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Figure S1: The analytical size distribution model for linear oligomers can be globally fitted to
coarse-grained numerical Monte Carlo results (data points) with high accuracy. ∆G◦ = −15kT ;
p = 0.3µM (purple); p = 1.3µM (blue); p = 5.3µM (red).

Derivation of general statistical mechanical formulation

for oligomers

This section is a reworking of material from ref. S1 and is included here for didactic purposes.

The grand canonical partition function is given by:

Ξ(T, V, µ) =
∞∑
N

Q(T, V,N)eβ N µ (1)

where Q(T, V,N) denotes the canonical partition function of a system that contains N

molecules, β = 1/(kB T ) is the inverse temperature (kB is the Boltzmann constant) and µ is

the chemical potential of the monomers. We consider the formation of oligomeric aggregates

up to an arbitrary maximum size of M monomers. By assuming that the oligomers do not

interact, the grand canonical partition function can be expressed in terms of the individual
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oligomer partition functions:

Ξ(T, V, µ) =
∞∑

N1=0

∞∑
N2=0

· · ·
∞∑

NM=0

(
q1(T, V ) eβµ

)N1

N1!

(
q2(T, V ) eβ2µ

)N2

N2!
· · ·
(
qM(T, V ) eβMµ

)NM

NM !
,

(2)

where qj(T, V ) is the canonical partition function of a j-mer. Eq. (2) can be re-summed to

yield

Ξ(T, V, µ) = exp

(
M∑
j=1

qj(T, V ) eβjµ

)
. (3)

From Eq. (3), the concentration of oligomers of size j, f(j) ≡ Nj(T, V )/(NA V ), is given by

f(j) =
1

NA V
q(j) eβjµ, (4)

where NA is Avogadro’s number and we have used the short hand notation q(j) ≡ qj(T, V ).

Note that the chemical potential µ is set implicitly by letting M → ∞ in Eq. (3) and

imposing the conservation-of-mass condition, p =
∑∞

j=1 jf(j), which can be written more

conveniently as

p = − 1

NA V

kB T

Ξ

∂Ξ

∂µ
(5)

We must now address the partition function q(j). This is given in general by a product

of independent contributions from translational and internal degrees of freedom: q(j) =

qtrans(j) qint(j). In particular, the translational partition function qtrans(j) is proportional to

the system volume, and so can be written as qtrans = V/v0(j), where v0(j) is a fundamental

volume (in the gaseous phase, it is given by the cube of the thermal wavelength). Making

this substitution, we arrive at Eq. 1 in the main text.
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Calculating the critical monomer concentration m∗

The maximum of the length distribution is found by solving df(j)/dj = 0:

df(j)

dj
=

1

NAv0

d

dj
e−β(∆G(j)−jµ) = f(j) · −β

(
d∆G(j)

dj
− µ

)
= 0 (6a)

=⇒ d∆G(j)

dj
− µ =

5

3

h

β
j2/3 +

(z∞
2
Gb − µ

)
− 2

3
j−1/3 z∞

2
α′Gb = 0. (6b)

By making the substitution x = j1/3, this can be transformed into the simpler problem

F(x) = 0, where:

F(x) = ax3 + cx+ d (7a)

=
5

3

h

β
x3 +

(z∞
2
Gb − µ

)
x− z∞

3
α′Gb. (7b)

We in fact need both a maximum and a minimum, so we need at least 2 real solutions to

this equation. The cubic function must then cross the x axis three times. For this to happen

it must possess two real stationary points x±:

F ′(x) = 3ax2 + c = 0 =⇒ x± = ±
√
−c
3a
. (8)

We thus need c = z∞
2
Gb − µ < 0 as a necessary but not sufficient condition. This translates

to a fairly tiny minimum monomer concentration so we look for a further constraint. We
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need that the first of these stationary points gives a value of F > 0, and the second F < 0:

F(x±) = ±a
(
−c
3a

)3/2

± c
(
−c
3a

)1/2

+ d (9a)

