Supporting information for

Electrogenerated chemiluminescence with peroxydisulfate as a coreactant using boron doped diamond electrodes

Andrea Fiorani,[‡] Irkham,[‡] Giovanni Valenti,[†] Francesco Paolucci,^{†#} Yasuaki Einaga^{*‡§}

^{*}Department of Chemistry, Keio University, 3–14–1 Hiyoshi, Yokohama 223–8522, Japan
^{*}Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
[§]JST-ACCEL, 3 – 14– 1 Hiyoshi, Yokohama 223 – 8522, Japan
[#] ICMATE-CNR Bologna Associate Unit, University of Bologna, Bologna, Italy

Table of Contents

1.	Characterization of boron-doped diamond (BDD) electrodes:	
	Raman spectroscopy, and scanning electron microscopy (SEM).	S-1
2.	ECL at GC for higher concentration of $\text{Ru}(\text{bpy})_3^{2+}$ and $\text{S}_2\text{O}_8^{2-}$.	S-2
3.	ECL stability at BDD.	S-2
4.	ECL spectra.	S-3
5.	Peroxydisulfate calibration curve.	S-3
6.	pH effect on ECL emission and current.	S-4
7.	References.	S-4

1. Characterization of boron-doped diamond (BDD) electrodes: Raman spectroscopy, and scanning electron microscopy (SEM).

Figure S1. Raman spectra and SEM micrograph of BDD electrode.

The BDD electrode used throughout the ECL experiments is 1% B/C. The high boron-doped diamond exhibits a phonon line (Fano resonance) as a shoulder peak around 1300 cm⁻¹. Non-diamond carbon results in a broad peak at 1600-1700 cm⁻¹.^{1,2} The SEM image of the BDD shows the (111) facet as predominant, with crystals from 3 to 5 μ m. The B concentration is $\approx 2 \times 10^{21}$ /cm³, therefore BDD shows metallic conductivity.¹

A detailed electrochemical characterization of BDD electrode, the same as used in this work, can be found in Ref. 3 and 4.

2. ECL at GC for higher concentration of $Ru(bpy)_3^{2+}$ and $S_2O_8^{2-}$.

Figure S2. CV (black) and ECL (red) of GC for 50 μ M Ru(bpy)₃²⁺ and 500 μ M S₂O₈²⁻ in 200 mM PB. Scan rate 100 mV/s and pH 6.8.

3. ECL stability at BDD.

Figure S3. ECL (black) and CV (red) at BDD for 10 μ M Ru(bpy)₃²⁺ and 100 μ M S₂O₈²⁻ in 200 mM PB. Scan rate 100 mV/s and pH 6.8.

4. ECL spectra.

Figure S4. Comparison of ECL spectra at selected potentials from Figure 3. Full line: -1.6 V. Dotted line: -1.7 V.

5. Peroxydisulfate calibration curve.

Figure S5. Linear regression for peroxydisulfate calibration from 1 to 100 μ M (background subtracted). Limit of Detection (S/N=3) = 0.5 μ M, Limit of Quantification (S/N=10) = 1 μ M.

6. pH effect on ECL emission and current.

Figure S6. ECL by cyclic voltammetry for $10 \ \mu M \ \text{Ru(bpy)}_3^{2+}$ and $1 \ \text{mM S}_2 \text{O}_8^{2-}$ in 200 mM PB, for pH 9 to 4. Scan rate 100 mV/s.

Figure S7. Cyclic voltammetry for 10 μ M Ru(bpy)₃²⁺ and 100 μ M S₂O₈²⁻ in 200 mM PB, for pH 9 to 2. Scan rate 100 mV/s.

7. References.

- Macpherson, J. V. A practical guide to using boron doped diamond in electrochemical research. *Phys. Chem. Chem. Phys.* 2015, *17*, 2935-2949.
- (2) Cobb, S. J.; Ayres, Z. J.; Macpherson, J. V. Boron Doped Diamond: A Designer Electrode Material for the Twenty-First Century. Annu. Rev. Anal. Chem. 2018, 11, 463-484.

- (3) Kasahara, S.; Natsui, K.; Watanabe, T.; Yokota, Y.; Kim, Y.; Iizuka, S.; Tateyama, Y.; Einaga, Y. Surface
 Hydrogenation of Boron-Doped Diamond Electrodes by Cathodic Reduction. *Anal. Chem.* 2017, *89*, 11341-11347.
- (4) Xu, J.; Natsui, K.; Naoi, S.; Nakata, K.; Einaga, Y. Effect of doping level on the electrochemical reduction of CO₂ on boron-doped diamond electrodes. *Diam. Relat. Mater.* 2018, *86*, 167-172.