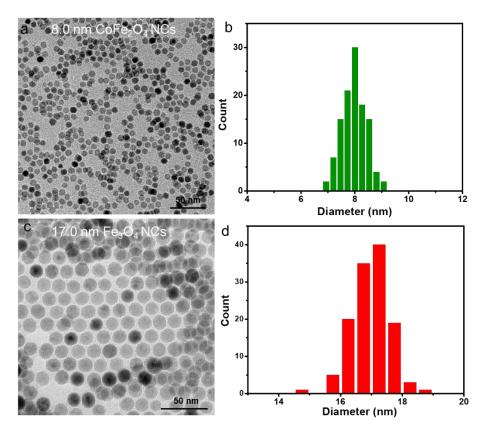
Supporting information

Scalable Assembly of Crystalline Binary Nanocrystal Superparticles and Their Enhanced Magnetic and Electrochemical Properties

Yuchi Yang,^{†, ‡} Biwei Wang,[‡] Xiudi Shen,[†] Luyin Yao,[†] Lei Wang,[†] Xiao Chen,[†]

Songhai Xie,[‡] Tongtao Li,[‡] Jianhua Hu,[†] Dong Yang,[†] and Angang Dong*,[‡]


[†]State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.

tiChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Department of Chemistry, Fudan University, Shanghai 200433, China.

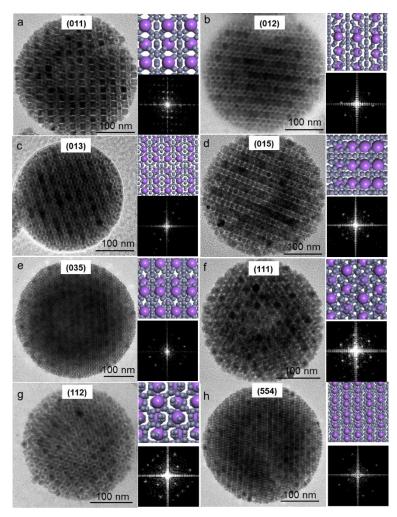

*To whom correspondence should be addressed: <u>agdong@fudan.edu.cn</u> (A.D.)

Table of Contents

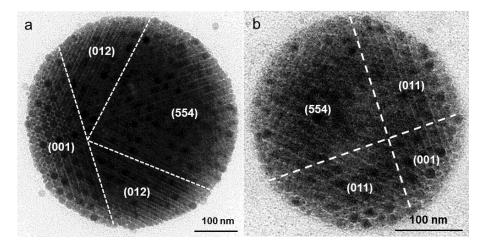

Figure S1. TEM images and the corresponding size distribution histograms of 8.0 nm
CoFe ₂ O ₄ NCs and 17.0 nm Fe ₃ O ₄ NCsS3
Figure S2. The different lattice planes of AB ₁₃ -type CoFe ₂ O ₄ -Fe ₃ O ₄ binary
superparticles
Figure S3. The defects of AB ₁₃ -type CoFe ₂ O ₄ -Fe ₃ O ₄ binary superparticlesS5
Figure S4. TEM images of 8.5 nm and 17.0 nm Fe ₃ O ₄ NCsS6
Figure S5. DLS measurements of AB13-type Fe3O4-Fe3O4 BNSL colloidsS7
Figure S6. SEM images of single-component superparticles self-assembled from 17.0
nm Fe ₃ O ₄ NCsS8
Figure S7. TEM images of AlB ₂ -type binary superparticles with various sizesS9
Figure S8. TEM image and corresponding SAXS pattern of AlB ₂ -type binary
superparticles and core-shell superparticles
Figure S9. TEM images of Pd-Fe ₃ O ₄ and Au-Fe ₃ O ₄ binary superparticlesS11
Figure S10. TEM image and the corresponding SAXS patterns of AB ₁₃ -type CoFe ₂ O ₄ -
Fe ₃ O ₄ binary superparticles self-assembled with different surfactantsS12
Figure S11. SEM images and SAXS patterns of <i>fcc</i> superparticles
Figure S12. TEM images and the corresponding SAXS patterns of various
superparticles after ligand carbonization
Figure S13. Representative CV curves of fcc superparticles composed of 17.0 nm
Fe ₃ O ₄ NCs and 8.0 nm CoFe ₂ O ₄ NCsS15
Figure S14. Cross-sectional illustration depicting the structural evolution during
electrochemical lithiation
Table S1. Reaction conditions for monodisperse Fe ₃ O ₄ NCs with different sizesS17
Table S2. NC formulation for the growth of various BNSL colloids
Table S3. Fe and Co contents in the electrolyte after cycling
Calculation of the packing fraction of binary superparticles

Figure S1. TEM images and the corresponding size distribution histograms of (a, b) 8.0 nm $CoFe_2O_4$ NCs and (c, d) 17.0 nm Fe_3O_4 NCs used for constructing AB₁₃-type binary superparticles.

