SUPPORTING INFORMATION

Synthesis, Racemic X-Ray Crystallographic, and Permeability Studies of Bioactive Orbitides from *Jatropha* Species

Suelem D. Ramalho,^{†#} Conan K. Wang,^{‡,#} Gordon J. King,[‡] Karl A. Byriel,[‡] Yen-Hua Huang,[‡] Vanderlan S. Bolzani,[†] and David J. Craik^{‡,*}

[†] Institute of Chemistry, São Paulo State University-UNESP, Araraquara, São Paulo, 14800-060, Brazil
[‡]Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia

[#]These authors contributed equally.

*To whom correspondence should be addressed.

Tel: 61-7-3346-2019. Fax: 61-7-3346-2029. E-mail: d.craik@imb.uq.edu.au.

List of Tables/Figures

Table S1. Permeability data (Caco-2 and PAMPA) for synthetic peptides.

Figure S1. Characterization of ribifolin and synthetic analogues. ESI-MS spectra (positive mode) of a) ribifolin (1), b) D-ribifolin(2), c) [NMe-ILG]-ribifolin (3), d) [NMe-G]-ribifolin (4), e) [NMe-S]-ribifolin (5) and f) [NMe-SG]-ribifolin (6).

Figure S2. Characterization of pohlianin C and synthetic analogues. ESI-MS spectra (positive mode) of a) pohlianin C (7), b) D-pohlianin C (8), c) [NMe-FGGG]-pohlianin C (9), d) [NMe-IFG]-pohlianin C (10) and e) [NMe-FG]-pohlianin C (11).

Figure S3. Characterization of jatrophidin and synthetic analogue. ESI-MS spectra (positive mode) of a) jatrophidin (12) and b) D-jatrophidin (13).

Figure S4. Analytical reversed-phase HPLC chromatograms of the purified peptides a) ribifolin (1), b) pohlianin C (7) and c) jatrophidin (12). Gradient 10-90% B in A in 20 min (solvent A: 0.05% v/v TFA in H₂O; solvent B: 0.05% v/v TFA), flow rate 1 mL min⁻¹ and detection at $\lambda = 214$ nm.

Figure S5. ¹H NMR spectrum of ribifolin (1) (500 MHz in CD₃CN 20% at 298 K).

Figure S6. TOCSY fingerprint region of ribifolin (1) (500 MHz in CD₃CN 20% at 298 K).

Figure S7. ¹H NMR spectrum of pohlianin C (7) (500 MHz in CD₃CN 20% at 298 K).

Figure S8. TOCSY fingerprint region of pohlianin C (7) (500 MHz in CD₃CN 20% at 298 K).

Figure S9. ¹H NMR spectrum of jatrophidin (12) (500 MHz in CD₃CN 20% at 298 K).

Figure S10. TOCSY fingerprint region of jatrophidin (**12**) (500 MHz in CD₃CN 20% at 298 K).

Figure S11. H α chemical shifts derived using NMR are shown for a) ribifolin (1), b) pohlianin C (7) and c) jatrophidin (12) in acetonitrile/water mixtures (v/v).

Figure S12. H α chemical shifts derived using NMR in DMSO-*d*₆ are compared for the native and syntethic forms of a) ribifolin (1), b) pohlianin C (7), c) and d) jatrophidin (12).

Figure S13. ¹H NMR spectrum of D-ribifolin (**2**) (500 MHz in CD₃CN 20% at 298 K).

Figure S14. TOCSY fingerprint region of D-ribifolin (2) (500 MHz in CD₃CN 20% at 298 K).

Figure S15. ¹H NMR spectrum of D-pohlianin C (8) (500 MHz in CD₃CN 20% at 298 K).

Figure S16. TOCSY fingerprint region of D-pohlianin C (8) (500 MHz in CD₃CN 20% at 298 K).

Figure S17. ¹H NMR spectrum of D-jatrophidin (13) (500 MHz in CD₃CN 20% at 298 K).

Figure S18. TOCSY fingerprint region of D-jatrophidin (13) (500 MHz in CD₃CN 20% at 298 K).

Figure S19. *N*-methylated ribifolin analogues assigned by NMR temperature coefficient studies and racemic X-ray structure.

Figure S20. *N*-methylated pohlianin C analogues assigned by NMR temperature coefficient studies and racemic X-ray structure.

Figure S21. ¹H NMR spectrum of [NMe-ILG]-ribifolin (**3**) (500 MHz in CD₃CN 70% at 298 K).

