Supporting Information

Chemical Synthesis of K₂S₂ and K₂S₃ for Probing Electrochemical Mechanisms in K-S Batteries

Sichen Gu^{a,b}, Neng Xiao^b, Feng Wu^{a,c}, Ying Bai^{a*}, Chuan Wu^{a,c*}, Yiying Wu^{b*}

a School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China

b Department of Chemistry & Biochemistry, The Ohio State University 100 West 18th Avenue, Columbus, OH 43210, USA

c Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, PR China

AUTHOR INFORMATION

Corresponding Author

*E-mail: YB: membrane@bit.edu.cn; CW: chuanwu@bit.edu.cn; YW: wu@chemistry.ohio-state.edu

1. Experimental section

1.1 Synthesis of K_2S_2 , K_2S_3 and K_2S_5

The K₂S₃ were synthesized by the method of precipitation. The K (sigma) and sublime sulfur (Alfa Aesar) were weighted at a mole ratio of 2:3 and added into DME. The K and sulfur were stirred overnight under the protection of argon. The DME was evaporated and the precipitates were collected. The K₂S₂ were synthesized by mixing as-prepared K₂S₃ and K₂S (Sterm Chemical, Inc.) with 1:1 mole ratio and placed in quartz tube. The tube was flame-sealed under vacuum and maintained at 285°C for 48 h. Then the tube was removed from the furnace and taken into argon filled glove box for collection of K₂S₂. The K₂S₅ were synthesized by mixing as-prepared K₂S₃ and sublime sulfur with 1:2 mole ratio in quartz tube, flame-sealed and maintained at 196 °C for 40 h. The K₂S₄ and K₂S₆ were attempted to be synthesized but failed.

1.2 Characterization of potassium polysulfide

 K_2S , K_2S_2 and K_2S_3 were characterized by X-ray diffractometer (Bruker D8 Advance, Cu-K α source, 40 kV, 50 mA). A polymer thermoplastic sealant (3M Company) was applied to seal the XRD holder against the ambient air. UV-vis (Lambda 950 Spectrometer, PerkinElmer) analysis were used to characterize the soluble polysulfide species in DME or electrolytes.

The solubility of K_2S_2 and K_2S_3 in DME were determined by the following experiments: 200 mg K_2S_2 or K_2S_3 was added into 10 mL DME to get a saturated solution and stirred in room temperature for 12 h. The suspension were filtered by filter (thermos scientific Titan3, 45 μ m) to get transparent soluble phase. Then the DME was evaporated and the residues were collected and weighted.

1.3 Synthesis of the 70S/30CNT composites

The cathode materials consist of multiwalled carbon nanotube (Cheap Tubes Inc.) and sulfur, which abbreviated as 70S/30CNT, were fabricated through a melt-diffusion method. In a typical experiment, 0.7g sublimed sulfur and 0.3 g carbon nanotube were weighted and ground homogeneously in a mortar. The mixture was put into a hydrothermal reactor, under the protection of argon. Then, the composites were heated to 160 °C at a rate of 50 °C min⁻¹. The temperature was maintained for 12 h. The 70S/30CNT composite was obtained after natural cooling.

1.4 Assembly of K-S cells

The Nafion-K⁺ membrane was firstly prepared using a previously reported method¹. To exchange the original cation (H⁺) of Nafion to K⁺, Nafion 211 membranes (25 um thickness, Dupont) were heated in a 0.5 M KOH solution of dimethylsulfoxide (DMSO) (> 99.99 %, Sigma-Aldrich) and water (volume ratio=1:1) at 60 °C for 2 h. The residual solvent and KOH were removed by stirring the membrane in distilled water at 90 °C for 2 h. The Nafion-K⁺ membrane were dried under vacuum at 100 °C overnight and then soaked for 12 h in the battery electrolyte before use.

The potassium bis(fluoroslufonyl)imide (KFSI) (> 99.9 %, water content < 50 ppm, Fluolyte) were dried under high vacuum at 100 °C for 48 h prior to use. 1,2dimethoxyethane (DME) (BASF) was stored over 3 Å molecular sieves (Sigma-Aldrich). The electrolyte of KFSI/DME (0.5 mr, 0.6 mr) were prepared by mixing KFSI and DME with the salt/solvent mole ratios of 0.5 or 0.6.

