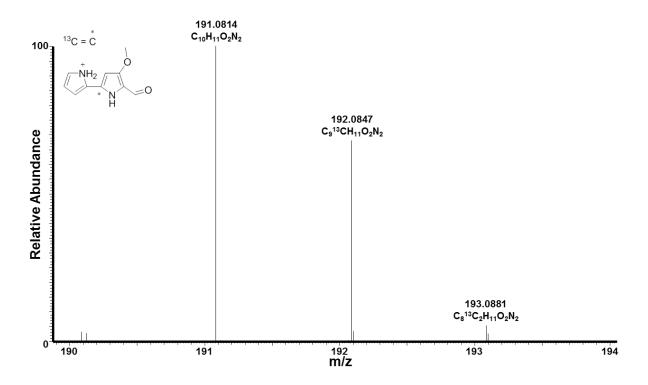
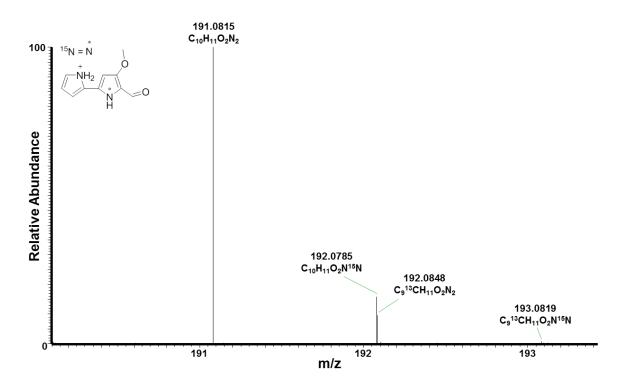
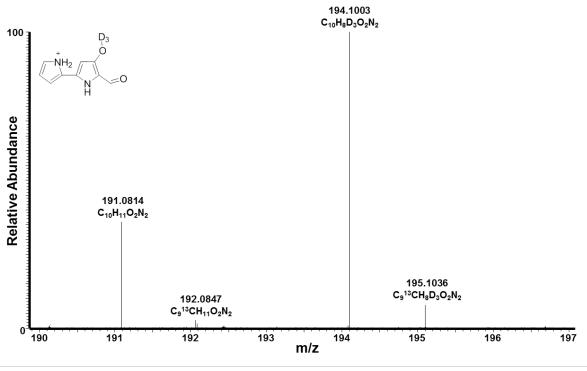
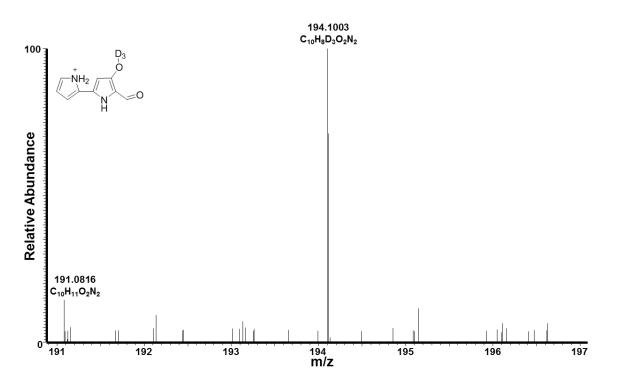

Fig. S108. HRMS spectra of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **8** $[M+H]^+$: m/z 194, C₁₀H₈D₃N₂O₂).

Fig. S109. HRMS spectra of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **8** $[M+H]^+$: m/z 194, C₁₀H₈D₃N₂O₂).

Fig. S110. HRMS spectra of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **8** $[M+H]^+$: m/z 194, C₁₀H₈D₃N₂O₂).

Fig. S111. HRMS spectra of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) with incorporated $[1-^{13}C]$ -L-proline from labeled nutrient agar (compound **8** $[M+H]^+$: m/z 192, $C_9^{13}CH_{11}N_2O_2$).


Fig. S112. HRMS spectra of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound 8 $[M+H]^+$: m/z 192, C₁₀H₁₁N¹⁵NO₂).

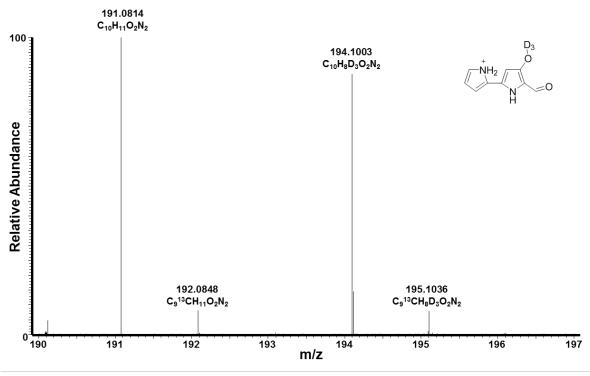
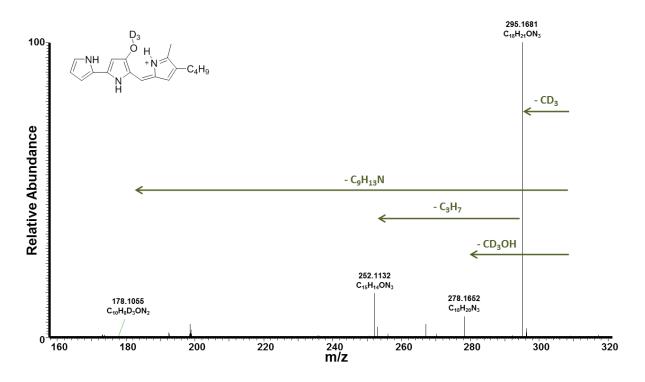
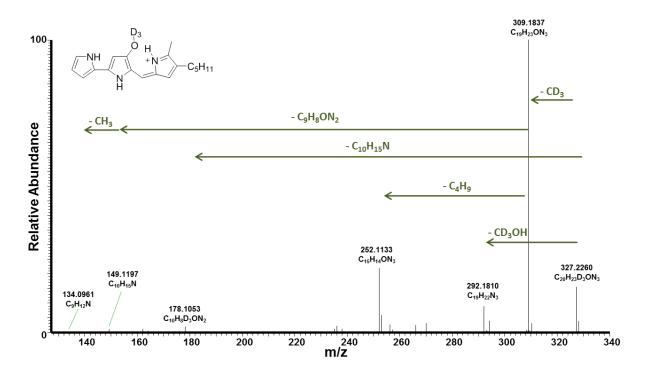
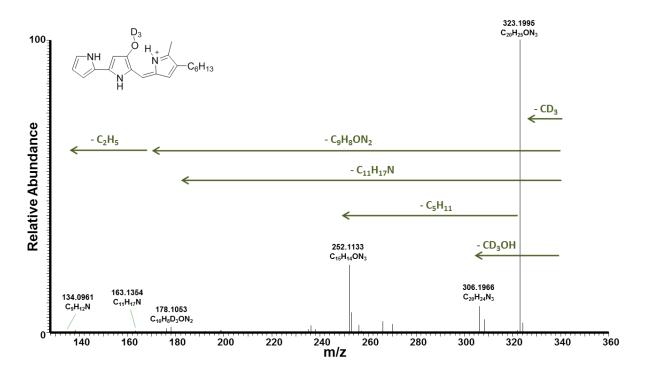

Fig. S113. HRMS spectra of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **8** $[M+H]^+$: m/z 194, C₁₀H₈D₃N₂O₂).


Fig. S114. HRMS spectra of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **8** $[M+H]^+$: m/z 194, C₁₀H₈D₃N₂O₂).


Fig. S115. HRMS spectra of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **8** $[M+H]^+$: m/z 194, C₁₀H₈D₃N₂O₂).


Fig. S116. HRMS spectra of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) with incorporated $[1-^{13}C]$ -L-proline from labeled potato dextrose agar (compound **8** [M+H]⁺: m/z 192, C₉¹³CH₁₁N₂O₂).


Fig. S117. HRMS² of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **2** $[M+H]^+$: *m/z* 313, C₁₉H₂₁D₃N₃O).

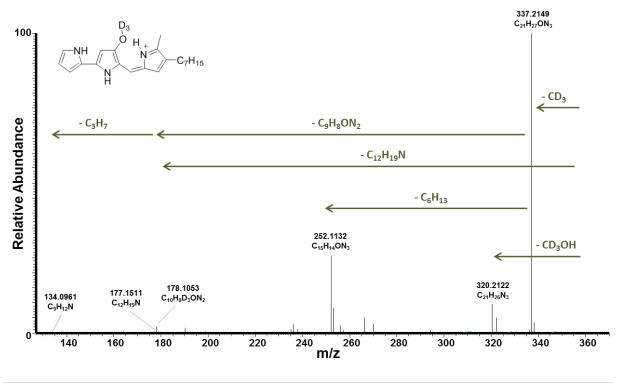
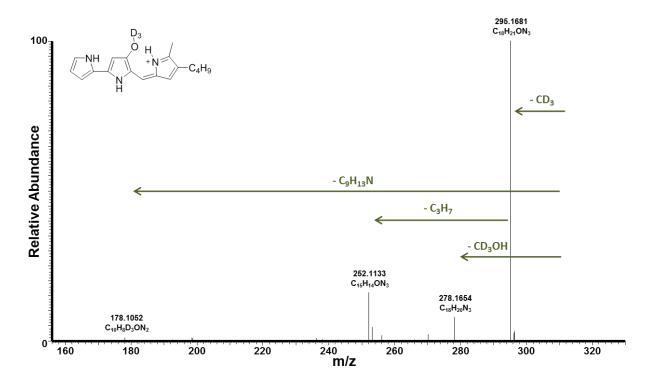
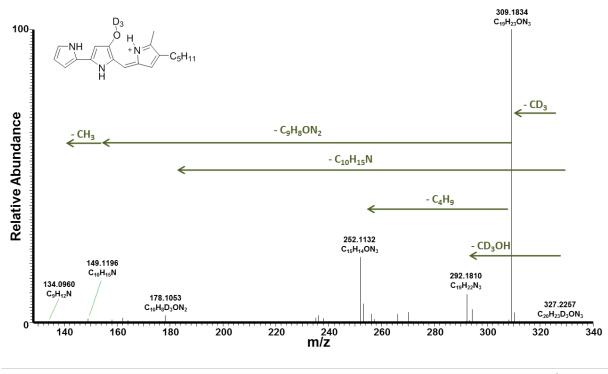
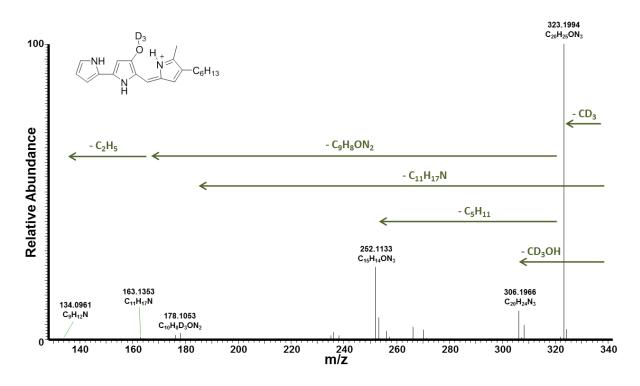
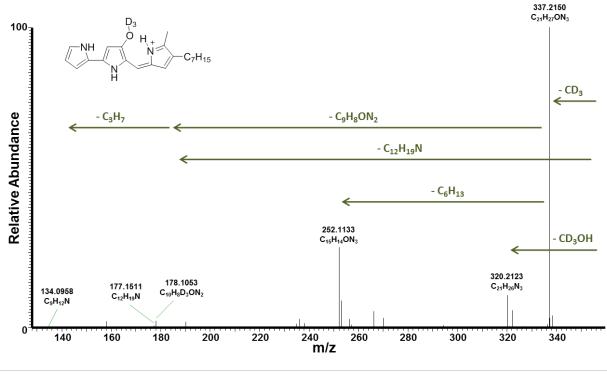

Fig. S118. HRMS² of prodigiosin with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **3** $[M+H]^+$: *m/z* 327, C₂₀H₂₃D₃N₃O).

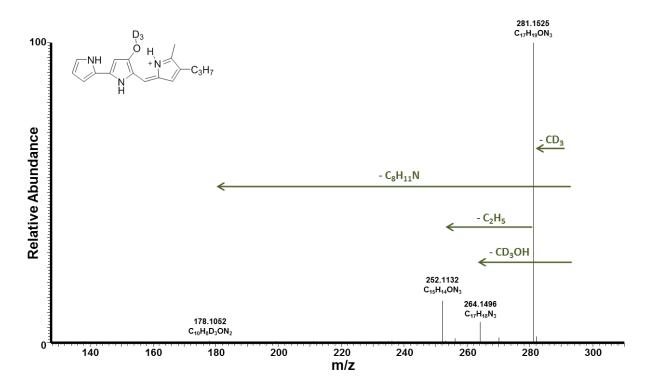
Fig. S119. HRMS² of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **4** $[M+H]^+$: *m/z* 341, C₂₁H₂₅D₃N₃O).

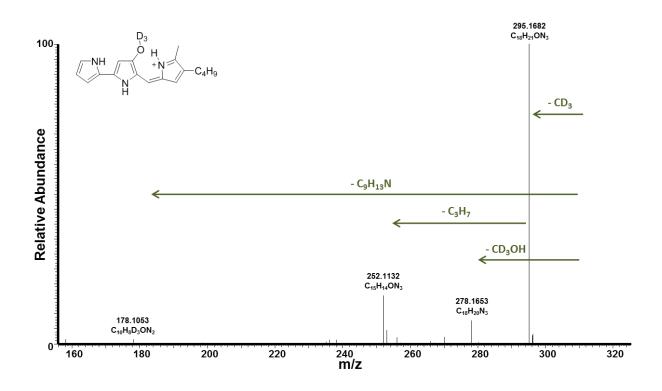
Fig. S120. HRMS² of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **5** $[M+H]^+$: *m/z* 355, C₂₂H₂₇D₃N₃O).

