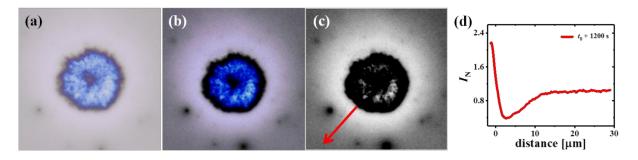

Supporting information for:

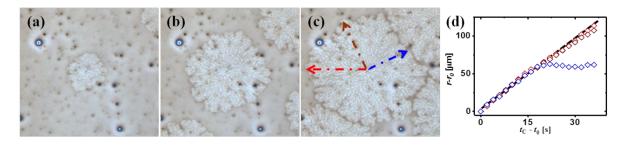
Growth Kinetics of Stacks of Lamellar Polymer Crystals

Sumit Majumder¹, Hanna Busch², Purushottam Poudel¹, Stefan Mecking² and Günter Reiter^{1,3,*}

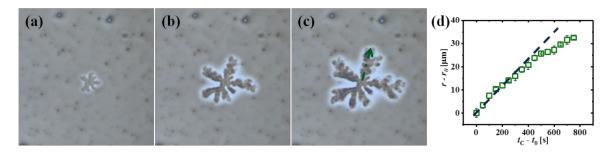
¹Institute of Physics, University of Freiburg, 79104 Freiburg, Germany ² Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany ³Freiburg Materials Research Center (FMF), University of Freiburg, 79104 Freiburg, Germany


1) Correlation between film thickness and interference colors

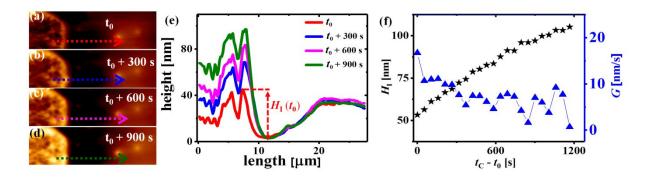
S1: (a) Schematic representation of interference of white light reflected from a supported thin film. (b) Color bar indicating the relation between interference colors and film thickness (h) as observed for isotactic polystyrene films 1 .


isotactic polystyrene films

2) Grey scale intensity measurement for calculating width of depletion zone

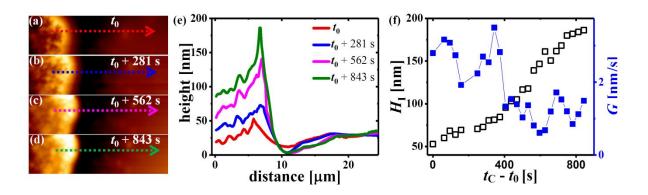

S2: (a) Contrast enhanced optical micrograph showing a crystal formed in a $h \approx 35$ nm thin film after $t_0 + 1200$ s at 71 °C. (b) Contrast enhanced further to visualize the depletion region surrounding the crystal. (c) Grey scale image of (b). (d) Normalized inverse grey scale intensity (I_N) profile along the red line indicated in (c). The intensity values were normalized by the intensity value of the unperturbed film. The images (a) - (c) have a size of $55 \times 55 \, \mu m^2$.

3) In-situ measurement of radial advancement of a crystal at 67 °C


S3: Contrast enhanced optical micrographs showing the temporal evolution of crystals formed in an $h \approx 35$ nm thin film. The branched crystal in (a)-(c) was grown at 67 °C and the crystallization times, t_C , were t_0 , $t_0 + 15$ s and $t_0 + 30$ s, respectively. (d) Lateral advancement $(r - r_0)$ of the branched crystal as a function of $(t_C - t_0)$. The black dashed line indicates the initial slope of $(r - r_0)$ with $(t_C - t_0)$. The images (a)-(c) have a size of $300 \times 300 \,\mu\text{m}^2$.

4) In-situ measurement of radial advancement of a crystal at 69 °C

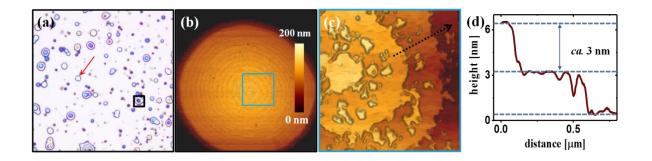
S4: Optical micrographs showing temporal evolution of crystals formed in an $h \approx 35$ nm thin film. The branched crystal in (a)-(c) was grown at 69 °C and the crystallization times, t_C , were t_0 , $t_0 + 400$ s and $t_0 + 800$ s, respectively. (d) Lateral advancement of the branched crystal as a function of $(t_C - t_0)$. The blue dashed line indicates the initial slope of $(r - r_0)$ with $(t_C - t_0)$. The images (a)-(c) have a size of $280 \times 280 \, \mu m^2$.


5) AFM in-situ measurement of radial advancement and height of a crystal at 70 °C

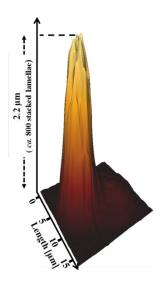
S5: (a) – (d) AFM *in-situ* height images showing growth of a crystal at 70 °C in *ca*. 35 nm thin film after t_0 , t_0 + 300 s, t_0 + 600 s and t_0 + 900 s, respectively. (e) Height profile along the arrows indicated in (a) – (d). (f) Height of the crystal growth front (H_I) and lateral growth rate (G) as a


function of $(t_C - t_0)$, obtained from *in-situ* measurements. The images (a)-(d) have a size of 48×14 μ m².

6) AFM in-situ measurement of radial advancement and height of a crystal at 71 °C


S6: (a) – (d) AFM *in-situ* height images showing growth of a crystal at 71 °C in *ca*. 35 nm thin film after t_0 , t_0 + 281 s, t_0 + 562 s and t_0 + 843 s, respectively. (e) Height profile along the arrows indicated in (a) – (d). (f) Height of the crystal growth front (H_I) and lateral growth rate (G) as a function of (t_C - t_0), obtained from *in-situ* measurements. The images (a)-(d) have a size of 32×9 μ m².

7) Height profile of a stack of lamellar crystals


S7: (a) AFM topography image of the crystal indicated by the red box in Figure 6 (d) in main manuscript. (b) AFM topography image of the part indicated by the sky-blue box in (a), showing stacks of lamellae. (c) Height profile along the red dotted line indicated in (b). (a) and (b) have a size of $35 \times 35 \,\mu\text{m}^2$ and $9 \times 9 \,\mu\text{m}^2$, respectively.

8) Height profile of a stack of lamellar crystals

S8: (a) Optical micrograph presented in Figure 6 (g) in the main manuscript. (b) AFM topography image of the crystal indicated by the red arrow in (a). (c) AFM topography image of the part indicated by the sky-blue box in (b), showing stacks of lamellae. (d) Height profile along the black dotted line indicated in (c). The images (a), (b) and (c) have a size of $200 \times 200 \,\mu\text{m}^2$, $11 \times 11 \,\mu\text{m}^2$ and $1.6 \times 1.6 \,\mu\text{m}^2$, respectively.

9) Micrometer high quasi-single crystal

S9: AFM 3D image of the crystal shown in Figure 6 (h) in main text (indicated by the black box in Figure S8 (a)).

Reference:

(1) Schäffer, E. Instabilities in Thin Polymer Films: Structure Formation and Pattern Transfer, Universität Konstanz, 2001.