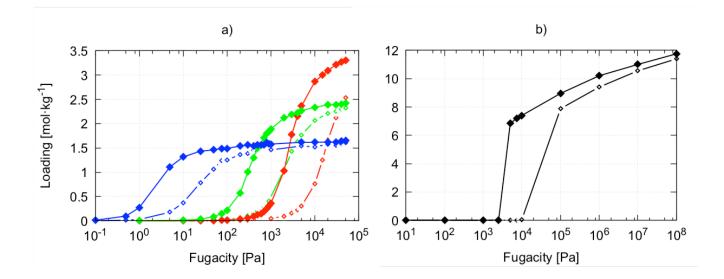
Electronic Supporting Information

Study of Short-Chain Alcohol and Alcohol-Water Adsorption in MEL and MFI Zeolites

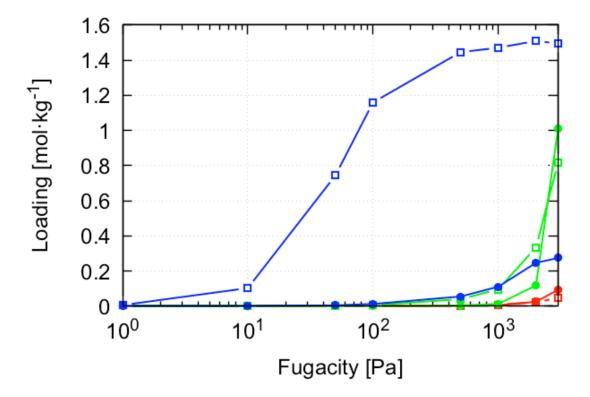
Paula Gómez- Álvarez, Eva G. Noya, Enrique Lomba, Susana Valencia, and João Pires

Number of pages: 5

Number of Figures: 2


Number of Tables: 1

	Atom/Site	<i>ɛ</i> /k _B [K]	σ [Å]	<i>q</i> [e]
	0	93.2	3.1589	-
Water ^[1]	Н	-	-	0.5564
	М	-	-	-1.1128
	[CH ₃]-OH	98.0	3.750	0.265
Alcohols ^[2]	[CH ₃]-CH ₂	98.0	3.750	-
	[CH ₂]-OH	46.0	3.950	0.265
	[CH ₂]-CH ₂	46.0	3.950	-
	0	93.0	3.020	-0.700
	Н	-	-	0.435
Zeolite ^[3]	0	53	3.3	-0.75
	Si	22	2.3	1.5


 Table S1 Non-bonded force field parameters used in the molecular simulations.

Lorentz-Berthelot mixing rules^[4] were used to account for the LJ parameters of the crossed interactions.

Figure S1. Simulated single-component adsorption isotherms in pure silica MEL zeolite at 298 K (closed symbols) and 323 K (open symbols) for **a**) alcohols (methanol in red, ethanol in green, 1-butanol in blue) and **b**) water.

Figure S2. Simulated vapor adsorption isotherms at 298 K of 5/95 methanol/water (red), ethanol/water (green) and 1-butanol/water (blue) binary mixtures in pure silica MEL zeolite. Open square and closed circle symbols correspond to alcohol and water adsorption, respectively.

References

[1] Abascal, J. L. F.; Vega, C. A General Purpose Model for the Condensed Phases of Water: TIP4P/2005. *J. Chem. Phys.* **2005**, *123*, 1-12.

[2] Chen, B.; Potoff, J. J.; Siepmann, J. I. Monte Carlo Calculations for Alcohols and their Mixtures with

Alkanes. Transferable Potentials for Phase Equilibria. 5. United-Atom Description of Primary, Secondary, and Tertiary Alcohols. J. Phys. Chem. B 2001, 105, 3093-3104.

[3] Bai, P.; Tsapatsis, M.; Siepmann, J. I. TraPPE-zeo: Transferable Potentials for Phase Equilibria Force Field for All-Silica Zeolites. *J. Phys. Chem. C* **2013**, *117*, 24375-24387.

[4] Frenkel D.; Smit, B. Understanding Molecular Simulation, Academic Press, San Diego, 1996.