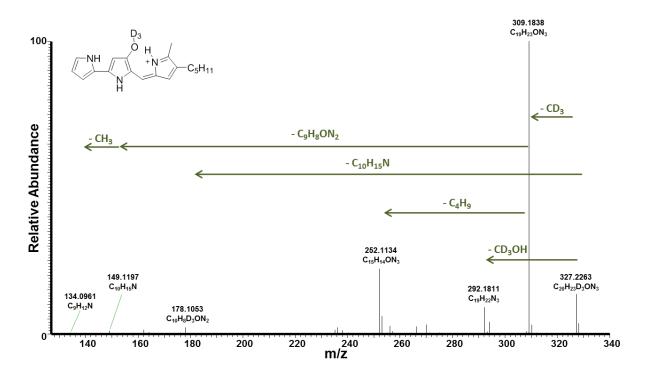
Fig. S121. HRMS² of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **2** $[M+H]^+$: m/z 313, C₁₉H₂₁D₃N₃O).

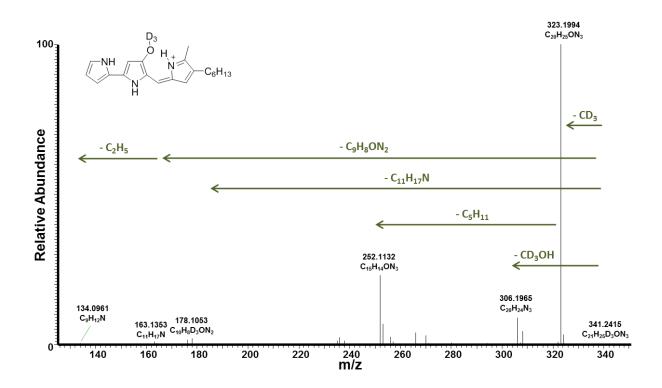




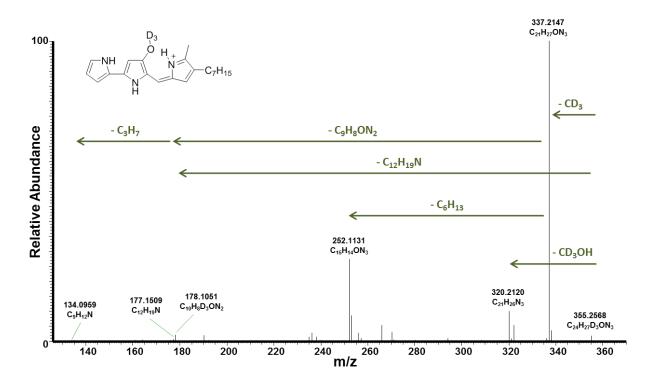

Fig. S122. HRMS² of prodigiosin with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **3** $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).

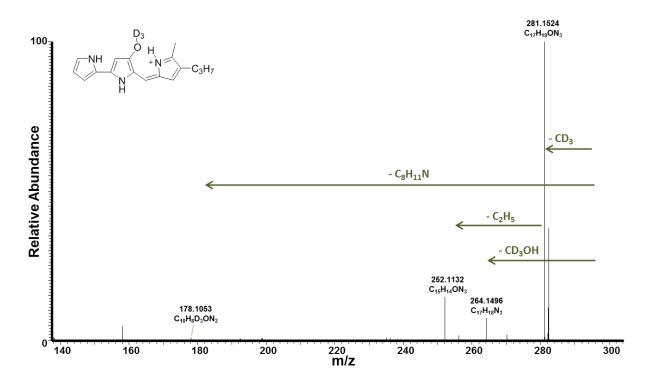

Fig. S123. HRMS² of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **4** $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).

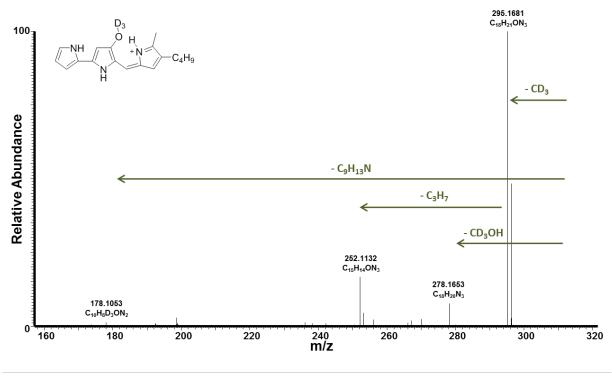

Fig. S124. HRMS² of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **5** $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).

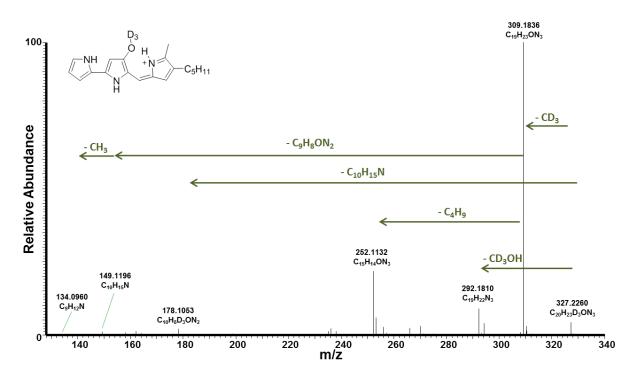

Fig. S125. HRMS² of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **1** $[M+H]^+$: *m/z* 299, C₁₈H₁₉D₃N₃O).

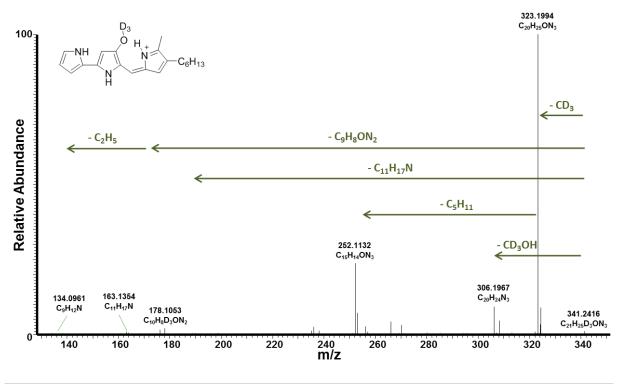

Fig. S126. HRMS² of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **2** $[M+H]^+$: *m/z* 313, C₁₉H₂₁D₃N₃O).

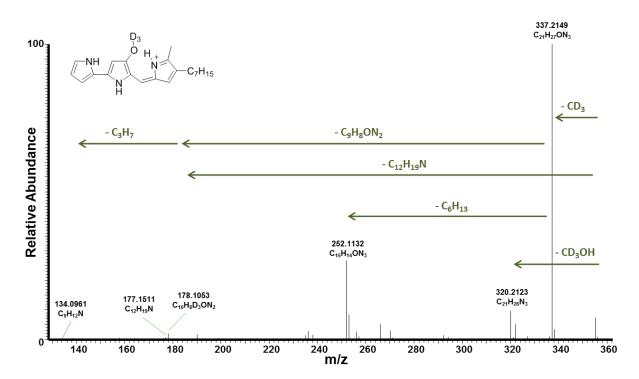

Fig. S127. HRMS² of prodigiosin with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **3** $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).

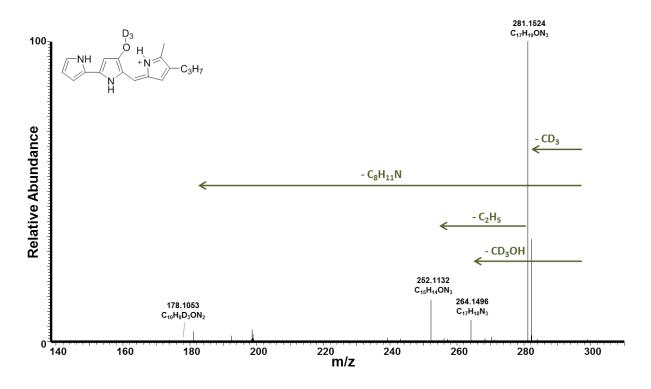

Fig. S128. HRMS² of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **4** $[M+H]^+$: *m/z* 341, C₂₁H₂₅D₃N₃O).


Fig. S129. HRMS² of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on nutrient agar (compound **5** $[M+H]^+$: *m/z* 355, C₂₂H₂₇D₃N₃O).


Fig. S130. HRMS² of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 1 $[M+H]^+$: m/z 299, C₁₈H₁₉D₃N₃O).


Fig. S131. HRMS² of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **2** $[M+H]^+$: m/z 313, C₁₉H₂₁D₃N₃O).


Fig. S132. HRMS² of prodigiosin with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **3** $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).


Fig. S133. HRMS² of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **4** $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).

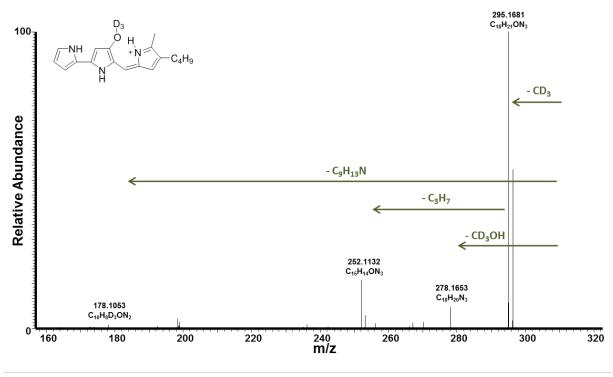

Fig. S134. HRMS² of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from 1 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **5** $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).

Fig. S135. HRMS² of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **1** $[M+H]^+$: m/z 299, C₁₈H₁₉D₃N₃O).

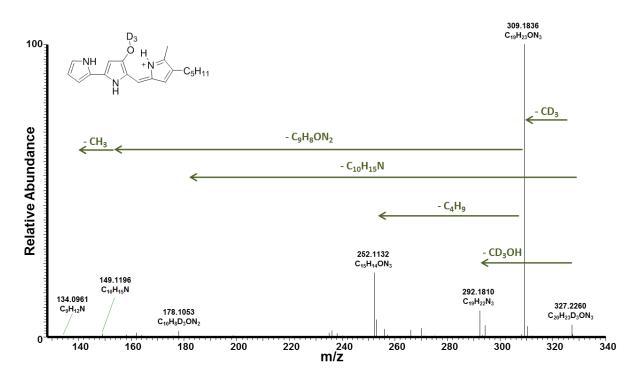
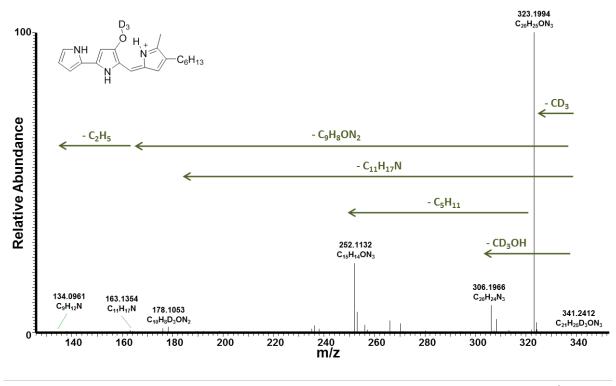
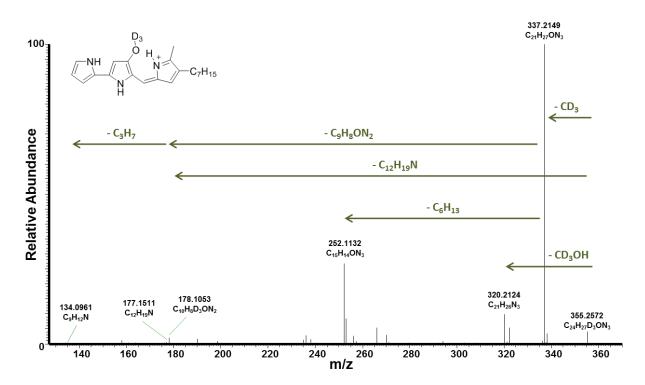
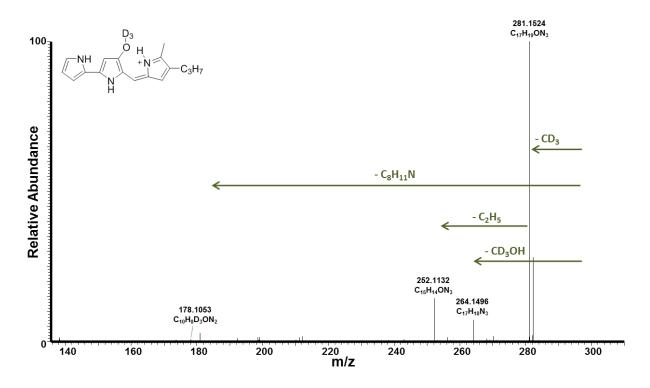


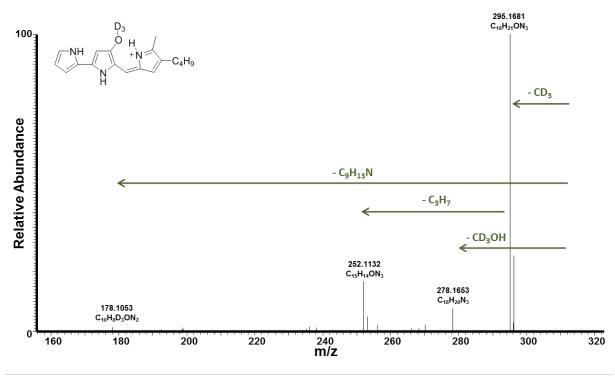
Fig. S136. HRMS² of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **2** $[M+H]^+$: m/z 313, C₁₉H₂₁D₃N₃O).

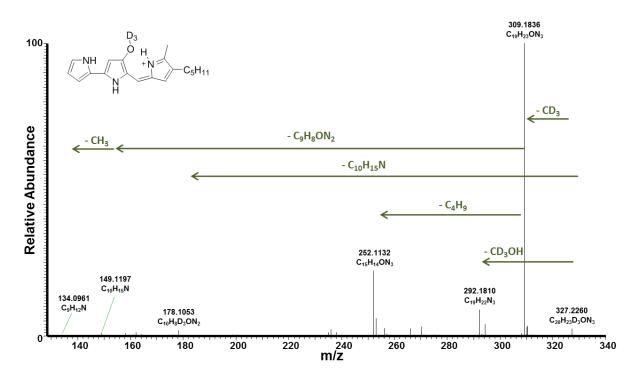


S-118 | Page


Fig. S137. HRMS² of prodigiosin with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 3 $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).