= ±
(

(−c)3

27a

)1/2

∓ (−c)2/2

(
−c
3a

)1/2

+ d (9b)

= ±1

3

(
(−c)3

3a

)1/2

∓
(

(−c)3

3a

)1/2

+ d (9c)

∴ F(x−) =
2

3

(
(−c)3

3a

)1/2

+ d, F(x+) = −2

3

(
(−c)3

3a

)1/2

+ d. (9d)

Given that d > 0, the first condition is always satisfied. To satisfy the second, we require

(using z∞ = 12):

2

3

(
(−c)3

3a

)1/2

> d (10a)

(−c)3 > 3a
9d2

4
= 5

h

β

(−z∞α′Gb)
2

4
(10b)

µ− 6Gb >

(
5h

β

)1/3

(−6α′Gb)
2/3. (10c)

This gives the critical monomer concentration:

m∗ =
1

NAv0

eβµ =
1

NAv0

exp
(

6β Gb + (5h)1/3 (−6α′β Gb)
2/3
))
. (11)

The value x∗ for which the roots merge, or for which ∆ = 0, is given by 9d/2∆0 = −3d/2ac,

which gives the location of the new maximum:

j∗ =
d

2
= −6α′βGb

5h
. (12)
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Head group sterics

We expect that head groups have some translational, rotational and conformational de-

grees of freedom, and that these are restricted through steric interactions upon addition of

amphiphiles to a micelle. Indeed, it is known that head group size can influence micelle

geometry as a result of these interactions.S2 This free energy penalty for formation of larger

micelles was neglected by Chandler et al, presumably because it is small relative to the

connectivity-enforcing energy penalty.

We here verify this hypothesis by calculating the steric penalty explicitly. In previous MT

approaches, this has been dealt with using a test particle approach,S3 yielding the expression:

Gst = −jkT ln
[
1− ah

a

]
, (13)

where ah is the average cross-sectional area of the head group (in our Monte Carlo simulations

πσ2/4), and a is the core surface area per monomer. We first calculate a for spherical micelles:

V = jv =
4

3
πr3 =⇒ r =

(
3jv

4

)1/3

(14a)

a =
S

j
=
Sv

V
=

3v

r
(14b)

∴ a = 3v

(
4

3jv

)1/3

=

(
36v2

j

)1/3

. (14c)

Now since v scales with σ3, we have the scaling behaviour for Gst:

Gst ' −jkT ln
[
1− Cj

1
3

]
, (15)

with constant C. Thus, Gst has lower scaling with j than the connectivity-enforcing free

energy penalty (j5/3). Furthermore, C is given approximately by:

C <
πσ2/4

(36σ6)1/3
' 0.24. (16)
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We see, therefore, that not only does the head-group steric repulsion free energy term

scale less strongly with j than the connectivity-enforcing term, but that also its coefficient is

less than half of the magnitude of the connectivity-enforcing term’s coefficient (found from

fitting to be h = 0.58). Thus it is reasonable to neglect the steric contribution for modelling

the Monte Carlo simulations, and oligomers in general.

Computing h analytically

The term h in the model can be computed from a knowledge of the geometry of amphiphiles

within micelles. Specifically, h is given approximately by the formula:

h ' 0.75(ξ/δ)4/3, (17)

where δ is the “length” of the hydrophobic segment, or its greatest distance from the hy-

drophilic segment, and ξ is the “width” of the hydrophobic segment, or its average linear

dimension perpendicular to its length. In the case of our simulations we may identify ξ = σ.

Moreover, we may calculate the length of the hydrophobic segment as the how far we may

move one monomer along the length of another whilst maintaining their interaction. This

gives δ = 1.33σ. Feeding these numbers into Eq. (17) gives h ' 0.51. This is in reasonably

good agreement with our fitted value of h = 0.58. The agreement can be improved by ex-

plicitly including the steric term computed in the previous section in the model when fitting;

doing so yields a fitted value of h = 0.49.
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