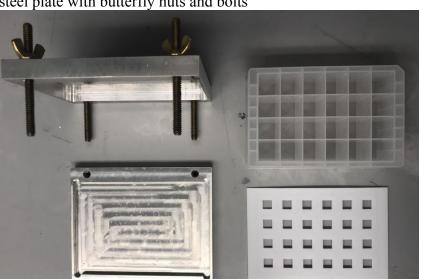
#### **Supporting Information**


Parallel headspace extraction onto etched sorbent sheets prior to ambient-ionization mass spectrometry for automated, trace-level volatile analyses

Madeleine Y. Bee, Jillian A. Jastrzembski, and Gavin L. Sacks Cornell University, Department of Food Science, 411 Tower Road, Ithaca, New York 14853

#### **Table of Contents**

- (S-1) Cover page
- (S-2) Figure S-1: Photo of extraction apparatus
- (S-3) Figure S-2: Photo of SPMESH in positioning stage
- (S 4) Table S-1: Response surface experimental design
- (S-5) Table S-2: Well plate orientations for calibration curves & recovery experiments
- (S 6) Figure S-3: Graphic representation of etched-SPMESH sheet
- (S-7) Figure S-4: Optimization of bakeout conditions
- (S 8) Figure S-5: Mass spectrum of SPMESH sheet following bakeout
- (S-9) Table S-3: ANOVA tables for response surface model
- (S-10) Figure S-6: Additional response surface plots
- (S-11) Figure S-7: Calibration curves
- (S 12) Figure S-8: Robustness data, no internal standard correction

Figure S-1: (top) Dissembled components of SPMESH apparatus. Top right – 24-well plate, bottom right – Teflon gasket, bottom left – bottom stainless steel plate, top left – top stainless steel plate with butterfly nuts and bolts



Assembled SPMESH apparatus

Figure S-2: SPMESH sheet and stainless steel frame, loaded in automated positioning stage in front of the DART source.



Table S-1: Response surface experimental design for extraction and desorption optimization

| <b>Extraction Temperature</b> | <b>Extraction Time</b> | <b>Desorption Temperature</b> | Scan Speed |
|-------------------------------|------------------------|-------------------------------|------------|
| (°C)                          | (min)                  | (°C)                          | (mm/s)     |
| 30                            | 15                     | 200                           | 1          |
| 60                            | 15                     | 450                           | 0.5        |
| 30                            | 15                     | 450                           | 2          |
| 60                            | 15                     | 200                           | 0.5        |
| 50                            | 60                     | 450                           | 2          |
| 50                            | 60                     | 200                           | 0.5        |
| 60                            | 15                     | 400                           | 2          |
| 50                            | 30                     | 400                           | 1          |
| 30                            | 60                     | 450                           | 0.5        |
| 40                            | 30                     | 400                           | 1          |
| 50                            | 30                     | 300                           | 1          |
| 40                            | 60                     | 250                           | 1          |
| 30                            | 60                     | 350                           | 2          |
| 60                            | 60                     | 350                           | 0.5        |
| 40                            | 30                     | 400                           | 1          |
| 40                            | 60                     | 250                           | 1          |
| 40                            | 30                     | 200                           | 2          |
| 60                            | 30                     | 250                           | 1          |
| 50                            | 15                     | 250                           | 2          |
| 60                            | 60                     | 200                           | 2          |
| 40                            | 15                     | 350                           | 0.5        |
| 30                            | 30                     | 250                           | 0.5        |
| 50                            | 30                     | 400                           | 1          |

Table S-2: Distribution of blanks and standards in 24 well platers for calibration curves & recovery experiments.

### **Calibration Curve -**

Well Plate Setup Run 1:

|      |      |     | l   |     |     |
|------|------|-----|-----|-----|-----|
| В    | IS 1 | В   | 5.1 | В   | 2.4 |
| IS 3 | В    | 5.3 | В   | 3.4 | В   |
| В    | 1.1  | В   | 5.2 | В   | 3.3 |
| 3.2  | В    | 4.1 | В   | 2.2 | В   |

Well Plate Setup Run 2:

| В   | 4.3 | В    | 4.4 | В   | 1.4  |
|-----|-----|------|-----|-----|------|
| 4.2 | В   | 2.3  | В   | 3.1 | В    |
| В   | 5.4 | В    | 2.1 | В   | IS 4 |
| 1.3 | В   | IS 2 | В   | 1.2 | В    |