Figure S2. (a-h) TEM images and the corresponding crystallographic models and FFTs of AB₁₃-type CoFe₂O₄-Fe₃O₄ binary superparticles viewed from various lattice planes as indicated.

Figure S3. (a, b) TEM images of AB_{13} -type $CoFe_2O_4$ -Fe₃O₄ binary superparticles with grain boundaries.

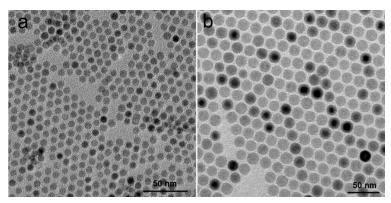
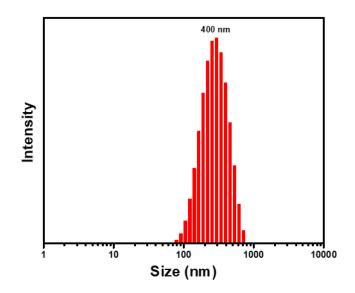
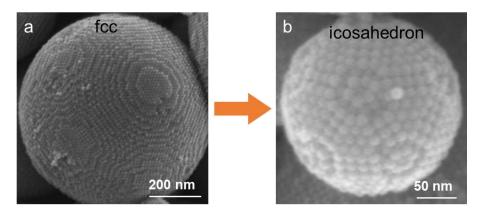
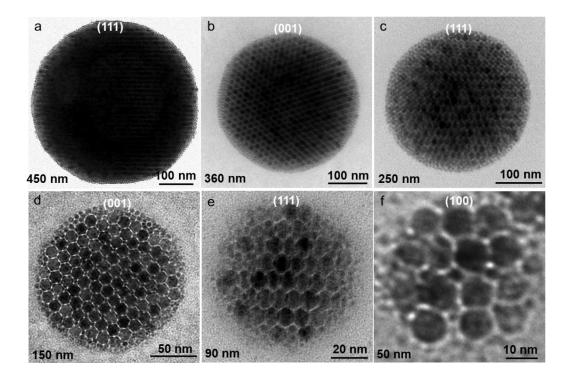
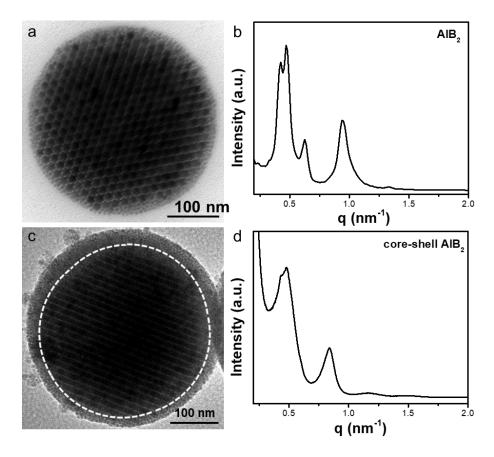
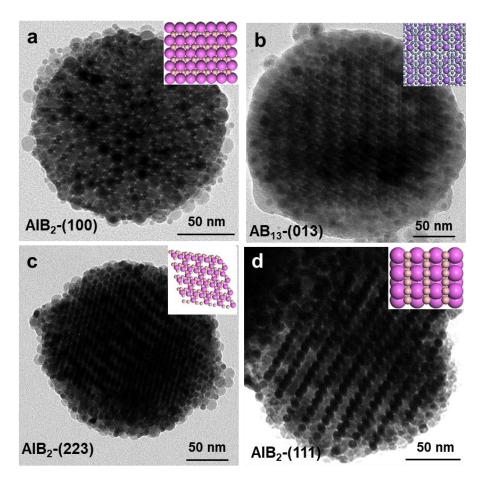
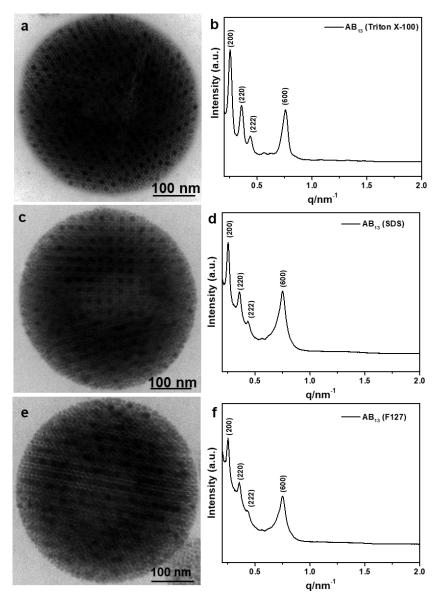