Figure S22. TOCSY fingerprint region of [NMe-ILG]-ribifolin (**3**) (500 MHz in CD₃CN 70% at 298 K).

Figure S23. ¹H NMR spectrum of [NMe-G]-ribifolin (4) (500 MHz in CD₃CN 20% at 298 K).

Figure S24. TOCSY fingerprint region of [NMe-G]-ribifolin (4) (500 MHz in CD₃CN 20% at 298 K).

Figure S25. ¹H NMR spectrum of [NMe-S]-ribifolin (5) (500 MHz in CD₃CN 20% at 298 K).

Figure S26. TOCSY fingerprint region of [NMe-S]-ribifolin (**5**) (500 MHz in CD₃CN 20% at 298 K).

Figure S27. ¹H NMR spectrum of [NMe-SG]-ribifolin (6) (500 MHz in CD₃CN 20% at 298 K).

Figure S28. TOCSY fingerprint region of [NMe-SG]-ribifolin (6) (500 MHz in CD₃CN 20% at 298 K).

Figure S29. ¹H NMR spectrum of [NMe-FGGG]-pohlianin C (9) (500 MHz in CD₃CN 70% at 298 K).

Figure S30. TOCSY fingerprint region of [NMe-FGGG]-pohlianin C (9) (500 MHz in CD_3CN 70% at 298 K).

Figure S31. ¹H NMR spectrum of [NMe-IFG]-pohlianin C (10) (500 MHz in CD₃CN 70% at 298 K).

Figure S32. TOCSY fingerprint region of [NMe-IFG]-pohlianin C (10) (500 MHz in CD₃CN 70% at 298 K).

Figure S33. ¹H NMR spectrum of [NMe-FG]-pohlianin C (11) (500 MHz in CD₃CN 20% at 298 K).

Figure S34. TOCSY fingerprint region of [NMe-FG]-pohlianin C (11) (500 MHz in CD₃CN 20% at 298 K).

Figure S35. Cytotoxicity evaluation of ribifolin (1), pohlianin C (7) and jatrophidin (12) on Caco-2 cells.

Number	Peptide	P _{app-caco} (x 10 ⁻⁶ cm/s)	P _{app-pampa} (x 10 ⁻⁶ cm/s)
1	ribifolin	0.00	0.00
3	[NMe-ILG]-ribifolin	0.00	0.22
4	[NMe-G]-ribifolin	0.00	0.00
5	[NMe-S]-ribifolin	0.00	0.00
6	[NMe-SG]-ribifolin	0.00	0.00
7	pohlianin C	0.00	0.00
9	[NMe-FGGG]-pohlianin C	0.00	0.00
10	[NMe-IFG]-pohlianin C	0.00	0.00
11	[NMe-FG]-pohlianin C	0.00	0.00
12	jatrophidin	0.00	0.00
control	atenolol	0.00	0.03
control	quinidine	15.16	4.87

 Table S1. Permeability data (Caco-2 and PAMPA) for synthetic peptides.

Note: limit of detection constraints can also give rise to permeability values of 0.00.

d) [NMe-G]-ribifolin

e) [NMe-S]-ribifolin

Figure S1. Characterization of ribifolin and synthetic analogues. ESI-MS spectra (positive mode) of a) ribifolin (1), b) D-ribifolin (2), c) [NMe-ILG]-ribifolin (3), d) [NMe-G]-ribifolin (4), e) [NMe-S]-ribifolin (5) and f) [NMe-SG]-ribifolin (6).

a) pohlianin C

m/z

Figure S2. Characterization of pohlianin C and synthetic analogues. ESI-MS spectra (positive mode) of a) pohlianin C (7), b) D-pohlianin C (8), c) [NMe-FGGG]-pohlianin C (9), d) [NMe-IFG]-pohlianin C (10) and e) [NMe-FG]-pohlianin C (11).

Figure S3. Characterization of jatrophidin and synthetic analogue. ESI-MS spectra (positive mode) of a) jatrophidin (12) and b) D-jatrophidin (13).

Figure S4. Analytical reversed-phase HPLC chromatograms of the purified peptides a) ribifolin (1), b) pohlianin C (7) and c) jatrophidin (12). Gradient 10-90% B in A in 20 min (solvent A: 0.05% v/v TFA in H₂O; solvent B: 0.05% v/v TFA), flow rate 1 mL min⁻¹ and detection at $\lambda = 214$ nm.