The cathodes were fabricated by mixing the carbon nanotube/sulfur, K_2S_3 , K_2S_2 or K_2S_3 , Super P carbon powder (MTI Corporation) and poly(vinylidenefluoride) (PVDF) (Sigma-Aldrich) at a weight ratio of 70:20:10 in N-methylpyrrolidone (Sigma-Aldrich). The slurry was then pasted onto the Al foil (99.99%, Alfa Aesar) and dried at 60 °C for 12 h under vacuum (for carbon nanotube cathode) or room temperature for 48 h under argon protection (for K_2S , K_2S_2 , K_2S_3 cathode). The loading weight of sulfur was 1.29 mg (0.478 mg cm⁻²) per electrode. The loading weight of K_2S_n (n=1,2,3) was 1.0-1.5 mg (1 mg cm⁻²-0.85 mg cm^{-2}) per electrode. The coin cells were fabricated in Argon-filled glovebox (< 0.5 ppm of H_2O and < 1.0 ppm of O_2) by stacking potassium metal anode (99.5 %, Sigma-Aldrich), trilayer (polypropylene-polyethylene-polypropylene) membrane (25 um thickness, Celgard), Nafion-K⁺ membrane, commercial carbon paper (H2315, Freudenberg FCCT SE & Co. KG), cathode electrode and adding 80 uL KFSI-DME (0.5 mr). The electrolyte/sulfur ratio was 62.0 mg uL⁻¹. The commercial carbon paper was used as the upper current collector².

The double separators coin cells were fabricated by stacking potassium metal anode, Celgard, Nafion-K⁺ membrane, cathode electrode, Celgard, commercial carbon paper.

1.5 Electrochemical measurement of K-S cells

Galvanostatic charge and discharge tests and galvanostatic intermittent titration

technique (GITT) tests were carried out using a MTI battery analyzer (BST8-WA) within the voltage range of 1.2-3.0 V (vs K^+/K).

1.6 Chemical reactivity of KSFI salt

The chemical stability of KFSI salt is studied by the following experiments and NMR. (1) The KFSI salt was mixed with the methanol-D. (2) The KFSI and K_2S_3 were dissolved in DME. (3) The KFSI salt (82 mg) was mixed with K_2S_3 (32.5 mg) in DME solvent (2.5 mL), 18-Crown-6 (200 mg) was added to promote the dissolution of K_2S_3 (mole ration of KFSI/ $K_2S_3/18C6=1/0.5/2$). The results are summarized in Figure S2.

NMR 19F NMR were carried out on a 400 MHz NMR spectrometer (Bruker, Avance III) after mixing 50 uL soluble phase mentioned above into 450 uL MethonalD (99.9 atom % D, Sigma-Aldrich).

Reference:

(1) Ren, X.; Lau, K. C.; Yu, M.; Bi, X.; Kreidler, E.; Curtiss, L. A.; Wu, Y. Understanding side reactions in K-O₂ batteries for improved cycle life. *ACS Appl. Mater. Interfaces* 2014, *6*, 19299-19307.

(2) Su, Y. S.; Manthiram, A. Lithium-Sulphur Batteries with a Microporous Carbon Paper as a Bifunctional Interlayer. *Nat. Commun.* **2012**, *3*, 1166.

(3) Zhao, Q.; Hu, Y.; Zhang, K.; Chen, J. Potassium-Sulfur Batteries: A New Member of Room-Temperature Rechargeable Metal-Sulfur Batteries. *Inorg. Chem.* **2014**, *53*, 9000-

9005.

(4) Lu, X.; Bowden, M. E.; Sprenkle, V. L.; Liu, J. A Low Cost, High Energy Density, and Long Cycle Life Potassium-Sulfur Battery for Grid-Scale Energy Storage. *Adv. Mater.*2015, 27, 5915-5922.

(5) Hwang, J.-Y.; Kim, H.-M.; Yoon, C. S.; Sun, Y.-K. Towards High-safety Potassium-Sulfur Battery Using Potassium Polysulfide Catholyte and Metal-free Anode. *ACS Energy Lett.* **2018**, 540-541.

(6) Yu, X.; Manthiram, A. A Reversible Nonaqueous Room-Temperature Potassium-Sulfur Chemistry for Electrochemical Energy Storage. *Energy Storage Materials* **2018**, *15*, 368-373.

(7) Xiao, N.; Gourdin, G.; Wu, Y. Simultaneous Stabilization of Potassium Metal and Superoxide in K-O₂ Batteries on the Basis of Electrolyte Reactivity. *Angew. Chem. Int. Ed.*2018, *57*, 1-5.