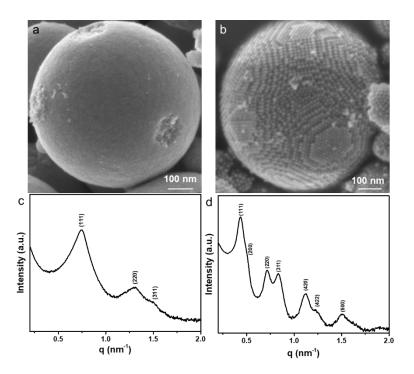
Figure S4. TEM images of (a) 8.5 nm and (b) 17.0 nm Fe_3O_4 NCs used for constructing AB₁₃-type Fe_3O_4 -Fe₃O₄ binary superparticles.

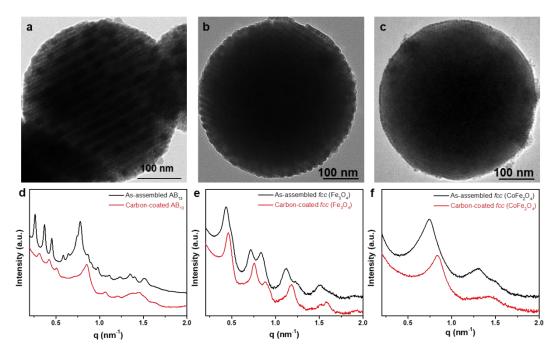




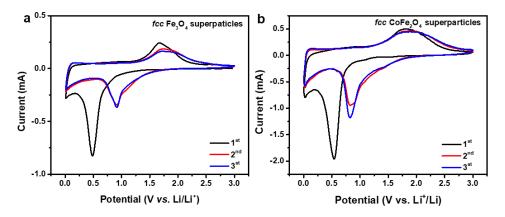

Figure S5. DLS measurements of AB₁₃-type Fe₃O₄-Fe₃O₄ BNSL colloids.


Figure S6. SEM images of single-component superparticles self-assembled from 17.0 nm Fe₃O₄ NCs, showing the transition from (a) *fcc* to (b) icosahedral symmetry as the superparticle size is reduced to \sim 200 nm.


Figure S7. TEM images of a series of AlB₂-type binary superparticles with sizes gradually decreasing from 450 to 50 nm.


Figure S8. (a, b) TEM image and corresponding SAXS pattern of AlB₂-type binary superparticles self-assembled from 4.5 nm CoFe₂O₄ NCs and 11.0 nm Fe₃O₄ NCs with a number ratio of ~2:1. (c, d) TEM image and corresponding SAXS pattern of coreshell superparticles featuring AlB₂-type cores (as indicated by the dashed circle), which were self-assembled from 4.5 nm CoFe₂O₄ NCs and 11.0 nm Fe₃O₄ NCs with a number ratio of ~13:1.


Figure S9. TEM images of binary superparticles with various structures and compositions: (a) AlB₂-type superparticles composed of 6.0 nm Pd NCs and 15.0 nm Fe₃O₄ NCs; (b) AB₁₃-type superparticles composed of 8.0 nm Pd NCs and 15.0 nm Fe₃O₄ NCs; (c) AlB₂-type superparticles composed of 7.0 nm Au NCs and 15.0 nm Fe₃O₄ NCs onto the (223) lattice plane; (d) AlB₂-type superparticles composed of 7.0 nm Au NCs and 15.0 nm Fe₃O₄ NCs and 15.0 nm Fe₃O₄ NCs onto the (223) lattice plane; (d) AlB₂-type superparticles composed of 7.0 nm Au NCs and 15.0 nm Fe₃O₄ NCs onto the (111) lattice plane. Insets show the corresponding crystallographic models.


