Supporting Information For

Bran-new four-molecule and five-molecule cascade reactions for one-pot synthesis of pyrano[3,2-c]chromen-5-ones and
 spiro[benzo[b]-[1,4]diazepine-2,2'-pyrano[3,2-c]chromen]-5'-ones under catalyst- and solvent-free conditions

Guoxun Zhu, Zhou Yi, Jie Zhou, Zhiyong Chen, Pengran Guo, Yanying Huang,
Huacan Song* and Wei Yi*

Table of Contents

1. Mechanism speculation of the reaction S2
For the first kind of reaction, four-molecule reaction S2
For the second kind of reaction, five-molecule reaction- S2
Substrate scope of ketone compounds. S4
2. General experimental section S5
3. Experimental procedure for multicomponent reaction S6
General procedure for the synthesis of $\mathbf{4 a}$ and its analogs (Four-molecule) - S6
General procedure for the synthesis of $\mathbf{4 a}$ on ten-gram scale- S6
General procedure for the synthesis of 5a and its analogs (Five-molecule) S6
4. Single crystal data S6
Single crystal preparation S6
Relevant information S7-8
5. Characterization data for the products S9-16
6. NMR $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ spectra of the products S17-38
7. HRMS spectra used for the speculation of mechanism S39-44

1. Mechanism speculation of the reaction

For the first kind of reaction, four-molecule reaction (Scheme S1)

A mixture of acetone, aniline and 4-hydroxychromen-2-one was refluxed for 6 h , then HRMS (high resolution mass spectrometer) was run for the reaction mixture. Five peaks were found from positive ion HRMS: $134.0964\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}^{+}\right.$, cald. 134.0964$)[\mathrm{M}+\mathrm{H}]^{+}$, matched with iso-propylidenephenylamine (I), the condensed product of acetone and aniline; $203.0703\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{3}{ }^{+}\right.$, cald. 203.0703) $[\mathrm{M}+\mathrm{H}]^{+}$and $225.0524\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{NaO}_{3}{ }^{+}\right.$, cald. 225.0522) $[\mathrm{M}+\mathrm{Na}]^{+}$, matched with 3-iso-propylidenechroman- 2,4-dione (II), the condensed product of acetone and 4-hydroxychromen-2-one; $336.1600\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+}\right.$, cald. 336.1594$)[\mathrm{M}+\mathrm{H}]^{+}$and $358.1419\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NNaO}_{3}{ }^{+}\right.$, cald. 358.1414$)[\mathrm{M}+\mathrm{Na}]^{+}$, matched with target compound, 2,4,4-trimethyl-2-phenylamino-3,4-dihydro-2H-pyrano-[3,2-c]chromen-5-one (III).

Two peaks were found from negative ion HRMS: $201.0550\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{O}_{3}{ }^{-}\right.$, cald. 201.0557) [M-H]', matched with 3-iso-propylidenechroman-2,4-dione (II); 334.1448 $\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{-}\right.$, cald. 334.1449)[M-H] , matched with target compound 2,4,4-trimethyl-2-phenylamino-3,4-dihydro-2H-pyrano[3,2-c]chromen-5-one (III).

Scheme S1 Mechanism of the four-molecule cascading reaction of 4-hydroxychromen-2-one, aniline and acetone

For the second kind of reaction, five-molecule reaction (Scheme S2)