Fig. S138. HRMS² of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 4 $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).


Fig. S139. HRMS² of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from 0.5 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **5** $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).


Fig. S140. HRMS² of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 1 $[M+H]^+$: m/z 299, C₁₈H₁₉D₃N₃O).

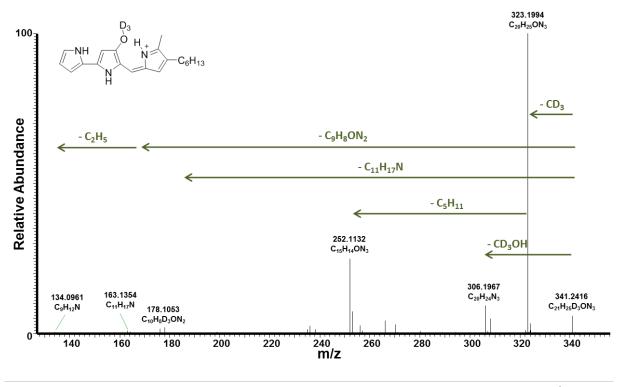

Fig. S141. HRMS² of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **2** $[M+H]^+$: m/z 313, C₁₉H₂₁D₃N₃O).

Fig. S142. HRMS² of prodigiosin with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **3** $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).

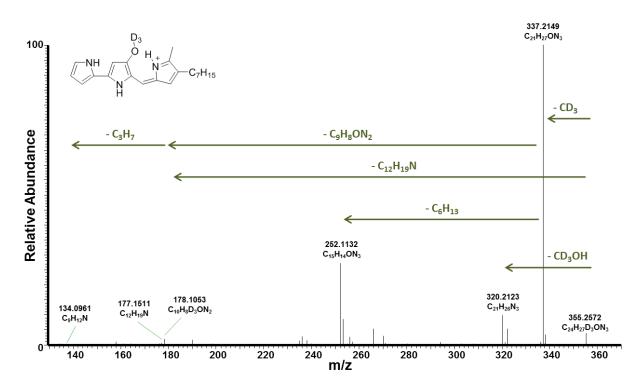
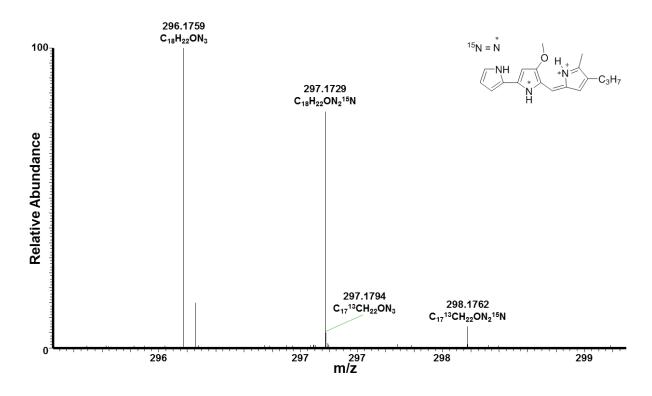
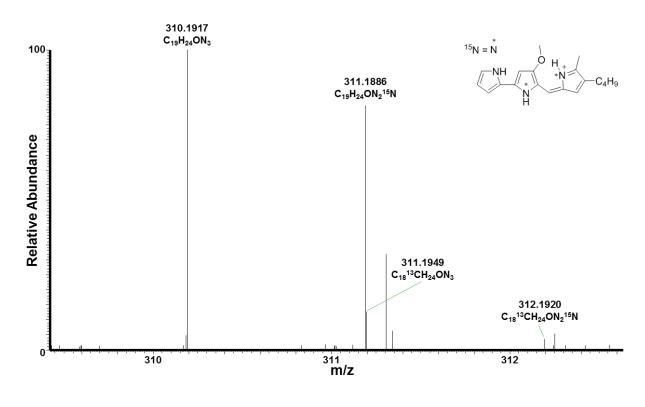
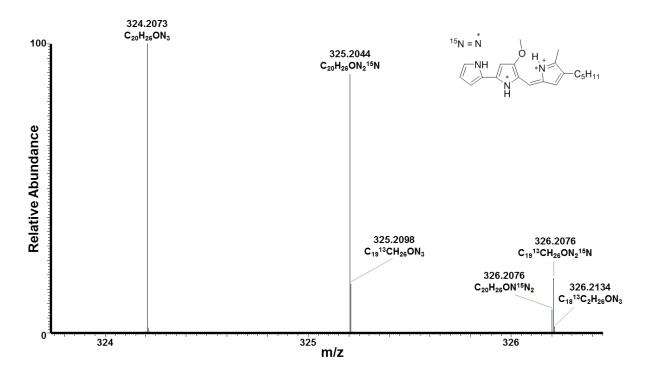


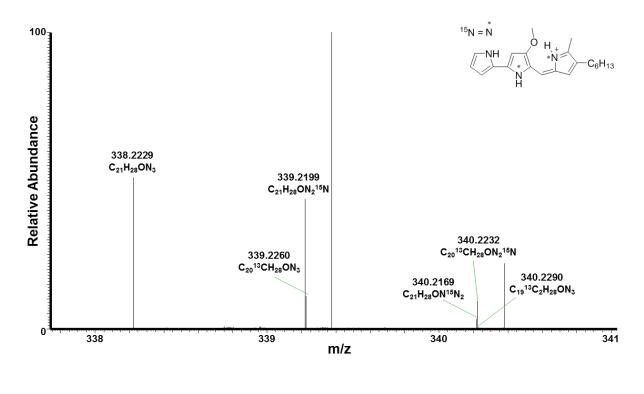
Fig. S143. HRMS² of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound 4 $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).

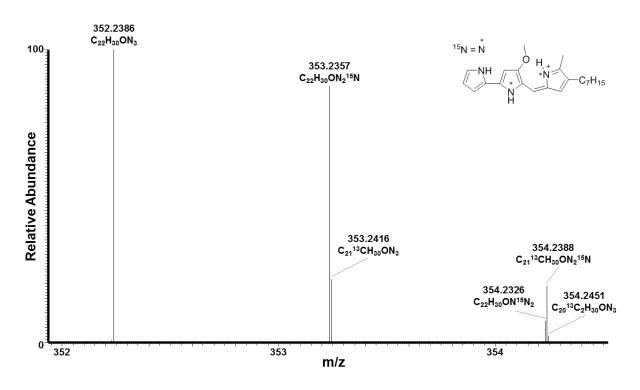


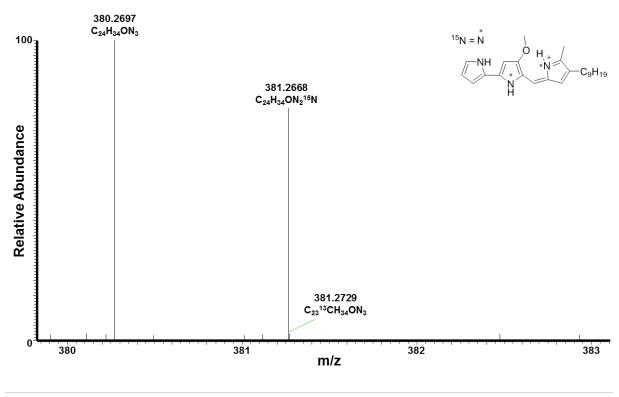
S-122 | Page

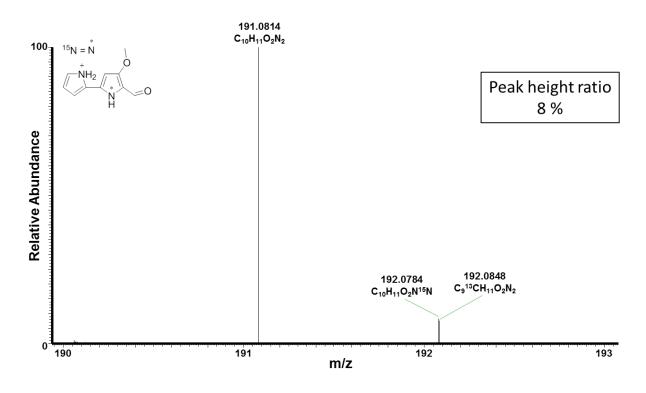

Fig. S144. HRMS² of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from 2 mg/mL [methyl-D₃]-L-methionine on potato dextrose agar (compound **5** $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).


Fig. S145. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **1** $[M+H]^+$: *m/z* 296, C₁₈H₂₂N₃O).


Fig. S146. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **2** $[M+H]^+$: *m/z* 310, C₁₉H₂₄N₃O).


Fig. S147. HRMS spectra of prodigiosin with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **3** $[M+H]^+$: *m/z* 324, C₂₀H₂₆N₃O).


Fig. S148. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **4** $[M+H]^+$: m/z 338, C₂₁H₂₈N₃O).


Fig. S149. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **5** $[M+H]^+$: *m/z* 352, C₂₂H₃₀N₃O).

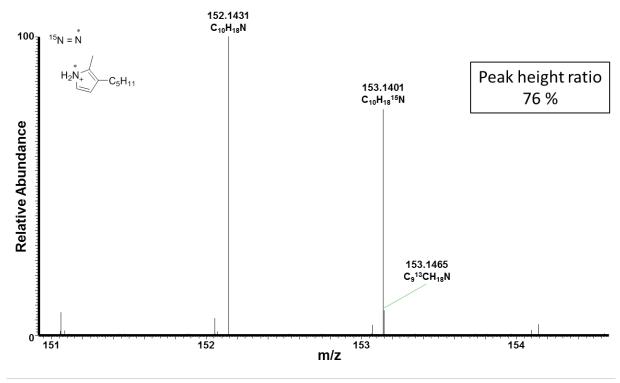

Fig. S150. HRMS spectra of 2-methyl-3-nonyl prodiginine with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound 7 $[M+H]^+$: m/z 380, C₂₄H₃₄N₃O).

Fig. S151. HRMS spectra of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **8** $[M+H]^+$: m/z 192, C₁₀H₁₁N¹⁵NO₂).

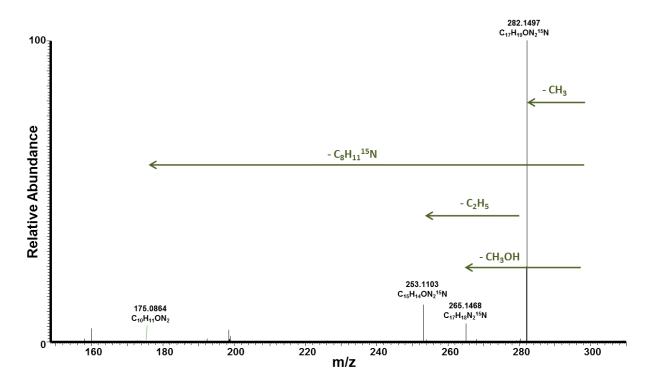
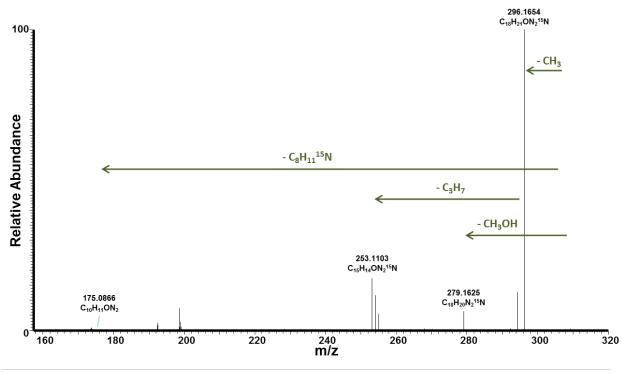
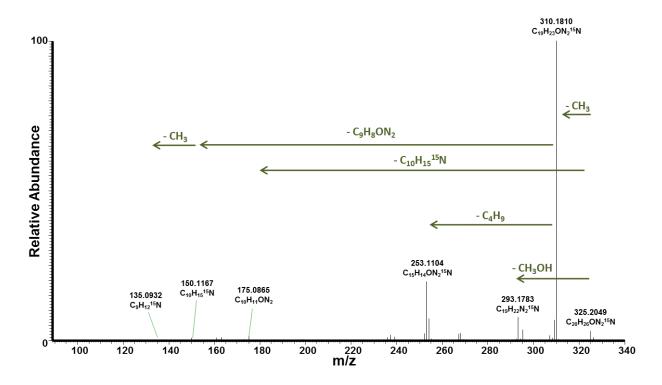


Fig. S152. HRMS spectra of 2-methyl-3-amylpyrrole (MAP) with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **9** $[M+H]^+$: m/z 153, $C_{10}H_{18}^{15}N$).



S-127 | Page


Fig. S153. HRMS² spectra of 2-methyl-3-propyl prodiginine with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound 1 $[M+H]^+$: m/z 297, C₁₈H₂₂N₂¹⁵NO).

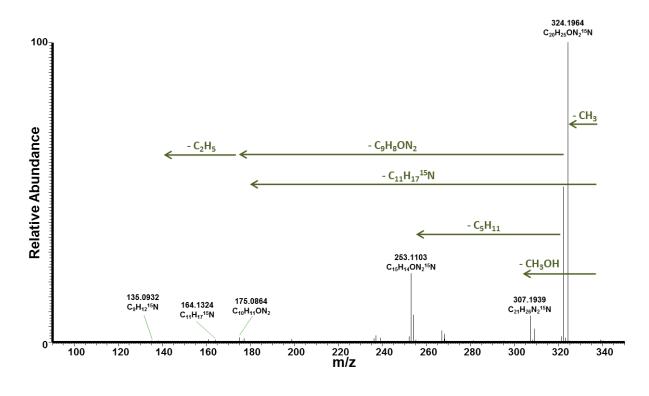

Fig. S154. HRMS² spectra of 2-methyl-3-butyl prodiginine with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **2** $[M+H]^+$: m/z 311, C₁₉H₂₄N₂¹⁵NO).