Figure S10. TEM image and the corresponding SAXS patterns of AB₁₃-type CoFe₂O₄-Fe₃O₄ binary superparticles self-assembled with the assistance of different surfactants: (a, b) Triton X-100, (c, d) SDS, and (e, f) F127.

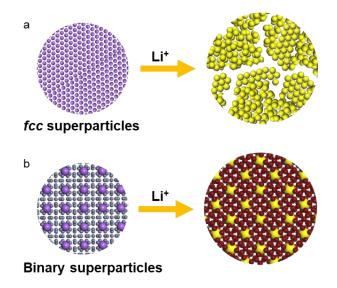

Figure S11. SEM images and the corresponding SAXS patterns of *fcc* superparticles composed of (a, c) 8.0 nm CoFe₂O₄ NCs and (b, d) 17.0 nm Fe₃O₄ NCs.

Figure S12. TEM images and the corresponding SAXS patterns of various superparticles after ligand carbonization: (a, d) carbon-coated AB₁₃-type binary superparticles composed of 8.0 nm CoFe₂O₄ and 17.0 nm Fe₃O₄ NCs; (b, e) carbon-coated *fcc* superparticles of 17.0 nm Fe₃O₄ NCs; (c, f) carbon-coated *fcc* superparticles of 8.0 nm CoFe₂O₄ NCs. For each type of superparticles, the SAXS patterns before ligand carbonization were also provided in (d-f) for comparison. For all sample, the peaks were systematically shifted toward high angles after ligand carbonization, suggesting the occurrence of lattice contract.

Figure S13. Representative CV curves of *fcc* superparticles composed of (a) 17.0 nm Fe₃O₄ NCs and (b) 8.0 nm CoFe₂O₄ NCs, respectively.

Figure S14. Cross-sectional illustration depicting the structural evolution of (a) *fcc* superparticles and (b) binary superparticles during electrochemical lithiation.

NC size	Solvent	Fe(OA) ₃	OA	Temperature (°C)
20.0 nm	50 g ODE	9.0 g	2.0 g	325
17.0 nm	50 g ODE	9.0 g	2.0 g	320
15.0 nm	50 g ODE	9.0 g	2.0 g	318
11.0 nm	10 g TDE/40 g ODE	9.0 g	2.0 g	300
9.0 nm	17.5 g TDE/32.5 g ODE	9.0 g	1.5 g	290
8.5 nm	50 g HDE	9.0 g	2.0 g	290
7.0 nm	50 g HDE	9.0 g	2.0 g	288
6.5 nm	10 g TDE/40 g HDE	9.0 g	2.0 g	280

 Table S1. Reaction conditions for growing monodisperse Fe₃O₄ NCs with different sizes.

Lattice structure	Volume of large NCs	Volume of small NCs	
AB ₁₃	8.0 mL 17.0 nm Fe ₃ O ₄	12.0 mL 8.0 nm CoFe ₂ O ₄	
AB ₁₃	8.0 mL 17.0 nm Fe ₃ O ₄	12.0 mL 8.5 nm Fe ₃ O ₄	
AB ₁₃	8.0 mL 20.0 nm Fe ₃ O ₄	12.0 mL 9.0 nm CoFe ₂ O ₄	
AlB ₂	15.0 mL 11.0 nm Fe ₃ O ₄	5.0 mL 4.5 nm CoFe ₂ O ₄	
AlB ₂	15.0 mL 15.0 nm Fe ₃ O ₄	5.0 mL 7.0 nm Fe ₃ O ₄	
MgZn ₂	12.0 mL 6.5 nm Fe ₃ O ₄	8.0 mL 4.5 nm CoFe ₂ O ₄	
MgZn ₂	12.0 mL 9.0 nm Fe ₃ O ₄	8.0 mL 6.5 nm Fe ₃ O ₄	
NaCl	19.0 mL 15.0 nm Fe ₃ O ₄	1.0 mL 4.5 nm CoFe ₂ O ₄	
CaCu ₅	9.0 mL 7.0 nm Fe ₃ O ₄	11.0 mL 4.5 nm CoFe ₂ O ₄	
AB ₁₃	0.2 mL 15.0 nm Fe ₃ O ₄	0.8 mL 8.0 nm Pd (20 mg mL ⁻¹)	
AlB ₂	0.45 mL 15.0 nm Fe ₃ O ₄	0.55 mL 6.0 nm Pd (20 mg mL ⁻¹)	
AlB ₂	0.25 mL 15.0 nm Fe ₃ O ₄	0.75 mL 7.0 nm Au (20 mg mL ⁻¹)	