In order to verify this proposed five-molecule reaction mechanism, the key intermediate IV was prepared based on the reported method, then IV and 4-hydroxychromen-2-one in acetone were mixed and refluxed for 8 h , HRMS was run for the reaction mixture. Three positive ion peaks were found: $189.1379\left(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2}{ }^{+}\right.$, cald. 189.1386) $[\mathrm{M}+\mathrm{H}]^{+}$,
matched with IV; $203.0691\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{3}{ }^{+}\right.$, cald. 203.0703) $[\mathrm{M}+\mathrm{H}]^{+}$, matched with II; $391.2001\left(\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}\right.$, cald. 391.2016) $[\mathrm{M}+\mathrm{H}]^{+}$, matched with \mathbf{V}. Three negative ion peaks were found: $161.0253\left(\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{O}_{3}{ }^{-}\right.$, cald. 161.0244) $[\mathrm{M}-\mathrm{H}]^{-}$, matched with 4-hydroxychromen-2-one; $201.0552\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{O}_{3}{ }^{-}\right.$, cald. 201.0557) [M-H] ${ }^{-}$, matched with II; $389.1863\left(\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{-}\right.$, cald. 389.1871)[M-H] ${ }^{-}$, matched with \mathbf{V}.

Scheme S2 Mechanism of the five-molecule cascading reaction of 4-hydroxychromen-2-one, benzene-1,2-diamine and acetone

For 2,2,4',4'-tetramethyl-2,3,3',4'-tetrahydro-5H,5'H-spiro[benzo[b][1,4]-oxazepine-4,2'-pyrano[3,2-c]chromen]-5'-one (VII), the mechanism of its formation was presumed to be similar to that of the formation of \mathbf{V}, that is, the reaction went through forming II and 6,6,8-trimethyl-6,7-dihydro-5-oxa-9-azabenzocycloheptene (or 6,6-dimethyl-8-methylene-6,7,8,9-tetrahydro-5-oxa-9-azabenzocycloheptene (VI) steps (Scheme S3, above).

Scheme S3 Mechanism of the five-molecule cascading reaction of 4-hydroxychromen-2-one,
2-aminophenol and acetone

In order to confirm this reaction mechanism, 2-((2-hydroxyphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one (VIII), as an intermediate, was synthesized, firstly, by protecting hydroxyl group, then this intermediate (VIII) mixed with acetone, and the mixture was refluxed for 8 h . But compound $\mathbf{6 a}$ was not obtained, which demonstrated that this reaction went through the forming VI, instead of VIII (Scheme S3, below).

Substrate scope of ketone compounds

The reaction mixture of benzaldehyde, aniline and 4-hydroxychromen-2-one was refluxed for 8 h , HRMS was run for the mixture. The result was that benzaldehyde reacted with 2-flod of 4-hydroxychromen-2-one to form 3,3'-(phenylmethylene)bis(4-hydroxy-2H-chromen-2-one) (eqn (S1)), which was confirmed by ion peaks of 411.0874 $\left(\mathrm{C}_{25} \mathrm{H}_{15} \mathrm{O}_{6}{ }^{-}\right.$, cald. $411.0874[\mathrm{M}-\mathrm{H}]^{-}$in the HRMS of the reacting mixture.

For alphatic aldehyde compounds, such as propionaldehyde, the desired target compound 4 -ethyl-3-methyl-2-(phenylamino)-3,4-dihydro-2H,5H-pyrano[3,2-c]-chromen-5-one was obtained (eqn (S2)), confirmed by finding ion peak in HRMS
[334.1449 $\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{3}^{-}\right.$, cald. 334.1421$)[\mathrm{M}-\mathrm{H}]$]], but the yield was very low, due to the formation of by-products. The main by-product could be 2,4-diethyl-4H,5H[1,3]dioxino[5,4-c]- chromen-5-one, as ion peak, 259.0980 $\left(\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{4}{ }^{-}\right.$, cald. 259.0976)[M-H] ${ }^{-}$, was found.

