Supporting Information for Nonlinear Viscoelasticity of Highly Ordered, Two-Dimensional Assemblies of Metal Nanoparticles Confined at the Air/Water Interface Shihomi Masuda^{1,2,#}, Salomé Mielke^{1,#}, Federico Amadei¹, Akihisa Yamamoto³, Pangpang Wang², Takashi Taniguchi⁴, Kenichi Yoshikawa^{3,5}, Kaoru Tamada^{2,*}, and Motomu Tanaka^{1,3,*} ¹Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, D69120 Heidelberg, Germany ²Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, 819-0395 Fukuoka, Japan ³Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606-8501 Kyoto, Japan ⁴Department of Chemical Engineering, Graduate School of Engineering, Kyoto University, 615-8510 Kyoto, Japan ⁵Faculty of Life and Medical Sciences, Doshisha University, 610-0321 Kyotanabe, Japan Figure S1: Pressure area isotherms of nanoparticle monolayers. **Figure S1.** Pressure-area isotherms of AuOA, AuF6, AgMy monolayers.