## Recovery -

Well Plate Setup:

| B1   | 1.2 | B2  | IS 1 | В3   | IS 2 |
|------|-----|-----|------|------|------|
| IS 4 | 1.3 | 2.4 | 1.4  | GB 3 | 3.1  |
| B4   | 3.4 | 3.2 | GB 2 | IS 3 | 3.3  |
| 1.1  | 2.3 | 2.2 | 2.1  | GB 4 | GB 1 |

B = blank (water)

GB = matrix blank (grape macerate)
IS = internal standard (grape macerate)

Figure S-3: Cartoon of etched SPMESH sheet indicating parallel (a, gray) vs. perpendicular (b, white) edge area.

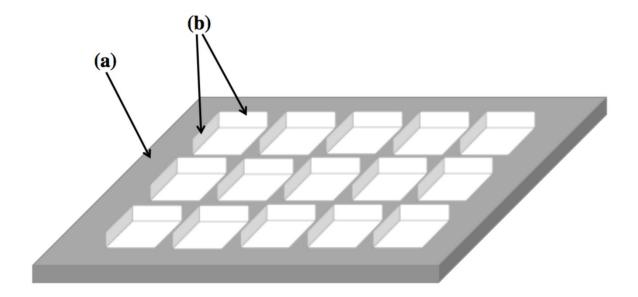



Figure S-4: Results from determining optimum mesh bakeout time at 250 °C. Columns depict average IBMP signal from three replicate runs; error bars indicate the average standard deviation of three replicate runs of three samples; a total of nine replicates. \*Indicates significant difference (p < 0.0001)

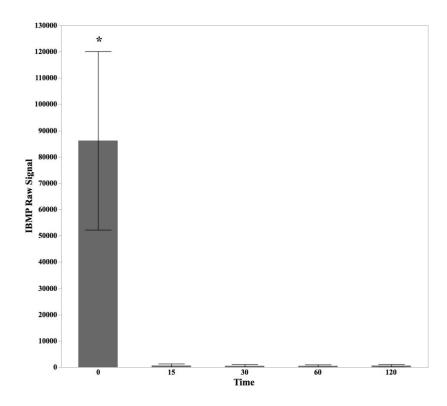



Figure S-5: Full mass spectrum of a single well over mass range 50-200 m/z for a blank mesh

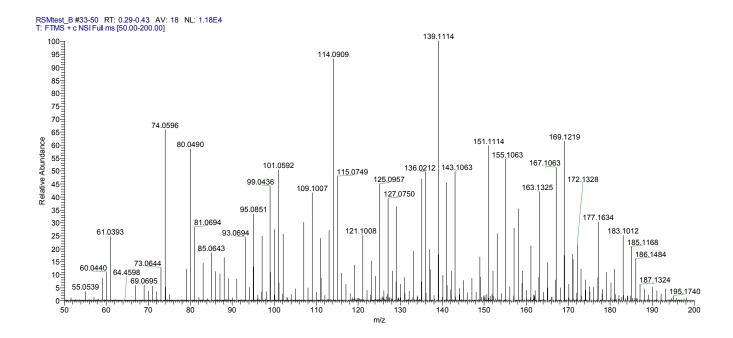
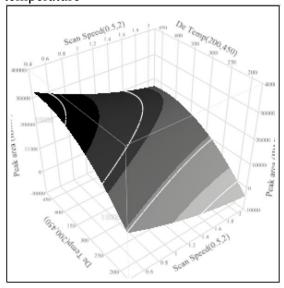



Table S-3: ANOVA tables for RSM models from extraction and optimization experiments.