As butanone is structurally very similar to acetone, it was scanned for this reaction, too. The corresponding ion peak of target compound, 2,4-diethyl-4-methyl-2-phenylamino-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one [364.1907 $\left(\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{3}{ }^{+}\right.$, cald. 364.1907) $\left.[\mathrm{M}+\mathrm{H}]^{+}\right]$, was found (eqn (S3)), but the abundance of the peak was very low, indicating that the yield was very low. Meantime, ion peaks of 3-(butan-2-ylidene)chromane-2,4-dione [215.0690 ($\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{O}_{3}{ }^{-}$, cald. 215.0714)[M-H] ${ }^{-}$] and its additive product with aniline, 4-hydroxy-3-(1-methyl-1-phenylamino-propyl)chromen-2-one, $\left[310.1442\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{+}\right.\right.$, cald. 310.1438$\left.)[\mathrm{M}+\mathrm{H}]^{+}\right]$, were found, which demonstrated that butanone could react to form the designed compound as the acetone, but the yield for this reaction was lower, because the by-product was formed. The main by-product could be 2,4-diethyl-4H,5H-[1,3]-dioxino[5,4-c]chromen-5-one, because the ion peak, $310.1442\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{-}\right.$, cald. 310.1438$)[\mathrm{M}-\mathrm{H}]^{-}$, was found.

2. General experimental section

The starting materials were commercially available and were used without further purification. The products were isolated by column chromatography on silica gel. Melting points were determined by WRS-1B (Shanghai Precise Science Instrument Co. Ltd). NMR spectra were determined on Bruker 400 in CDCl_{3}. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on 400 MHz spectrometers using CDCl_{3} as solvent. Element Analysis was performed on elemental analyzer (Germany Elementar Co. Ltd). HRMS
spectra were performed on Agilent QTOF-MS 6540. Single crystals were prepared in dichloromethane at room temperature by solvent evaporation method and their structure data were collected on a Smart 1000 CCD single crystal diffractometer.

3. Experimental procedure for multicomponent reaction

General procedure for the synthesis of 4a-q

A mixture of $1.62 \mathrm{~g}(10 \mathrm{mmol})$ of 4-hydroxychromen-2-one, 10.5 mmol of the corresponding anilines, $5.80 \mathrm{~g}(100 \mathrm{mmol}) 7.4 \mathrm{~mL}$ of acetone was stirred for 24 h under refluxing, then was concentrated in vacuum to obtain a residue which was separated by column chromatography with ethyl acetate and petroleum ether as the eluents to afford the corresponding products. All other compounds are synthesized in a similar manner, with the yields listed in the main text calculated from the isolated, pure products.

General procedure for the synthesis of 4a on 10-gram scale

A mixture of $16.2 \mathrm{~g}(100 \mathrm{mmol})$ of 4-hydroxychromen-2-one, $9.77 \mathrm{~g}(105 \mathrm{mmol})$ of aniline, $58.0 \mathrm{~g}(1000 \mathrm{mmol}) 74 \mathrm{~mL}$ of acetone was stirred for 24 h under refluxing. The reaction mixture was cooled to room temperature, the product precipitated. The precipitated product was filtered and washed with petroleum ether to get pure product 18.0 g (yield: 54\%).

General procedure for the synthesis of 5a-d and 6a-c

A mixture of $1.62 \mathrm{~g}(10.0 \mathrm{mmol})$ of 4-hydroxychromen-2-one, 10.5 mmol of the corresponding o-phenylenediamines or o-aminophenols, $5.80 \mathrm{~g}(100 \mathrm{mmol}) 7.4 \mathrm{~mL}$ of acetone was stirred for 24 h under refluxing, then was concentrated in vacuum to obtain a residue which was separated by column chromatography with ethyl acetate and petroleum ether as the eluents to give the corresponding products. All other compounds are
synthesized in a similar manner, with the yields listed in the main text calculated from the isolated, pure products.

4. Single crystal data

Single crystal preparation

100 mg (0.3 mmol) of compound $\mathbf{4 a}$ was dissolved in 2 mL dichloromethane in a 5 mL plastic centrifuge tube and the mixture was left standing for more than 48 h . The obtained crystal was collected and analyzed. Single crystals of 5a and 6a were obtained as the same method.

Relevant information

The single crystal structures were analyzed and the obtained data were deposited in Cambridge Crystallographic Data Centre (CCDC). The information about these crystals was listed in Table S1-2.