Fig. S155. HRMS² spectra of prodigiosin with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **3** $[M+H]^+$: *m/z* 325, C₂₀H₂₆N₂¹⁵NO).

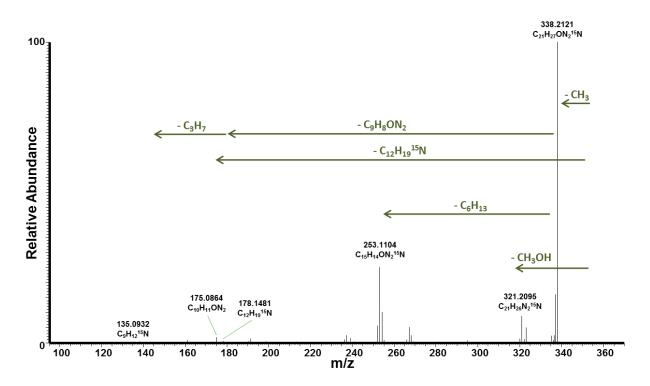
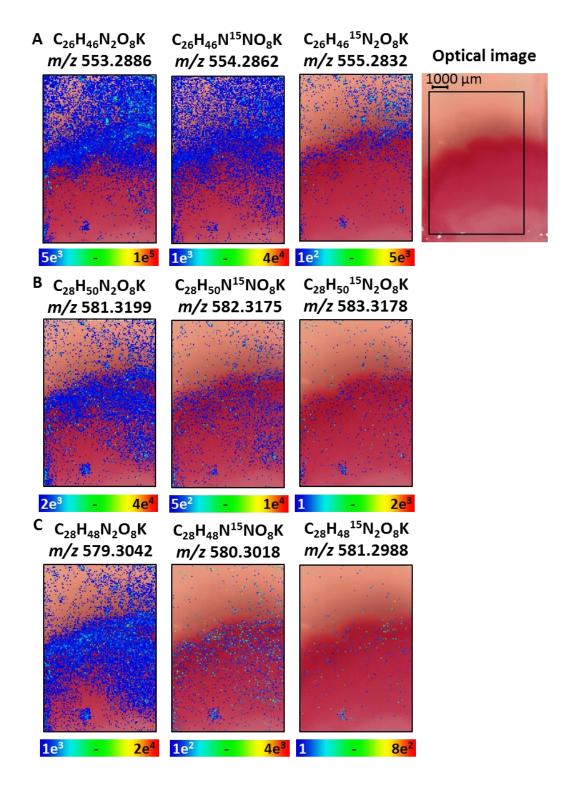
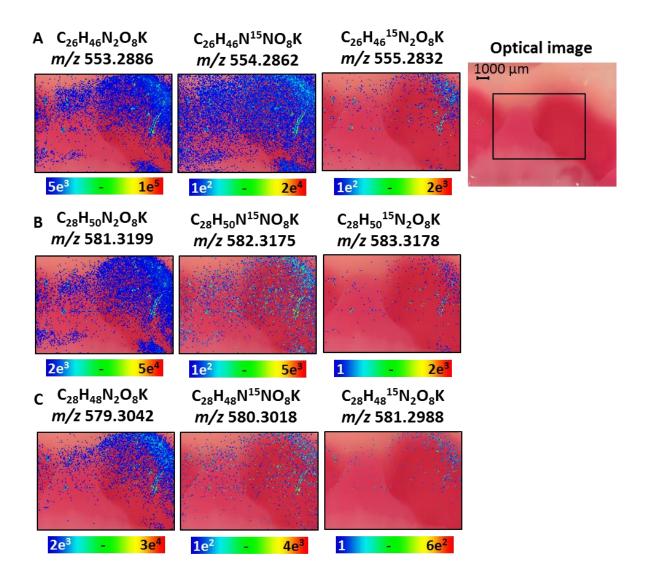
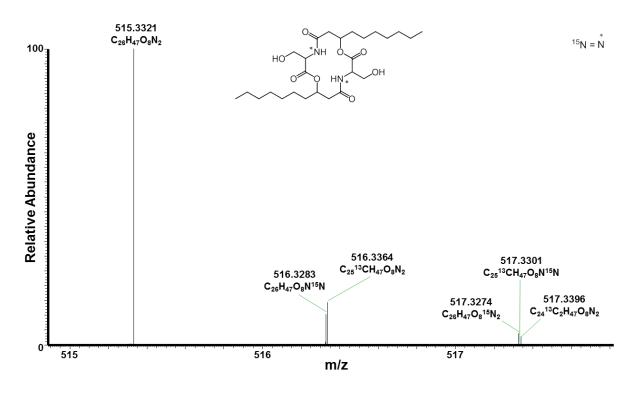


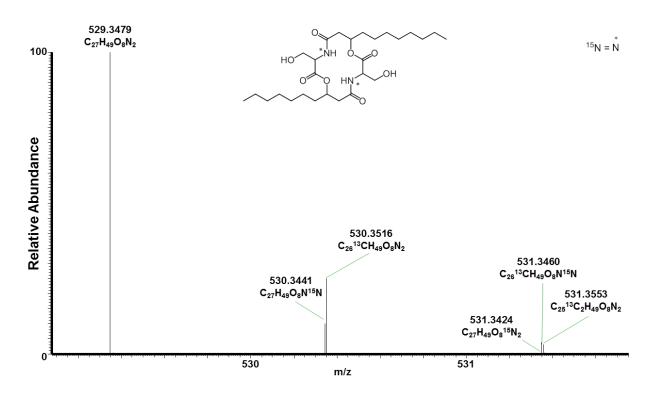
Fig. S156. HRMS² spectra of 2-methyl-3-hexyl prodiginine with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound 4 $[M+H]^+$: m/z 339, $C_{21}H_{28}N_2^{15}NO$).

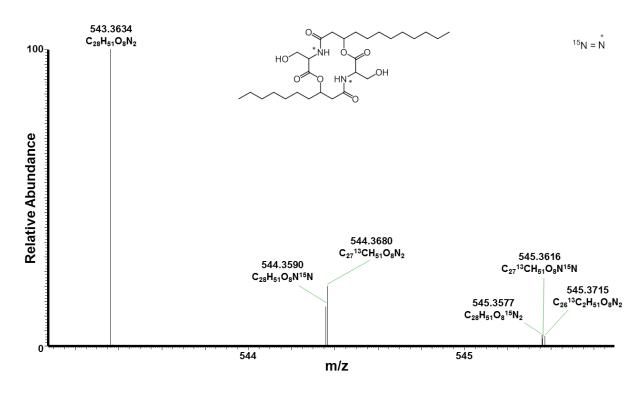


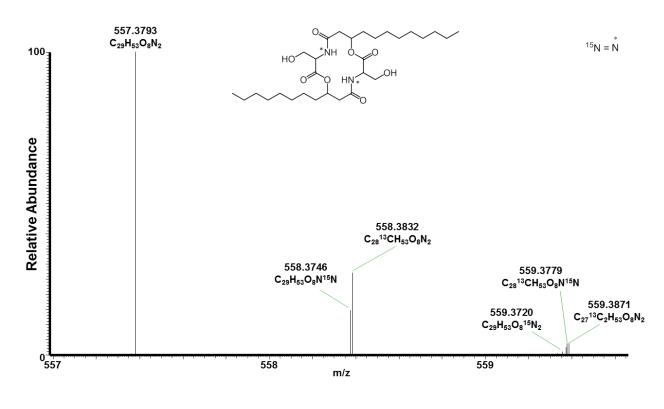
S-129 | Page

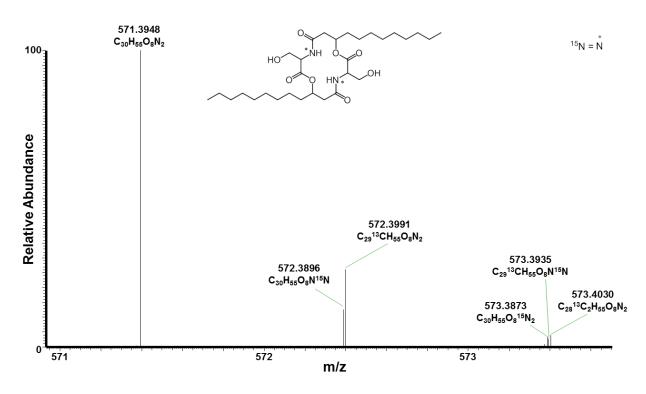

Fig. S157. HRMS² spectra of 2-methyl-3-heptyl prodiginine with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound 5 $[M+H]^+$: m/z 353, C₂₂H₃₀N₂¹⁵NO).

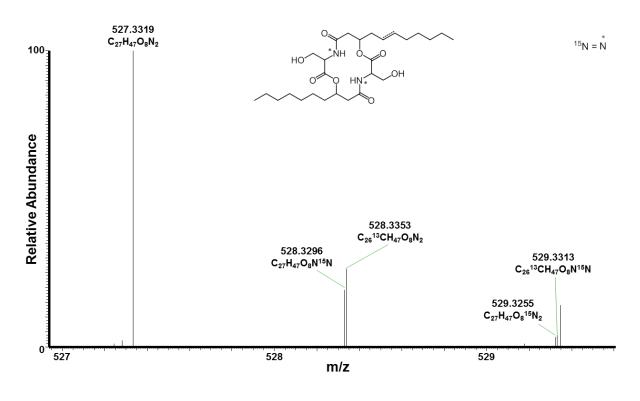

Fig. S158. MALDI-imaging-HRMS of abundant serratamolides (A: serrawettin W1 (**10**); B: $C_{10}+C_{12}$ (**12**); C: $C_{10}+C_{12:1}$ (**16**)) produced by *S. marcescens* MSRBB2 on potato dextrose agar supplemented with [¹⁵N]-L-serine. Optical image with assigned scan area and localization of unlabeled serratamolides along with one and two incorporations of [¹⁵N]-L-serine ([M+K]⁺ ± 3 ppm).

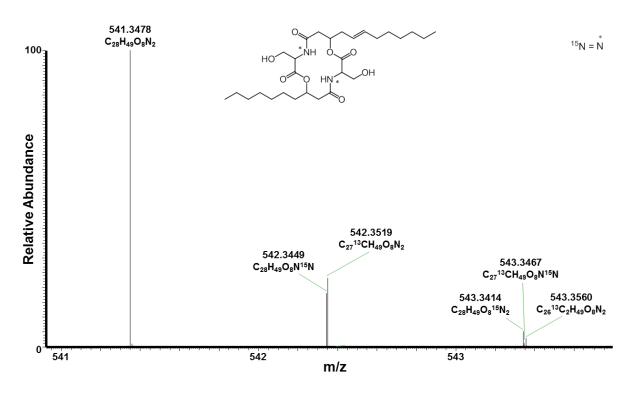

Fig. S159. MALDI-imaging-HRMS of abundant serratamolides (A: serrawettin W1 (10); B: $C_{10}+C_{12}$ (12); C: $C_{10}+C_{12:1}$ (16)) produced by *S. marcescens* MSRBB2 on potato dextrose agar supplemented with [¹⁵N]-L-serine. Optical image with assigned scan area and localization of unlabeled serratamolides along with one and two incorporations of [¹⁵N]-L-serine ([M+K]⁺ ± 3 ppm).

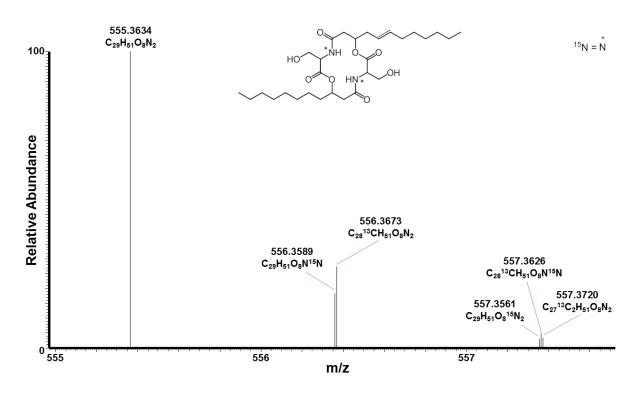

Fig. S160. HRMS of serrawettin W1 / serratamolide $C_{10}+C_{10}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **10** [M+H]⁺: m/z 515, $C_{26}H_{47}N_2O_8$).

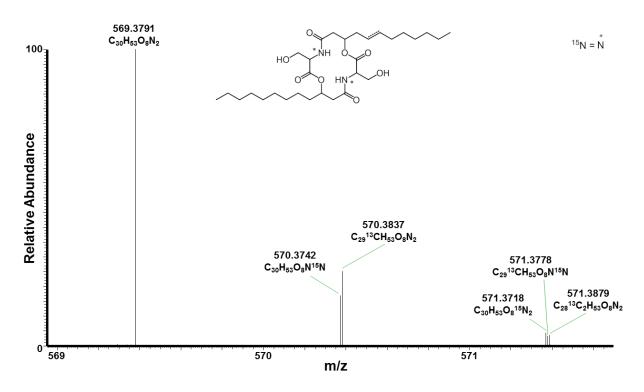

Fig. S161. HRMS of serratamolide $C_{10}+C_{11}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **11** [M+H]⁺: m/z 529, $C_{27}H_{49}N_2O_8$).

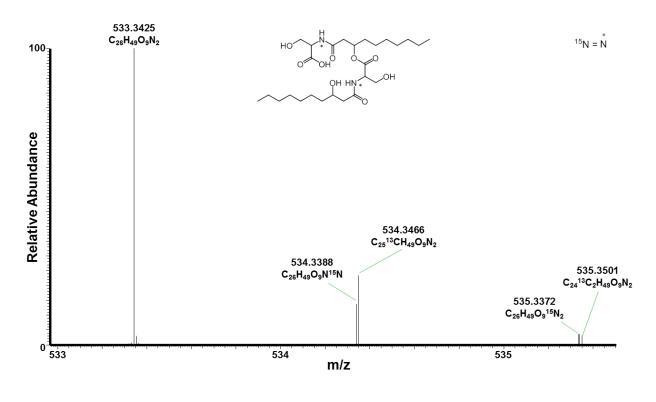

Fig. S162. HRMS of serratamolide $C_{10}+C_{12}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **12** $[M+H]^+$: m/z 543, $C_{28}H_{51}N_2O_8$).