 Table S2. NC formulation for the growth of various BNSL colloids (The concentration of all NCs is 75 mg mL⁻¹ unless noted).

Anodes	Fe	Fe mass loss	Co	Co mass loss
	(ppm)	percentage (%)	(ppm)	percentage (%)
AB ₁₃ binary superparticles	70	1.7	4	0.3
fcc CoFe2O4 superparticles	172	4.8	28	1.5
fcc Fe ₃ O ₄ superparticles	442	8.3	None	None

Table S3. The leached Fe and Co contents in the electrolyte after cycling.

Calculation of the packing fraction of carbon-coated AB₁₃-type CoFe₂O₄-Fe₃O₄ binary superparticles

1. Determination of the carbon shell thickness in fcc superparticles of 17.0 nm Fe_3O_4

NCs:

According to SAXS, the lattice constant (*a*) of *fcc* superparticles of 17.0 nm Fe₃O₄ NCs is calculated to be $a = \frac{2\pi\sqrt{h^2+k^2+l^2}}{q} = 24.6$ nm, were *h*, *k*, and *l* are Miller's indices and *q* is the scattering vector.

The volume of a unit cell, *Volume*(unit cell), is calculated as below:

 $Volume_{(unit cell)} = a^3 = (24.6 \text{ nm})^3 = 14887 \text{ nm}^3.$

Since the theoretical packing fraction of *fcc* superparticles is 74%, the carbon shell thickness (*L1*) surrounding individual Fe₃O₄ NCs is calculated to be 0.2 nm by the equation $\frac{Volume (NC + \text{carbon shell})}{Volume (unit cell)} = \frac{4\pi}{3} \times \frac{4(8.5+L1)^3}{14887} = 74\%.$

2. Determination of the carbon shell thickness in fcc superparticles of 8.0 nm CoFe_2O_4 NCs:

According to SAXS, the lattice constant (*a*) of *fcc* superparticles of 8.0 nm CoFe₂O₄ NCs is calculated to be $a = \frac{2\pi\sqrt{h^2+k^2+l^2}}{a} = 11.9$ nm.

The volume of a unit cell, *Volume*(unit cell), is calculated as below:

 $Volume_{(unit cell)} = a^3 = (11.9 \text{ nm})^3 = 1685 \text{ nm}^3.$

Similar to fcc Fe₃O₄ superparticles, the carbon shell thickness L2 is calculated to be 0.2

nm by the equation $\frac{Volume (NCs + carbon shell)}{Volume (unit cell)} = \frac{4\pi}{3} \times \frac{4(4.0+L2)^3}{1685} = 74\%$

3. Calculation of the packing fraction of carbon-coated AB₁₃ superparticles:

According to SAXS, the lattice constant (*a*) of AB₁₃-type CoFe₂O₄-Fe₃O₄ binary superparticles is calculated to be $a = \frac{2\pi\sqrt{h^2+k^2+l^2}}{q} = 42.9$ nm.

The volume of a unit cell, *Volume*_(unit cell), is calculated as below:

$$Volume_{(unit cell)} = a^3 = (42.9 \text{ nm})^3 = 78954 \text{ nm}^3.$$

Assuming that the carbon shells surrounding 17.0 nm Fe_3O_4 NCs and 8.0 nm $CoFe_2O_4$ NCs in binary superparticles are the same as L1 and L2 in thickness, the packing fraction of carbon-coated AB₁₃ superparticles can be calculated as below:

packing fraction = $\frac{Volume (NCs + carbon shell)}{Volume (unit cell)} = \frac{4\pi}{3} \times \frac{8(8.5+LI)^3 + 104(4.0+L2)^3}{78954} = 69\%.$