# Unified Strategy for 1,5,9- and 1,5,7-Triols via Configuration-Encoded <br> 1,5-Polyol Synthesis: Preparation and Coupling of <br> C15-C25 and C26-C40 Fragments of Tetrafibricin 

Ryan M. Friedrich, Jay Q. Bell, Alfredo Garcia, Zican Shen, Gregory K. Friestad*<br>Department of Chemistry, University of Iowa, Iowa City, Iowa 52242 USA<br>email: gregory-friestad@uiowa.edu

## Supporting Information

File C

## Contents:

File A
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for New Compounds 43, 44, 4-6, 2, 9-15, 46, 37, 38, $16 \quad$ S2-S42
File B
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for New Compounds $\mathbf{1 7 b}, \mathbf{1 8}, \mathbf{3 9}, 19-\mathbf{2 4 , 2 6}-28,32,42,33-35 \quad$ S44-S82
File C
2D NMR Spectra for New Compounds 20, 28, and $\mathbf{3 5}$
Diastereomer Ratios and Configuration Assignments of 9, 26a, 28, 26b, 33, and 34 S108-S119

Arrows $=\operatorname{DQF}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY


Figure S1: Diagnostic 2D NMR correlations of benzylidene acetal portion of C15-C25 fragment of tetrafibricin


DQF ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY spectrum of $\mathbf{2 0}$


DQF ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{2 0}$



Arrows = TOCSY


Figure S2: Diagnostic 2D NMR correlations of $\mathbf{2 8}$ (model C15-C40 fragment of tetrafibricin)


DQF ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{2 8}$


DQF ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{2 8}$


HSQC spectrum of $\mathbf{2 8}$


HSQC spectrum of $\mathbf{2 8}$


HMBC spectrum of $\mathbf{2 8}$


HMBC spectrum of $\mathbf{2 8}$


Arrows $=\operatorname{DQF}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}$

Red Bonds = HSQC
Arrows $=$ HMBC



Figure S3: Diagnostic 2D NMR correlations of 35 (C15-C40 fragment of tetrafibricin)


DQF ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{3 5}$



DQF ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{3 5}$


DQF ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{3 5}$


HSQC spectrum of $\mathbf{3 5}$


HSQC spectrum of $\mathbf{3 5}$


HMBC spectrum of $\mathbf{3 5}$


HMBC spectrum of $\mathbf{3 5}$


HMBC spectrum of $\mathbf{3 5}$


TOCSY spectrum of $\mathbf{3 5}$


TOCSY spectrum of $\mathbf{3 5}$

## Diastereomer Ratios and Configuration Assignments

## Compound 9: Diastereoselective Cyanation

${ }^{1}$ H NMR spectrum of purified minor diastereomer
${ }^{1} \mathrm{H}$ NMR integration: Diastereomer ratios before separation


Compound 26a: Model Mukaiyama Aldol with TBDPS
${ }^{1} \mathrm{H}$ NMR integration: Ratios of all four products before separation
${ }^{1} \mathrm{H}$ NMR integration: Diastereomer ratios after separation of kinetic and thermodynamic products


## Compound 41a and 41b: Acetonide Derivatives of 1,3,5-Triol 28

(labeled 327a and 327b in following pages)
DEPT spectrum showing anti,anti configuration (acetonide methyl groups at ca. 25 ppm )


## Compound 26b: Model Mukaiyama Aldol with TBS

${ }^{1}$ H NMR integration: Ratios of all four products before separation
${ }^{1} \mathrm{H}$ NMR integration: Diastereomer ratios after separation of kinetic and thermodynamic products


Compound 33: Mukaiyama Aldol (fully functionalized)
${ }^{1} \mathrm{H}$ NMR integration: Diastereomer ratio



HNMR of the authentic minor diastereomer of 9


HNMR of $\mathbf{9}$, integration of $90: 10$ mixture


HNMR of 26a product mixture
$\because 1$
321
(thermo dr 71:29)



HNMR of 26a after separation of kinetic and thermodynamic enolate products


HNMR of 26a, thermodynamic enolate product


HNMR of 26a, kinetic enolate product


HNMR of 26b product mixture


339
(kinetic dr 81:19)


HNMR of $\mathbf{2} \mathbf{6} \mathbf{b}$ after separation of kinetic and thermodynamic enolate products


HNMR of $\mathbf{3 3}$ product mixture


HNMR of $\mathbf{3 4}$ product mixture