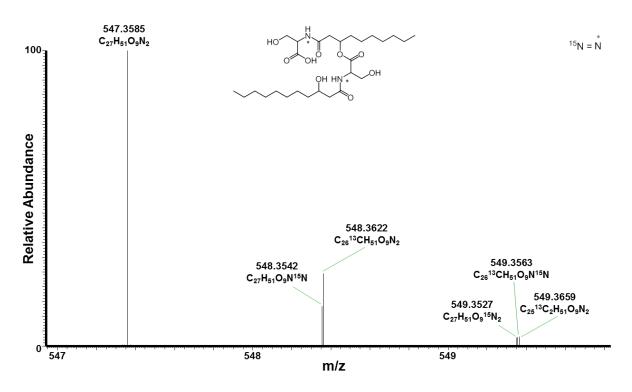

Fig. S163. HRMS of serratamolide $C_{11}+C_{12}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **13** $[M+H]^+$: m/z 557, $C_{29}H_{53}N_2O_8$).

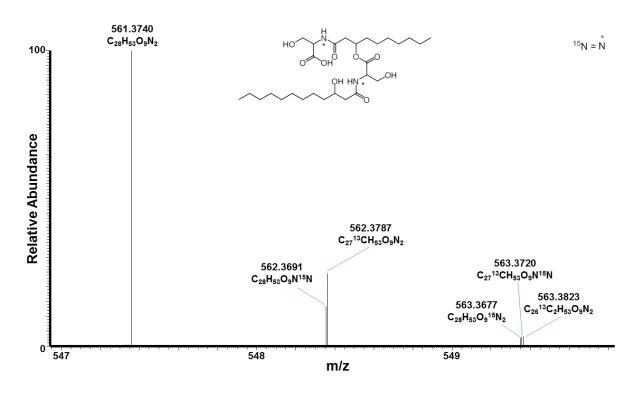

Fig. S164. HRMS of serratamolide $C_{12}+C_{12}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **14** [M+H]⁺: m/z 571, $C_{30}H_{55}N_2O_8$).

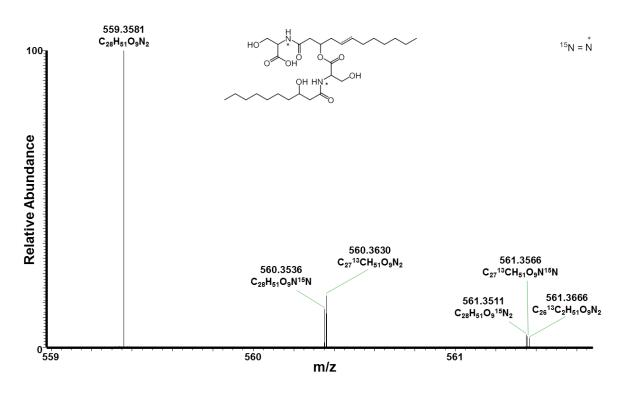

Fig. S165. HRMS of serratamolide $C_{10}+C_{11:1}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **15** $[M+H]^+$: m/z 527, $C_{27}H_{47}N_2O_8$).

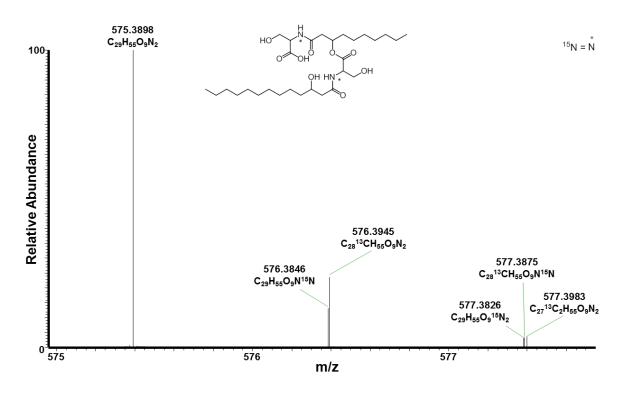

Fig. S166. HRMS of serratamolide $C_{10}+C_{12:1}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **16** [M+H]⁺: m/z 541, $C_{28}H_{49}N_2O_8$).

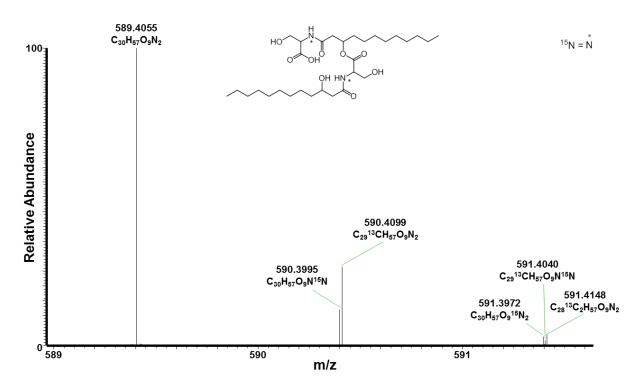

Fig. S167. HRMS of serratamolide $C_{11}+C_{12:1}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **17** $[M+H]^+$: m/z 555, $C_{29}H_{51}N_2O_8$).

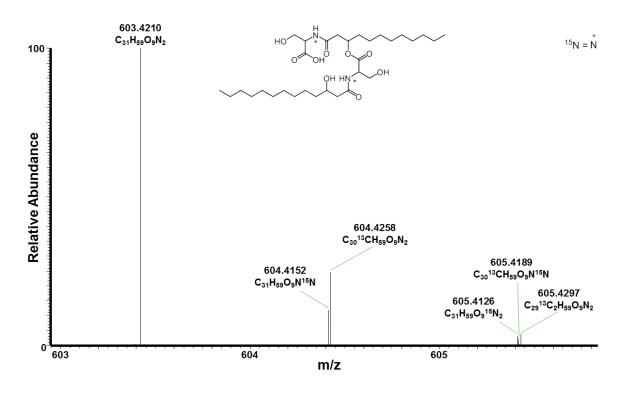

Fig. S168. HRMS of serratamolide $C_{12}+C_{12:1}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **18** [M+H]⁺: m/z 569, $C_{30}H_{53}N_2O_8$).

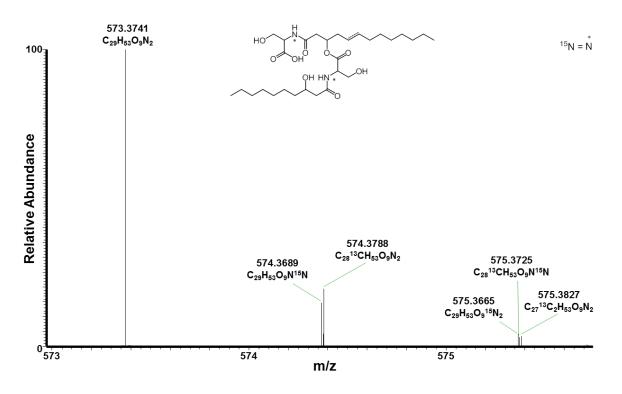

Fig. S169. HRMS of ring-opened serratamolide $C_{10}+C_{10}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **19** $[M+H]^+$: m/z 533, $C_{26}H_{49}N_2O_9$).

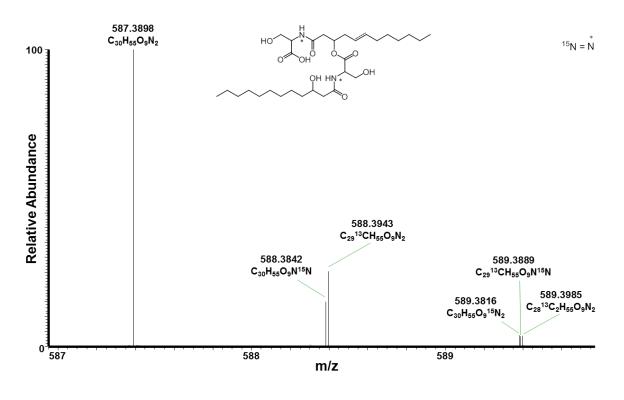

Fig. S170. HRMS of ring-opened serratamolide $C_{10}+C_{11}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **20** [M+H]⁺: m/z 547, $C_{27}H_{51}N_2O_9$).

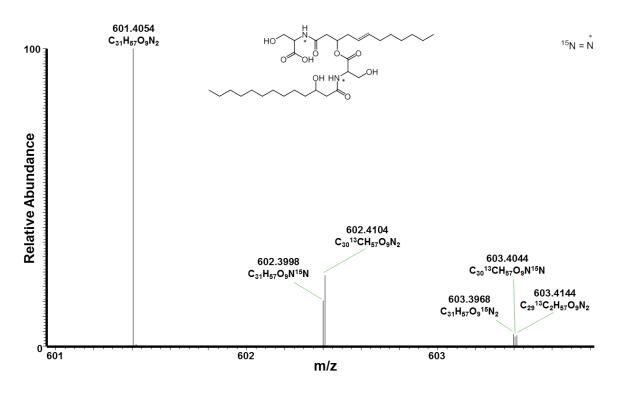

Fig. S171. HRMS of ring-opened serratamolide $C_{10}+C_{12}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **21** [M+H]⁺: m/z 561, $C_{28}H_{53}N_2O_9$).

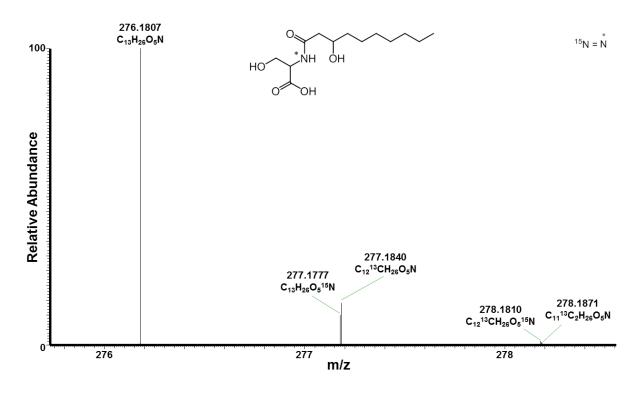

Fig. S172. HRMS of ring-opened serratamolide $C_{10}+C_{12:1}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **22** [M+H]⁺: m/z 559, $C_{28}H_{51}N_2O_9$).


Fig. S173. HRMS² of ring-opened serratamolide $C_{10}+C_{13}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **23** [M+H]⁺: m/z 575, $C_{29}H_{55}N_2O_9$).


Fig. S174. HRMS of ring-opened serratamolide $C_{12}+C_{12}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **24** [M+H]⁺: m/z 589, $C_{30}H_{57}N_2O_9$).


Fig. S175. HRMS of ring-opened serratamolide $C_{12}+C_{13}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **25** [M+H]⁺: m/z 603, $C_{31}H_{59}N_2O_9$).


Fig. S176. HRMS of ring-opened serratamolide $C_{10}+C_{13:1}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **26** [M+H]⁺: m/z 573, $C_{29}H_{53}N_2O_9$).


Fig. S177. HRMS of ring-opened serratamolide $C_{12}+C_{12:1}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **27** [M+H]⁺: m/z 587, $C_{30}H_{55}N_2O_9$).

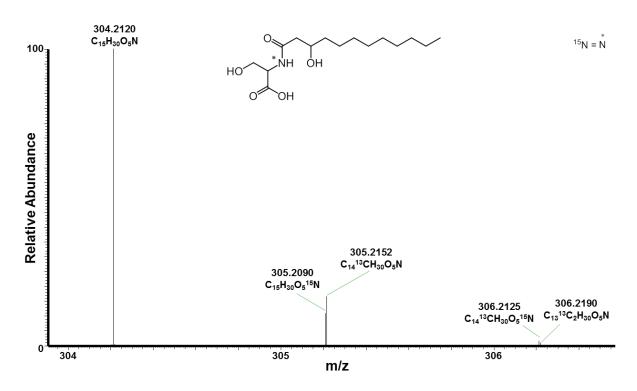
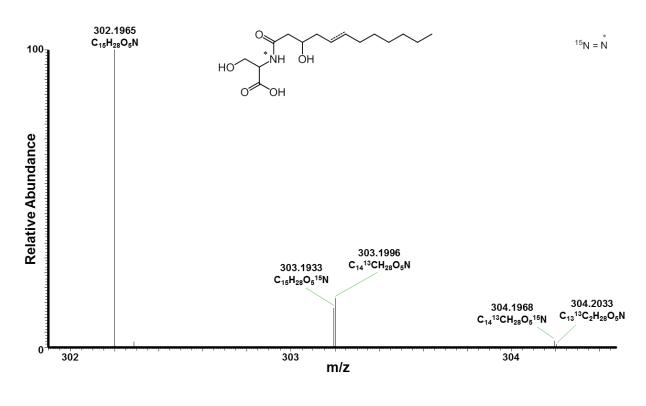


Fig. S178. HRMS of ring-opened serratamolide $C_{13}+C_{12:1}$ with incorporated ¹⁵N-L-serine from labeled nutrient agar (compound **28** [M+H]⁺: m/z 601, $C_{31}H_{57}N_2O_9$).


Fig. S179. HRMS of serratamic acid with incorporated ¹⁵N-L-serine from labeled nutrient agar (N-(D-3-hydroxydecanoyl)-L-serine, compound **29** $[M+H]^+$: m/z 276, C₁₃H₂₆NO₅).