## IBMP:

| Source   | DF | Sum of Squares | Mean Square | F Ratio  |
|----------|----|----------------|-------------|----------|
| Model    | 14 | 1888511299     | 134893664   | 87.9728  |
| Error    | 8  | 12266848.5     | 1533356.1   | Prob > F |
| C. Total | 22 | 1900778148     |             | <.0001*  |

# Linalool:


| Source   | DF | Sum of Squares | Mean Square | F Ratio  |
|----------|----|----------------|-------------|----------|
| Model    | 14 | 1.4283e+10     | 1.0202e+9   | 4.6605   |
| Error    | 8  | 1751213408     | 218901676   | Prob > F |
| C. Total | 22 | 1.6034e+10     |             | 0.0174*  |

## Methyl anthranilate:

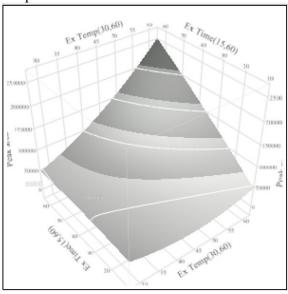
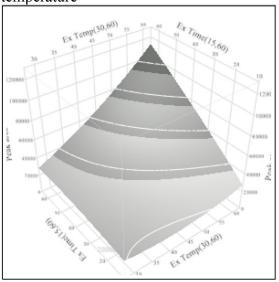

| Source   | DF | Sum of Squares | Mean Square | F Ratio  |
|----------|----|----------------|-------------|----------|
| Model    | 14 | 7.9601e+10     | 5.6858e+9   | 77.3056  |
| Error    | 8  | 588396020      | 73549503    | Prob > F |
| C. Total | 22 | 8.0189e+10     |             | <.0001*  |

Figure S-6: Additional response surface plots for extraction and desorption optimization experiments


IBMP – scan speed vs. desorption temperature



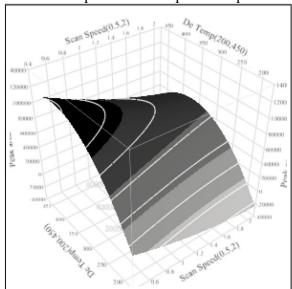
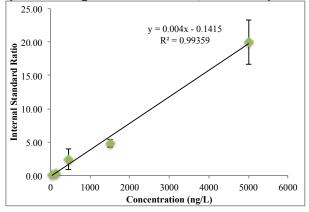
 $MA-extraction\ time\ vs.\ extraction\ temperature$ 

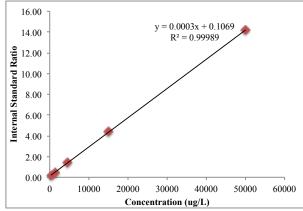


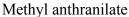
Linalool – extraction time vs. extraction temperature



MA – scan speed vs. desorption temperature



Figure S-7: Sheet-based SPMESH-DART-MS calibration curves for aqueous samples. The internal standard ratio = (peak area of standard)/(peak area of matched internal standard). Points represent the average of four replicates; error bars represent the standard deviation for each level.


#### **IBMP**

\*One outlier removed from the highest concentration (5000 ng/L) IBMP analyses, determined by quantile range outliers in JMP, with tail quantile of 0.1 and Q of 3.









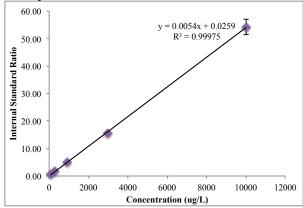
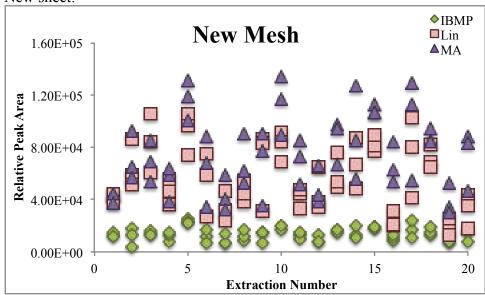
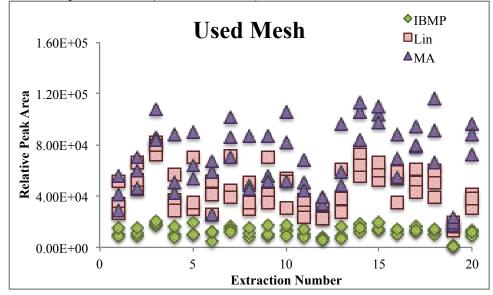





Figure S-8: SPMESH-DART-MS robustness over 20 extractions; raw signal. Wells were loaded with 500 ng/L IBMP,  $100 \mu g/L$  linalool,  $100 \mu g/L$  MA, and their deuterated analogs, and samples were run once per day for the first 12 extractions (n = 3 each day); the remaining eight analyses were run on the final day.