Table S1 Information of single crystals in this work

Entry	1
Molecular structure	
Crystal structure	

Table 2 Details of single crystals in this work

Name	MCR-H	MCR-2NH2	MCR-2OH
Empirical formula	C16 H10 N2 O2	C24 H26 N2 O3	C24 H25 N O4
Formula weight	262.26	390.47	391.45
Temperature	$293(2) \mathrm{K}$	$293(2) \mathrm{K}$	$293(2) \mathrm{K}$

Wavelength	1.54178 A	1.54178 A	1.54178 A
Crystal system, space group	Triclinic, P-1	Monoclinic, P2(1)/n	Monoclinic, C2/c
Unit cell dimensions	$\begin{gathered} \mathrm{a}=7.7916(3) \mathrm{A} \\ \text { alpha }=68.596(4) \mathrm{deg} . \\ \mathrm{b}=8.7127(4) \mathrm{A} \\ \text { beta }=77.302(4) \mathrm{deg} . \\ \mathrm{c}=10.0548(4) \mathrm{A} \\ \text { gamma }=69.280(4) \mathrm{deg} . \end{gathered}$	$\begin{gathered} \mathrm{a}=10.63300(10) \mathrm{A} \\ \text { alpha }=90 \text { deg. } \\ \mathrm{b}=11.8182(2) \mathrm{A} \\ \text { beta }=95.6420(10) \mathrm{deg} . \\ \mathrm{c}=16.2353(2) \mathrm{A} \\ \text { gamma }=90 \text { deg. } \end{gathered}$	$\begin{gathered} \mathrm{a}=18.1869(5) \mathrm{A} \\ \text { alpha }=90 \text { deg. } \\ \mathrm{b}=11.8032(3) \mathrm{A} \quad \text { beta } \\ =103.632(3) \mathrm{deg} . \\ \mathrm{c}=19.0131(5) \mathrm{A} \\ \text { gamma }=90 \mathrm{deg} . \end{gathered}$
Volume	591.17(5) A^3	2030.29(5) A^3	3966.44(19) A^3
Z, Calculated density	$2,1.473 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$	$4,1.277 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$	8, $1.311 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.812 \mathrm{~mm}^{\wedge}-1$	$0.676 \mathrm{~mm}^{\wedge}-1$	$0.719 \mathrm{~mm}^{\wedge}-1$
$\mathrm{F}(000)$	272	832	1664
Crystal size	$0.340 \times 0.260 \times 0.210 \mathrm{~mm}$	$\begin{gathered} 0.500 \times 0.320 \times 0.250 \\ \mathrm{~mm} \end{gathered}$	$0.6 \times 0.4 \times 0.18 \mathrm{~mm}$
Theta range for data collection	4.749 to 73.983 deg.	4.636 to 73.733 deg.	4.504 to 74.111 deg.
Limiting indices	$\begin{gathered} -9<=\mathrm{h}<=6,-10<=\mathrm{k}<=10, \\ -12<=1<=12 \end{gathered}$	$\begin{aligned} & -12<=\mathrm{h}<=13, \\ & -14<=\mathrm{k}<=13, \\ & -19<=1<=20 \end{aligned}$	$\begin{gathered} -22<=\mathrm{h}<=22, \\ -11<=\mathrm{k}<=14,-16<=1<=23 \end{gathered}$
Reflections collected / unique	$\begin{gathered} 3791 / 2310[\mathrm{R}(\text { int })= \\ 0.0142] \end{gathered}$	$\begin{gathered} 20882 / 4072[\mathrm{R}(\mathrm{int})= \\ 0.0278] \end{gathered}$	$\begin{gathered} 7262 / 3890[\mathrm{R}(\mathrm{int})= \\ 0.0236] \end{gathered}$
Completeness to theta $=67.679$	99.6 \%	100.0 \%	99.8 \%
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents
Max. and min. transmission	1 and 0.85712	1 and 0.22983	1 and 0.74611
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	2310 / 0 / 181	4072 / 0 / 275	3890 / 0 / 270
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.038	1.035	1.050
Final R indices [I>2sigma(I)]	$\begin{gathered} \mathrm{R} 1=0.0424, \\ \mathrm{wR} 2=0.1252 \end{gathered}$	$\begin{gathered} \hline \mathrm{R} 1=0.0372, \\ \mathrm{wR} 2=0.0992 \end{gathered}$	$\begin{gathered} \hline \mathrm{R} 1=0.0397, \\ \mathrm{wR} 2=0.1077 \end{gathered}$
R indices (all data)	$\begin{gathered} \hline \mathrm{R} 1=0.0460, \\ \mathrm{wR} 2=0.1299 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.0392, \\ \mathrm{wR} 2=0.1014 \end{gathered}$	$\begin{aligned} & \mathrm{R} 1=0.0432, \\ & \mathrm{wR} 2=0.1111 \end{aligned}$
Extinction coefficient	n/a	0.00083(18)	n/a
Largest diff. peak and hole	$\begin{gathered} 0.310 \text { and } \\ -0.272 \text { e. } \mathrm{A}^{\wedge}-3 \end{gathered}$	$\begin{gathered} 0.314 \text { and } \\ -0.193 \text { e. A^-3 } \end{gathered}$	$\begin{gathered} 0.244 \text { and } \\ -0.202 \text { e. } \mathrm{A}^{\wedge}-3 \end{gathered}$