Supporting Information:

		Capacity/	Discharge	Discharge
Cathode materials	Electrolyte	mAh g ⁻¹	plateaus/V	product
polyaniline coated ordered	1 M KClO ₄	512.7	1.8, 1.66	K_2S_3
mesoporous carbon/sulfur ³	/TEGDME			
Catholyte: 1.5 M KTFSI or	β"-Al ₂ O ₃			VC
KPF ₆ /tetraglyme	solid	402	2.1	K_2S_2 ,
$/K_2S_{1.52}^{4}$	electrolyte			K_2S_3
3-dimensional freestanding				
carbon nanotube+ K ₂ S _x catholyte ⁵	0.5 M KTFSI /DEGDME	400	2.1, 1.8	K_2S_3
Sulfur-carbon nanotube	1 M	1144	1.95,	
fiber ⁶	KCF ₃ SO ₃ /TEGDME		1.4	K ₂ S

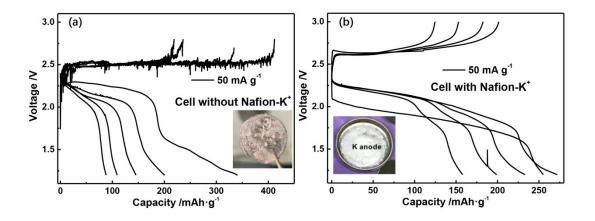

Table S1. Electrochemical performance of reported K-S batteries

Table S2. Theoretical capacities of sulfur battery

Discharge Number of electrons involved in Theoretical capacity

products	charge transfer per sulfur (e ⁻)	(mAh g ⁻¹)
K_2S_6	1/3	279.2
K_2S_5	2/5	335.0
K_2S_4	1/2	418.8
K_2S_3	2/3	558.3
K_2S_2	1	837.5
K_2S	2	1675.0

The theoretical discharge capacities are calculated according to the equation C=nF/3.6M, where n is the number of electrons involved in the charge transfer, F is the Faraday constant, M is the formula weight of sulfur.

Figure S1. Galvanostatic profile of cell without Nafion- K^+ (a) or with Nafion- K^+ (b), Inset: the K anode after cycling.

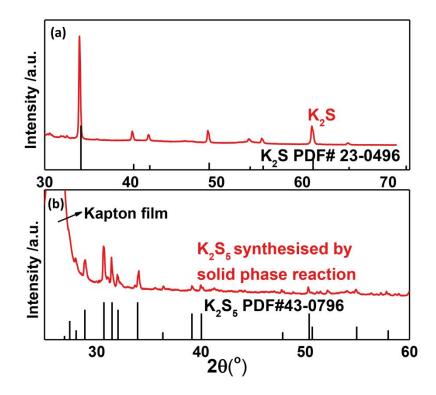
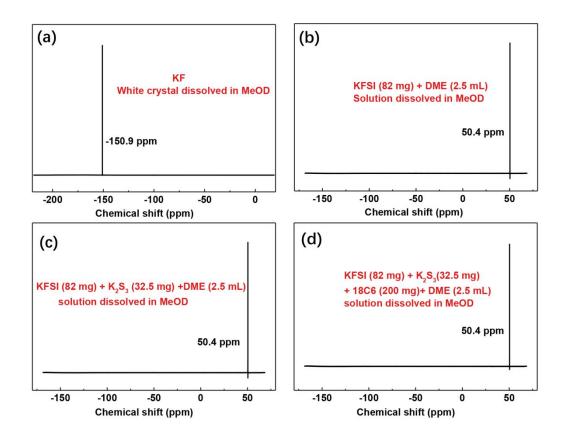



Figure S2. XRD characterization of commercially available K₂S (a) and as-prepared K₂S₅ (b).

NMR was used to investigate the side reaction between the K_2S_3 and KFSI-DME, the 18C6 was used to coordinate KF that could be generated by the side reaction between the KFSI and K_2S_3 . The amount of 18C6 was designed to be enough to coordinate all the K species, so the KF can be released into the solution and detected by NMR⁷.

Figure S3. The 19F NMR spectrum of (a) KF dissolved in MeOD, (b) pure 0.5 M KFSI-DME electrolyte, (c) supernatant from mixture of K_2S_3 and KFSI-DME electrolyte, (d) supernatant from mixture of K_2S_3 , 18C6 and 0.5 M KFSI-DME electrolyte.

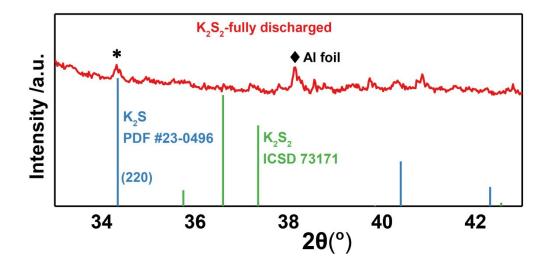


Figure S4. XRD characterization of fully discharged K_2S_2 cathode, the star and diamond indicate the peaks of K_2S_2 and Al foil (current collector).