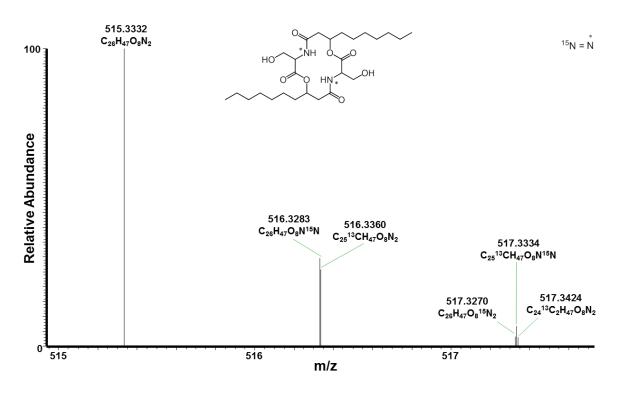
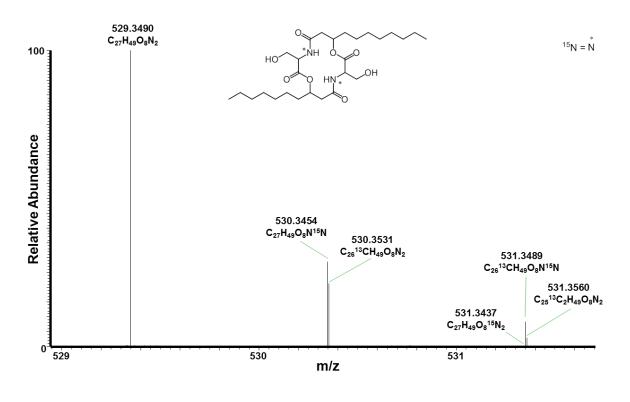
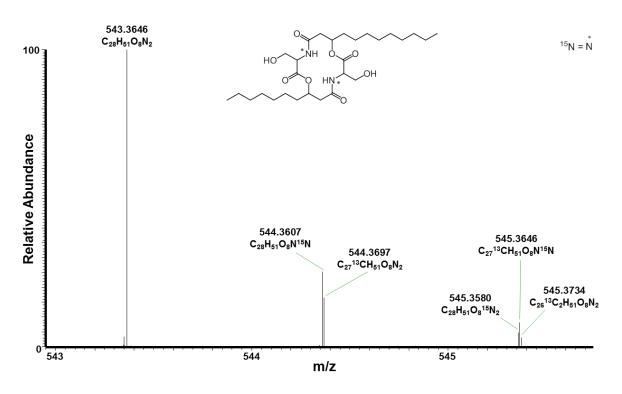
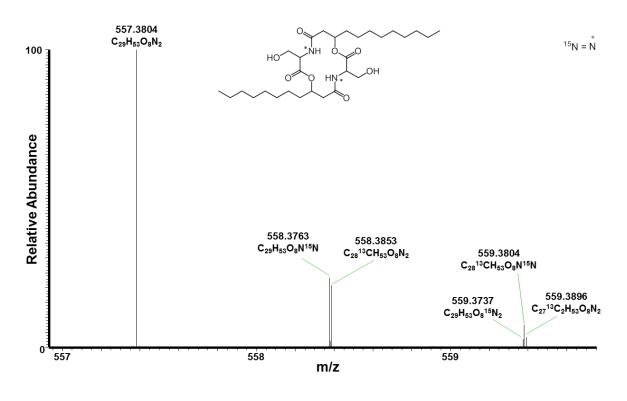
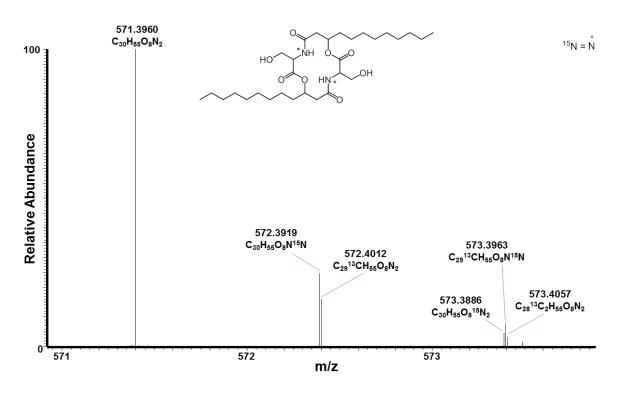


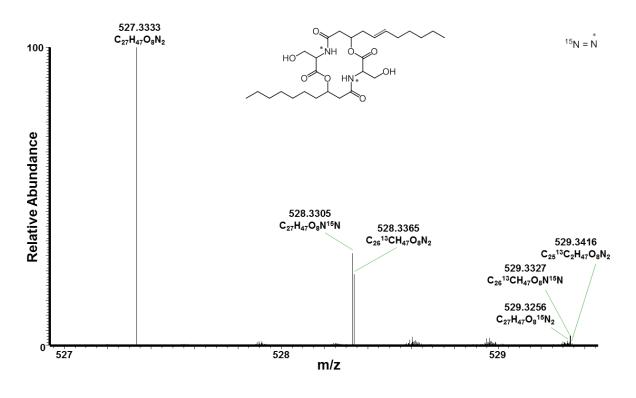
Fig. S180. HRMS of serratamic acid derivative with incorporated ¹⁵N-L-serine from labeled nutrient agar (hydroxydodecanoyl-serine, compound **30** $[M+H]^+$: m/z 304, C₁₅H₃₀NO₅).

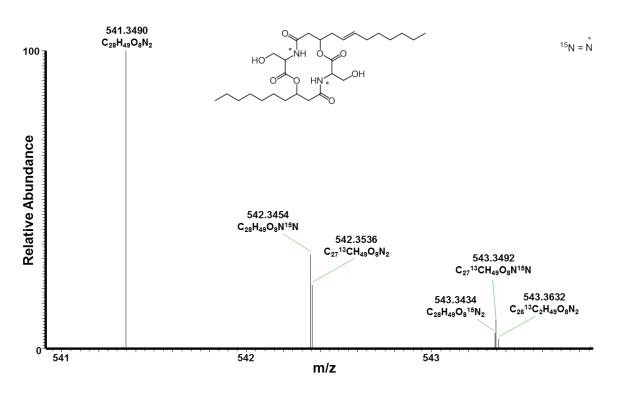

Fig. S181. HRMS of serratamic acid derivative with double bond with incorporated ¹⁵N-L-serine from labeled nutrient agar (hydroxydodecenoyl-serine, compound **31** $[M+H]^+$: m/z 302, C₁₅H₂₈NO₅).

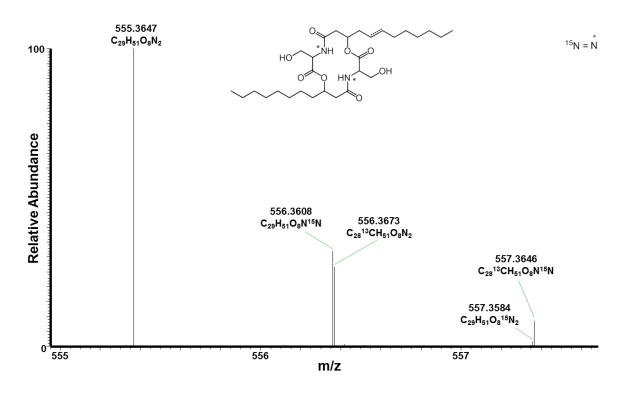

Fig. S182. HRMS of serrawettin W1 / serratamolide $C_{10}+C_{10}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **10** [M+H]⁺: m/z 515, $C_{26}H_{47}N_2O_8$).

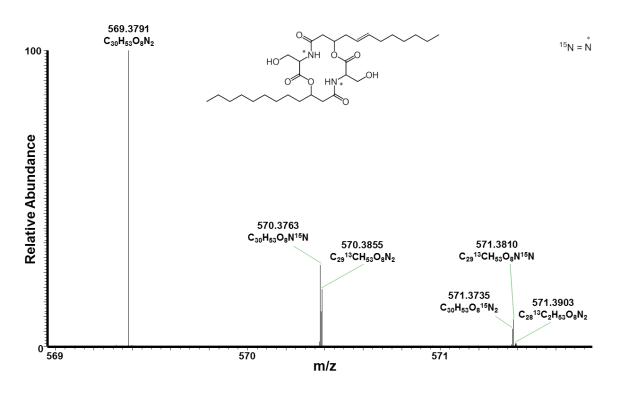

Fig. S183. HRMS of serratamolide $C_{10}+C_{11}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **11** [M+H]⁺: m/z 529, $C_{27}H_{49}N_2O_8$).

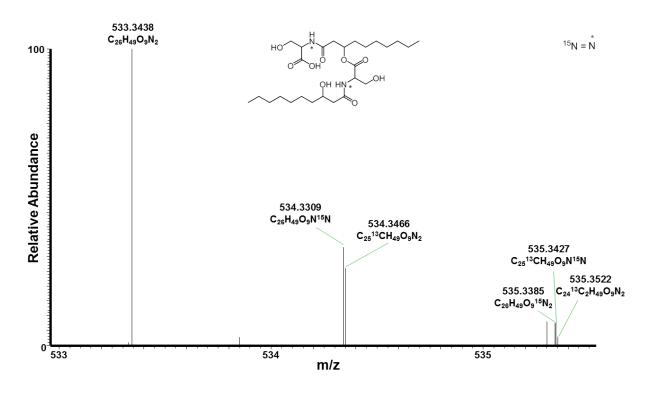

Fig. S184. HRMS of serratamolide $C_{10}+C_{12}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **12** [M+H]⁺: m/z 543, $C_{28}H_{51}N_2O_8$).

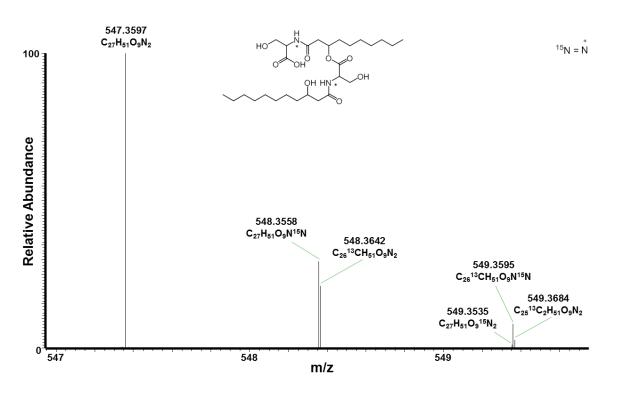

Fig. S185. HRMS of serratamolide $C_{11}+C_{12}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **13** $[M+H]^+$: m/z 557, $C_{29}H_{53}N_2O_8$).

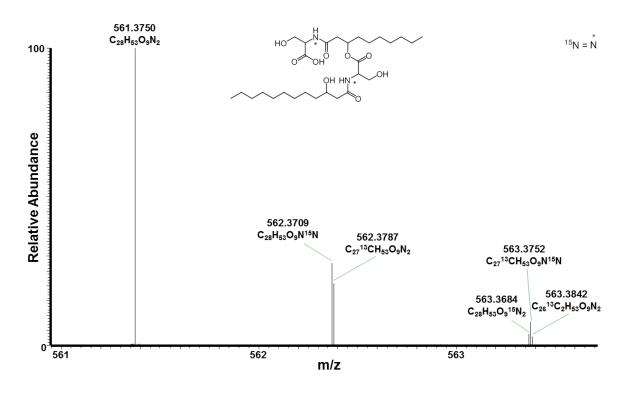

Fig. S186. HRMS of serratamolide $C_{12}+C_{12}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **14** [M+H]⁺: m/z 571, $C_{30}H_{55}N_2O_8$).

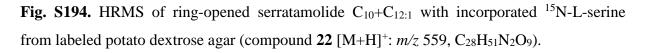

Fig. S187. HRMS of serratamolide $C_{10}+C_{11:1}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **15** $[M+H]^+$: m/z 527, $C_{27}H_{47}N_2O_8$).

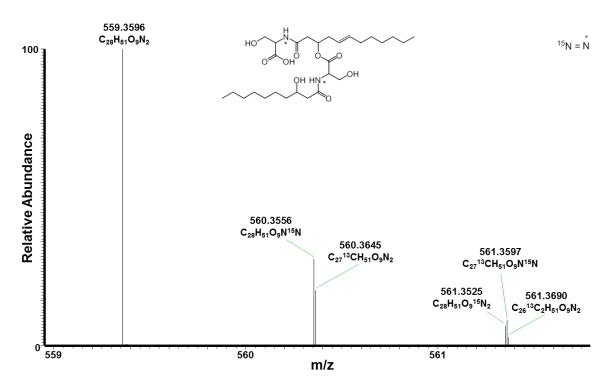

Fig. S188. HRMS of serratamolide $C_{10}+C_{12:1}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **16** [M+H]⁺: m/z 541, $C_{28}H_{49}N_2O_8$).

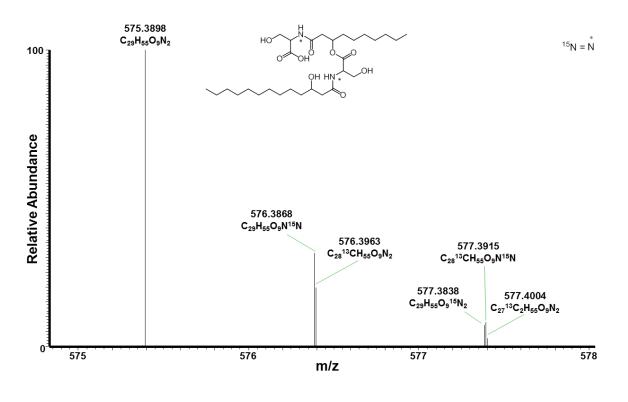

Fig. S189. HRMS of serratamolide $C_{11}+C_{12:1}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **17** $[M+H]^+$: m/z 555, $C_{29}H_{51}N_2O_8$).

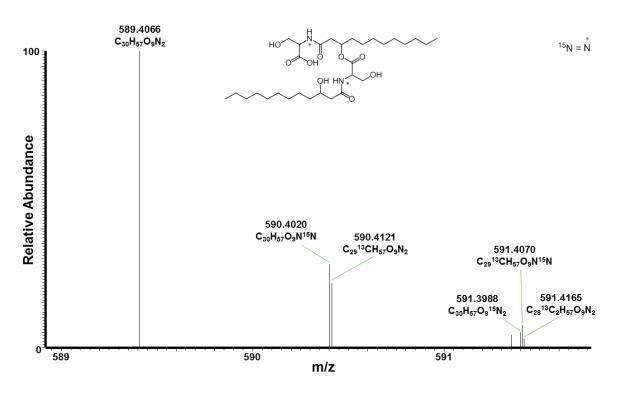

Fig. S190. HRMS of serratamolide $C_{12}+C_{12:1}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **18** [M+H]⁺: m/z 569, $C_{30}H_{53}N_2O_8$).