5. Characterization data for the products

1. 2,4,4-Trimethyl-2-(phenylamino)-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one (4a)

Yield 58%. m.p., $168.4-168.8^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50(\mathrm{ddd}, J=8.6,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.44(\mathrm{br}, 1 \mathrm{H}), 2.33-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 161.2,157.1,152.6,142.8,131.4,129.1,123.7,123.2,121.1,119.4,116.3,116.2,108.5$, 89.2, 49.6, 30.8, 28.8, 28.6, 25.4. HRMS-ESI, m/z: $336.1637[\mathrm{M}+\mathrm{H}]^{+}$(Calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+}$, 336.1594). Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3}$: C, $75.20 ; \mathrm{H}, 6.31 ; \mathrm{N}, 4.18$. Found: C, 75.07 ; H, 6.28; N, 3.82 .
2. 2-((4-Fluorophenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one (4b)

Yield 23%. m.p. $108.4-109.2{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52(\mathrm{ddd}, J=8.6,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{br}, 1 \mathrm{H}), 2.30-$ $2.10(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}){ }^{13}{ }^{13} \mathrm{C}$ NR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.2,157.2$, $157.0,152.6,138.5,131.4,123.7,123.0,122.9,122.7,116.3,116.1,115.7,115.4,108.5,89.7,49.5$, 30.8, 28.7, 28.6, 25.3. HRMS-ESI, m/z: $354.1501[\mathrm{M}+\mathrm{H}]+$ (Calcd. for $\left.\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{FNO}_{3}{ }^{+}, 354.1500\right)$. Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4}:$ C, $71.37 ;$ H, $5.70 ;$ N, 3.96. Found: C, $71.08 ; \mathrm{H}, 5.69 ; \mathrm{N}, 3.68$.
3. 2-((2-Chlorophenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one (4c)

Yield 43%. m.p. $142.2-142.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.53-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{ddd}, J=8.4,7.5,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.78(\mathrm{td}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{br}, 1 \mathrm{H}), 2.37-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.1,156.7,152.6,139.7,131.4,129.4,127.4,123.7,122.9,121.7$, 120.2, 117.4, 116.3, 116.0, 109.0, 88.1, 50.1, 30.4, 29.1, 28.2, 25.4. HRMS-ESI, m/z: 370.1234 $[\mathrm{M}+\mathrm{H}]+\left(\mathrm{Calcd}\right.$. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClNO}_{3}{ }^{+}$, 370.1204). Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClNO}_{3}: \mathrm{C}, 68.20 ; \mathrm{H}, 5.45 ; \mathrm{N}$, 3.79. Found: C, $68.44 ;$ H, $4.95 ;$ N, 2.99.
4. 2-((3-chlorophenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one (4d)