Figure S5. ¹H NMR spectrum of ribifolin (1) (500 MHz in CD₃CN 20% at 298 K).

Figure S6. TOCSY fingerprint region of ribifolin (1) (500 MHz in CD₃CN 20% at 298 K).

Figure S7. ¹H NMR spectrum of pohlianin C (7) (500 MHz in CD₃CN 20% at 298 K).

Figure S8. TOCSY fingerprint region of pohlianin C (7) (500 MHz in CD₃CN 20% at 298 K).

Figure S9. ¹H NMR spectrum of jatrophidin (12) (500 MHz in CD₃CN 20% at 298 K).

Figure S10. TOCSY fingerprint region of jatrophidin (**12**) (500 MHz in CD₃CN 20% at 298 K).

Figure S11. H α chemical shifts derived using NMR are shown for a) ribifolin (1), b) pohlianin C (7) and c) jatrophidin (12) in acetonitrile/water mixtures (v/v).

Figure S12. H α chemical shifts derived using NMR in DMSO-*d*₆ are compared for the native and syntethic forms of a) ribifolin (1), b) pohlianin C (7), c) and d) jatrophidin (12).

Figure S13. ¹H NMR spectrum of D-ribifolin (2) (500 MHz in CD₃CN 20% at 298 K).

Figure S14. TOCSY fingerprint region of D-ribifolin (2) (500 MHz in CD₃CN 20% at 298 K).

Figure S15. ¹H NMR spectrum of D-pohlianin C (8) (500 MHz in CD₃CN 20% at 298 K).

Figure S16. TOCSY fingerprint region of D-pohlianin C (8) (500 MHz in CD₃CN 20% at 298 K).

Figure S17. ¹H NMR spectrum of D-jatrophidin (13) (500 MHz in CD₃CN 20% at 298 K).

Figure S18. TOCSY fingerprint region of D-jatrophidin (13) (500 MHz in CD₃CN 20% at 298 K).

Figure S19. *N*-methylated ribifolin analogues assigned by NMR temperature coefficient studies and racemic X-ray structure.

Figure S20. *N*-methylated pohlianin C analogues assigned by NMR temperature coefficient studies and racemic X-ray structure.

Figure S21. ¹H NMR spectrum of [NMe-ILG]-ribifolin (**3**) (500 MHz in CD₃CN 70% at 298 K).

Figure S22. TOCSY fingerprint region of [NMe-ILG]-ribifolin (**3**) (500 MHz in CD₃CN 70% at 298 K).

Figure S23. ¹H NMR spectrum of [NMe-G]-ribifolin (4) (500 MHz in CD₃CN 20% at 298 K).

Figure S24. TOCSY fingerprint region of [NMe-G]-ribifolin (4) (500 MHz in CD₃CN 20% at 298 K).

Figure S25. ¹H NMR spectrum of [NMe-S]-ribifolin (5) (500 MHz in CD₃CN 20% at 298 K).

Figure S26. TOCSY fingerprint region of [NMe-S]-ribifolin (**5**) (500 MHz in CD₃CN 20% at 298 K).

Figure S27. ¹H NMR spectrum of [NMe-SG]-ribifolin (6) (500 MHz in CD₃CN 20% at 298 K).

Figure S28. TOCSY fingerprint region of [NMe-SG]-ribifolin (6) (500 MHz in CD₃CN 20% at 298 K).

Figure S29. ¹H NMR spectrum of [NMe-FGGG]-pohlianin C (9) (500 MHz in CD₃CN 70% at 298 K).

CD₃CN 70% at 298 K).

Figure S31. ¹H NMR spectrum of [NMe-IFG]-pohlianin C (10) (500 MHz in CD₃CN 70% at 298 K).

Figure S32. TOCSY fingerprint region of [NMe-IFG]-pohlianin C (10) (500 MHz in CD₃CN 70% at 298 K).

Figure S33. ¹H NMR spectrum of [NMe-FG]-pohlianin C (11) (500 MHz in CD₃CN 20% at 298 K).

Figure S34. TOCSY fingerprint region of [NMe-FG]-pohlianin C (11) (500 MHz in CD₃CN 20% at 298 K).

Figure S35. Cytotoxicity evaluation of ribifolin (1) (red), pohlianin C (7) (blue) and jatrophidin (12) (green) on Caco-2 cells. Cytotoxicity is relative to the positive control (0.1% Triton-X). The blank is the negative control and is made of 1% DMSO.