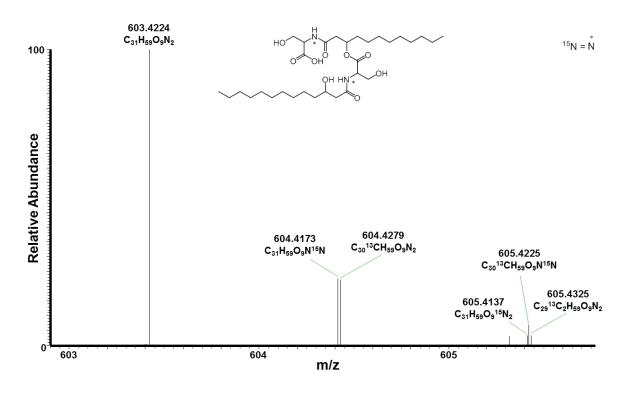

Fig. S191. HRMS of ring-opened serratamolide $C_{10}+C_{10}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **19** $[M+H]^+$: m/z 533, $C_{26}H_{49}N_2O_9$).

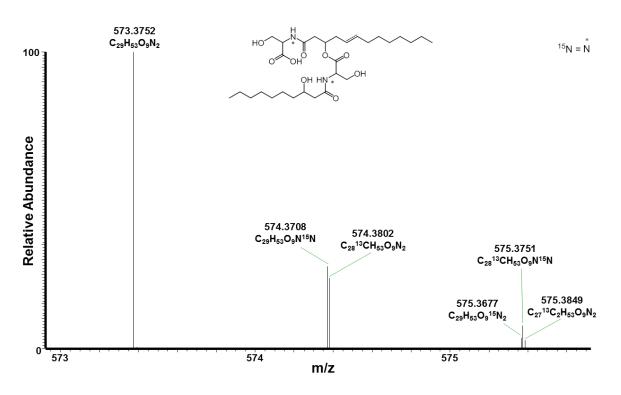


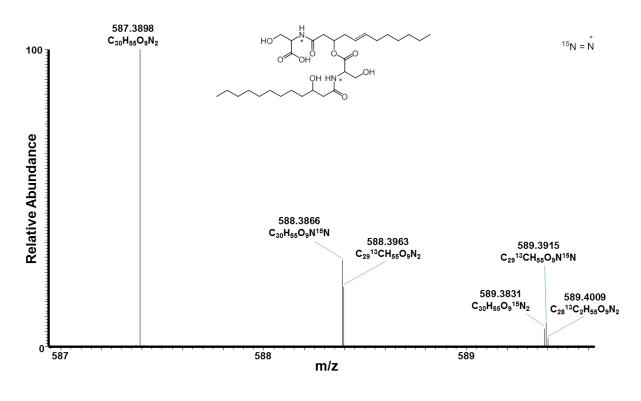

Fig. S192. HRMS of ring-opened serratamolide $C_{10}+C_{11}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **20** [M+H]⁺: m/z 547, $C_{27}H_{51}N_2O_9$).


Fig. S193. HRMS of ring-opened serratamolide $C_{10}+C_{12}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **21** [M+H]⁺: m/z 561, $C_{28}H_{53}N_2O_9$).




Fig. S195. HRMS² of ring-opened serratamolide $C_{10}+C_{13}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **23** [M+H]⁺: m/z 575, $C_{29}H_{55}N_2O_9$).


Fig. S196. HRMS of ring-opened serratamolide $C_{12}+C_{12}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **24** [M+H]⁺: m/z 589, $C_{30}H_{57}N_2O_9$).


Fig. S197. HRMS of ring-opened serratamolide $C_{12}+C_{13}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **25** $[M+H]^+$: m/z 603, $C_{31}H_{59}N_2O_9$).

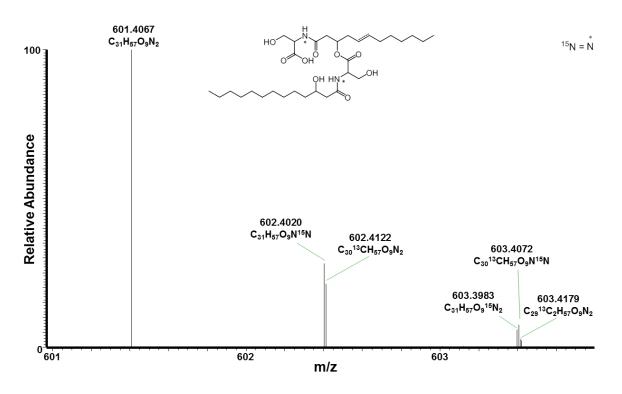

Fig. S198. HRMS of ring-opened serratamolide $C_{10}+C_{13:1}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **26** [M+H]⁺: m/z 573, $C_{29}H_{53}N_2O_9$).

Fig. S199. HRMS of ring-opened serratamolide $C_{12}+C_{12:1}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **27** [M+H]⁺: m/z 587, $C_{30}H_{55}N_2O_9$).

Fig. S200. HRMS of ring-opened serratamolide $C_{13}+C_{12:1}$ with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (compound **28** [M+H]⁺: m/z 601, $C_{31}H_{57}N_2O_9$).

Fig. S201. HRMS of serratamic acid with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (N-(D-3-hydroxydecanoyl)-L-serine, compound **29** $[M+H]^+$: m/z 276, C₁₃H₂₆NO₅).

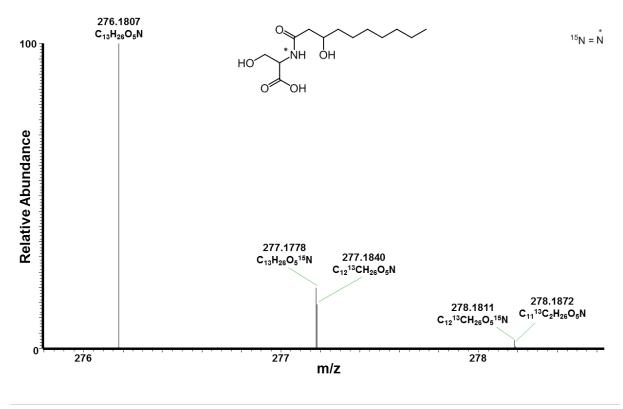


Fig. S202. HRMS of serratamic acid derivative with incorporated ¹⁵N-L-serine from labeled potato dextrose agar (hydroxydodecanoyl-serine, compound **30** $[M+H]^+$: m/z 304, C₁₅H₃₀NO₅).

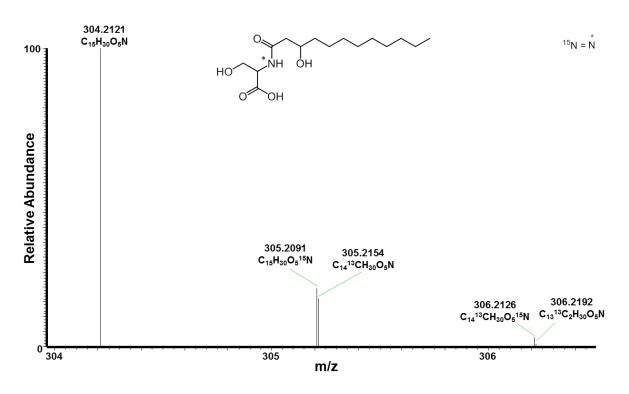
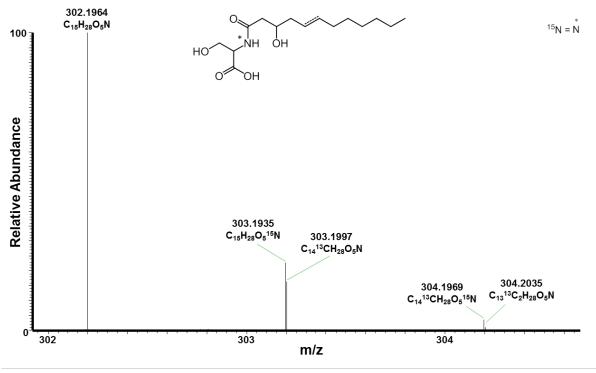
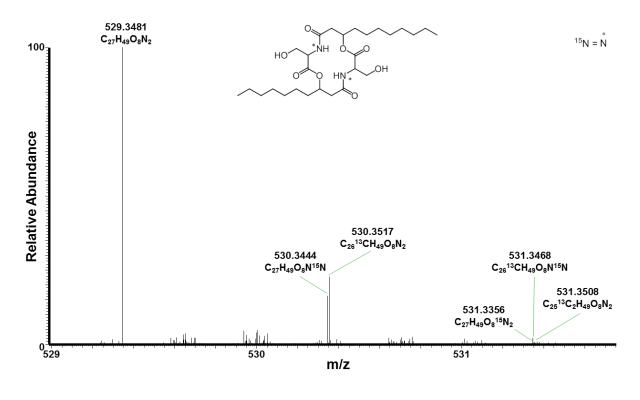
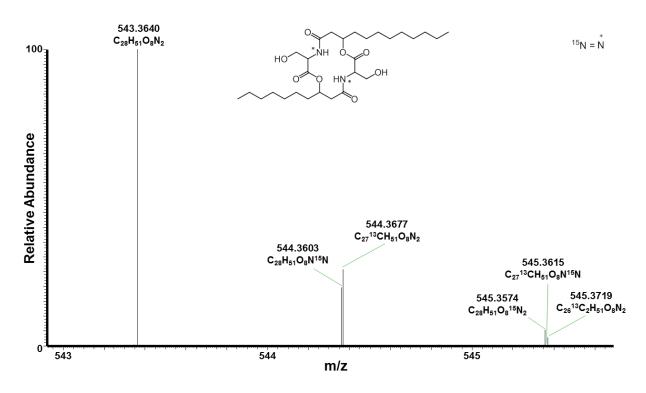
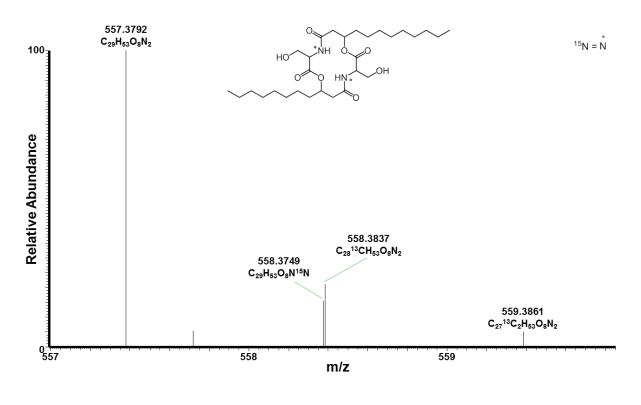


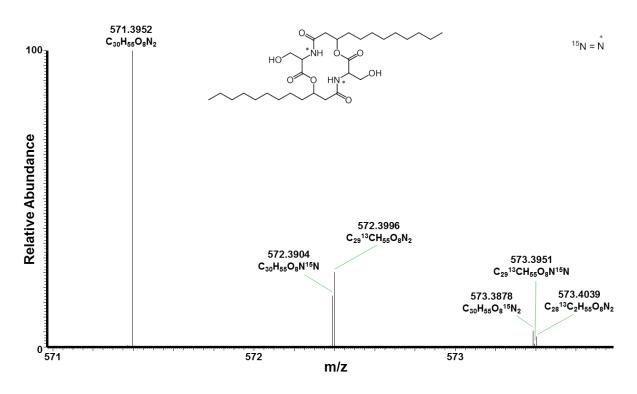
Fig. S203. HRMS of serratamic acid derivative with double bond with incorporated ¹⁵N-Lserine from labeled potato dextrose agar (hydroxydodecenoyl-serine, compound **31** $[M+H]^+$: m/z 302, C₁₅H₂₈NO₅).






Fig. S204. HRMS of serrawettin W1 / serratamolide $C_{10}+C_{10}$ with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound 10 [M+H]⁺: m/z 515, $C_{26}H_{47}N_2O_8$).


Fig. S205. HRMS of serratamolide $C_{10}+C_{11}$ with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **11** [M+H]⁺: m/z 529, $C_{27}H_{49}N_2O_8$).


Fig. S206. HRMS of serratamolide $C_{10}+C_{12}$ with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **12** [M+H]⁺: m/z 543, $C_{28}H_{51}N_2O_8$).

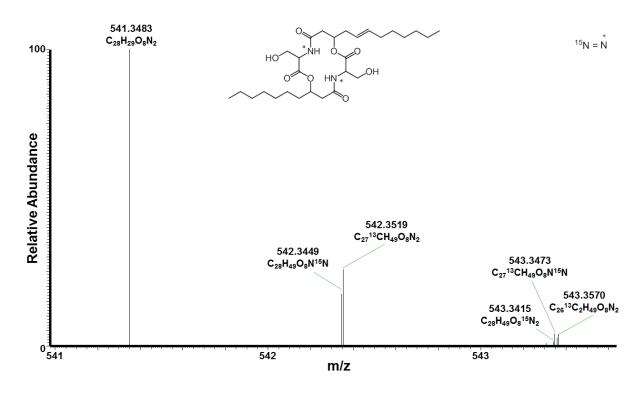

Fig. S207. HRMS of serratamolide $C_{11}+C_{12}$ with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **13** [M+H]⁺: m/z 557, $C_{29}H_{53}N_2O_8$).

Fig. S208. HRMS of serratamolide $C_{12}+C_{12}$ with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **14** [M+H]⁺: m/z 571, $C_{30}H_{55}N_2O_8$).

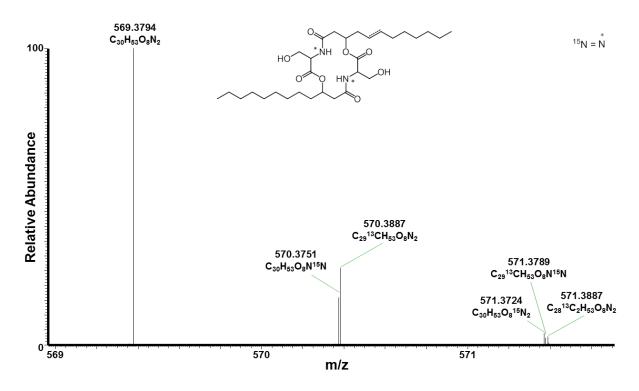
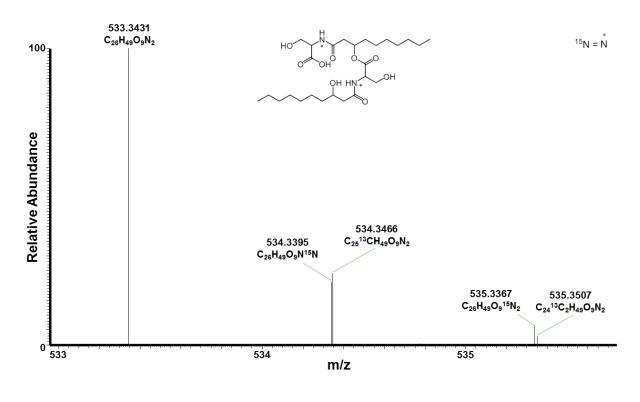


Fig. S209. HRMS of serratamolide $C_{10}+C_{12:1}$ with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **16** [M+H]⁺: m/z 541, $C_{28}H_{49}N_2O_8$).

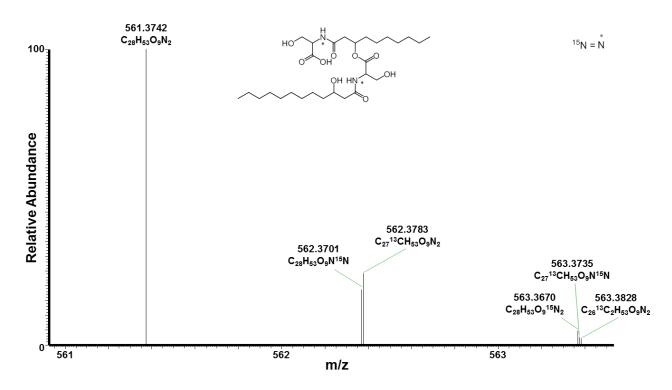
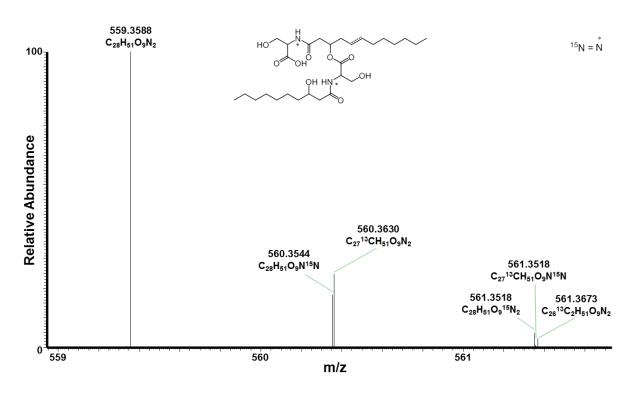


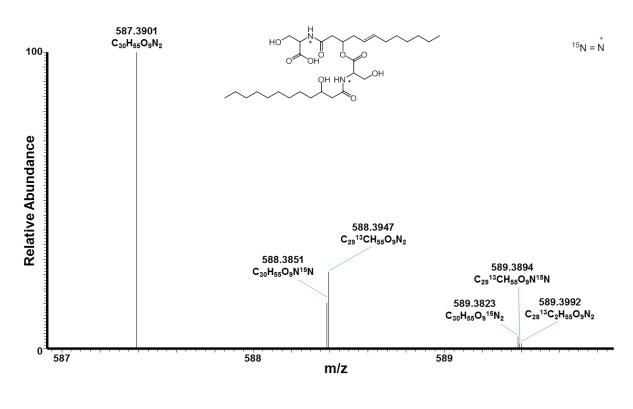
S-157 | Page

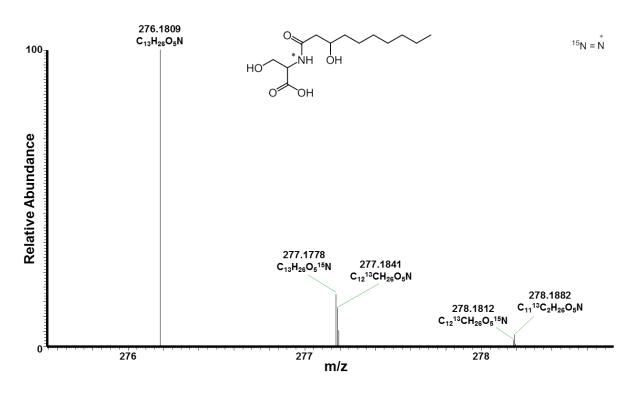
Fig. S210. HRMS of serratamolide $C_{12}+C_{12:1}$ with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **18** [M+H]⁺: m/z 569, $C_{30}H_{53}N_2O_8$).

Fig. S211. HRMS of ring-opened serratamolide $C_{10}+C_{10}$ with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **19** [M+H]⁺: m/z 533, $C_{26}H_{49}N_2O_9$).

Fig. S212. HRMS of ring-opened serratamolide $C_{10}+C_{12}$ with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **21** [M+H]⁺: m/z 561, $C_{28}H_{53}N_2O_9$).


Fig. S213. HRMS of ring-opened serratamolide $C_{10}+C_{12:1}$ with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound 22 [M+H]⁺: m/z 559, $C_{28}H_{51}N_2O_9$).


Fig. S214. HRMS of ring-opened serratamolide $C_{12}+C_{12}$ with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound **24** [M+H]⁺: m/z 589, $C_{30}H_{57}N_2O_9$).

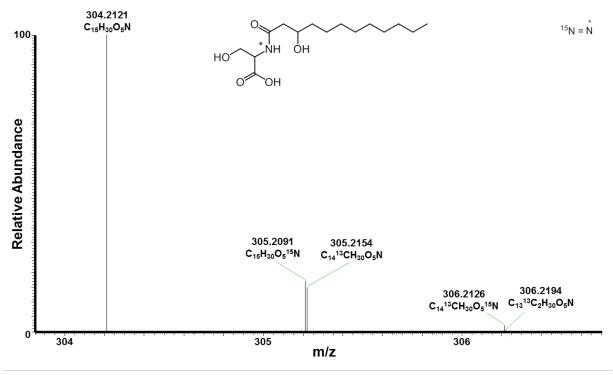

Fig. S215. HRMS of ring-opened serratamolide $C_{12}+C_{12:1}$ with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (compound 27 [M+H]⁺: m/z 587, $C_{30}H_{55}N_2O_9$).

Fig. S216. HRMS of serratamic acid with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (N-(D-3-hydroxydecanoyl)-L-serine, compound **29** $[M+H]^+$: *m/z* 276, C₁₃H₂₆NO₅).

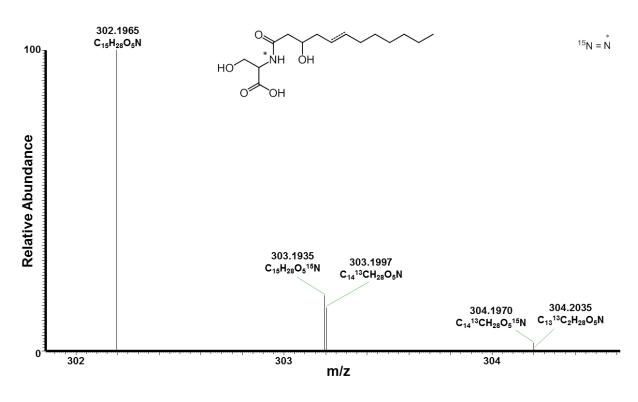
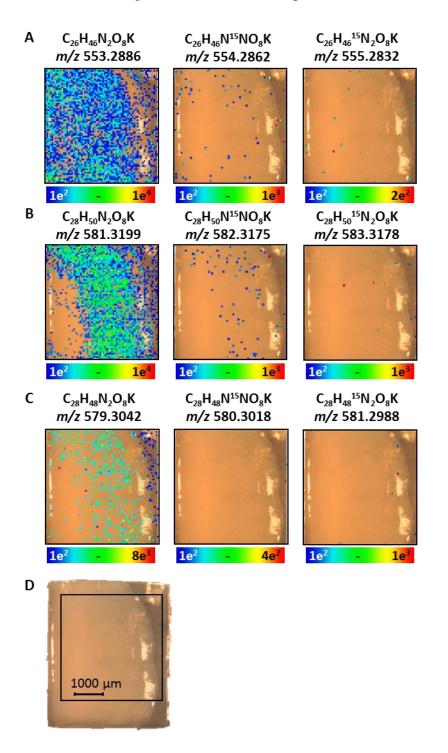


Fig. S217. HRMS of serratamic acid derivative with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (hydroxydodecanoyl-serine, compound **30** $[M+H]^+$: *m/z* 304, C₁₅H₃₀NO₅).



S-161 | Page

Fig. S218. HRMS of serratamic acid derivative with double bond with incorporated ¹⁵N-L-serine from nutrient broth with 2 mg/mL ¹⁵N-L-serine (hydroxydodecenoyl-serine, compound **31** $[M+H]^+$: *m/z* 302, C₁₅H₂₈NO₅).

Fig. S219. MALDI-imaging-HRMS control of abundant serratamolides (A: serrawettin W1 (10); B: $C_{10}+C_{12}$ (12); C: $C_{10}+C_{12:1}$ (16)) produced by *S. marcescens* MSRBB2 on potato dextrose agar. Optical image with assigned scan area (D) and localization of unlabeled serratamolides along with one and two incorporations of $[^{15}N]$ ($[M+K]^+ \pm 3$ ppm).

III. SUPPLEMENTARY TABLES

Table S1. Peak height ratios obtained from HPLC-HRMS by comparison of labeled and unlabeled prodiginines and MBC produced by *S. marcescens*. Different labeling studies with ¹⁵NH₄Cl, [1-¹³C]-L-proline, [methyl-D₃]-L-methionine, and [¹⁵N]-L-serine on nutrient agar (NA) and potato dextrose agar (PDA).

Prodiginine	Media	¹⁵ NH4Cl	[1- ¹³ C]-L- proline	¹⁵ N-L- serine	[methyl-D ₃]-L-methionine		
		1 mg/mL [%]	1 mg/mL [%]	1 mg/mL [%]	0.5 mg/mL [%]	1 mg/mL [%]	2 mg/mL [%]
2-methyl-3- propyl-P (1)	NA	10	84	18	128	215	439
2-methyl-3- butyl-P (2)	NA	10	66	21	170	227	472
2-methyl-3- pentyl-P (3)	NA	11	72	23	174	202	478
2-methyl-3- hexyl-P (4)	NA	15	87	23	155	202	445
2-methyl-3- heptyl-P (5)	NA	15	91	21	145	201	429
2-methyl-3- octyl-P (6)	NA	8	83	18	n.d.	n.d.	464
2-methyl-3- nonyl-P (7)	NA	8	79	19	n.d.	n.d.	456
MBC (8)	NA	-	71	8	169	204	466
2-methyl-3- propyl-P (1)	PDA	11	118	25	91	329	>1000
2-methyl-3- butyl-P (2)	PDA	11	113	25	92	275	816
2-methyl-3- pentyl-P (3)	PDA	16	126	28	95	252	744
2-methyl-3- hexyl-P (4)	PDA	16	119	27	90	249	798
2-methyl-3- heptyl-P (5)	PDA	15	133	27	88	238	713
2-methyl-3- octyl-P (6)	PDA	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
2-methyl-3- nonyl-P (7)	PDA	n.d.	n.d.	n.d.	93	329	>1000
MBC (8)	PDA	-	102	16	88	278	703

Table S2. Peak height ratios obtained from HPLC-HRMS by comparison of labeled $(1x^{15}N)$ and unlabeled serratamolides produced by *S. marcescens*. Different labeling studies with $[^{15}N]$ -L-serine on nutrient agar (NA) and potato dextrose agar (PDA), as well as nutrient broth (NB) incubation under static conditions.

Serratamolide		¹⁵ N-L-serine				
No.	Sum formula	NA 1 mg/mL [%]	PDA 1 mg/mL [%]	NB 2 mg/mL [%]		
10	$C_{26}H_{46}N_2O_8$	10	29	18		
11	$C_{27}H_{48}N_2O_8$	10	29	16		
12	$C_{28}H_{50}N_2O_8$	13	25	20		
13	C29H52N2O8	15	23	16		
14	C30H54N2O8	13	25	17		
15	$C_{27}H_{46}N_2O_8$	19	24	n.d.		
16	$C_{28}H_{48}N_2O_8$	18	31	18		
17	$C_{29}H_{50}N_2O_8$	18	32	n.d.		
18	$C_{30}H_{52}N_2O_8$	17	27	16		
19	$C_{26}H_{48}N_2O_9$	14	33	21		
20	$C_{27}H_{50}N_2O_9$	13	29	n.d.		
21	C28H52N2O9	13	28	19		
22	C28H50N2O9	13	29	19		
23	C29H54N2O9	13	31	n.d.		
24	C30H56N2O9	12	28	17		
25	C31H58N2O9	12	22	n.d.		
26	C29H52N2O9	15	28	n.d.		
27	$C_{30}H_{54}N_2O_9$	15	29	15		
28	$C_{31}H_{56}N_2O_9$	15	28	n.d.		
29	C13H25NO5	10	20	18		
30	C15H29NO5	11	20	17		
31	C15H27NO5	13	23	18		

IV. SUPPLEMENTARY REFERENCES

[1] Eckelmann, D.; Spiteller, M.; Kusari, S. Sci. Rep. 2018, 8, 5283.