Yield 43%. m.p. $156.1-156.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.51(\mathrm{td}, J=7.7,7.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84(\mathrm{td}, \mathrm{J}=8.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{br}, 1 \mathrm{H}), 2.30-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl3) $\delta 161.2,156.8,152.6,144.3,134.7,131.5,130.1,123.8,123.0,120.4$, $118.3,116.5,116.3,116.0,108.8,88.6,49.7,30.6,28.8,28.4,25.3$. HRMS-ESI, m/z: 370.1233 $[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$Calcd. for $\left.\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClNO}_{3}{ }^{+}, 370.1204\right)$. Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClNO}_{3}: \mathrm{C}, 68.20 ; \mathrm{H}, 5.45 ; \mathrm{N}$, 3.79. Found: C, $67.92 ;$ H, $5.32 ;$ N, 3.40 .
5. 2-((4-Chlorophenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one (4e)

Yield 49%. m.p. $135.4-135.5{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.52(\mathrm{ddd}, J=8.6,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.89(\mathrm{~m}, 2 \mathrm{H}), 4.38$ (br, 1H), $2.26(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.1,156.9,152.6,141.5,131.5,129.0,126.1,123.7,122.9,120.5,116.3,116.0,108.6,88.9,49.6$, 30.7, 28.7, 28.6, 25.3. HRMS-ESI, m/z: $370.1233[\mathrm{M}+\mathrm{H}]^{+}$(Calcd. for $\left.\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClNO}_{3}{ }^{+}, 370.1204\right)$. Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClNO}_{3}: \mathrm{C}, 68.20 ; \mathrm{H}, 5.45 ; \mathrm{N}, 3.79$. Found: C, $67.91 ; \mathrm{H}, 5.30 ; \mathrm{N}, 3.37$.
6. 2-((4-Bromophenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one (4f)

Yield 42%. m.p. $134.4-134.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ (ddd, $J=8.6,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{br}, 1 \mathrm{H}), 2.30-2.10$ $(\mathrm{m}, 2 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.3,161.2,156.9$, $152.6,142.0,131.9,131.5,123.8,123.0,120.6,116.3,116.0,113.2,108.6,88.8,49.6,30.7,28.8,28.4$, 25.3. HRMS-ESI, m/z: $414.0690[\mathrm{M}+\mathrm{H}]^{+}$(Calcd. for $\left.\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BrNO}_{3}{ }^{+}, 414.0699\right)$. Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrNO}_{3}: \mathrm{C}, 60.88 ; \mathrm{H}, 4.87 ; \mathrm{N}, 3.38$. Found: C, $60.80 ; \mathrm{H}, 4.90 ; \mathrm{N}, 3.11$.
7. 2-((4-Iodophenyl) amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one ($\mathbf{4 g}$)

Yield 40%. m.p. $130.3-130.7^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51(\mathrm{dq}, J=7.3,2.1,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{br}, 1 \mathrm{H})$, $2.31-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.1,156.9$, $152.6,142.7,137.8,131.5,123.8,122.9,120.8,116.3,115.9,108.7,88.7,82.8,49.6,31.6,30.7,28.8$, 28.5, 25.3, 22.7. HRMS-ESI, m/z: $462.0592[\mathrm{M}+\mathrm{H}]^{+}$(Calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{INO}_{3}{ }^{+}, 462.0561$). Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{INO}_{3}: \mathrm{C}, 54.68 ; \mathrm{H}, 4.37$; N, 3.04. Found: C, $54.41 ; \mathrm{H}, 4.57 ; \mathrm{N}, 2.71$.
8. 2, 4, 4-Trimethyl-2-(o-tolylamino)-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one (4h)

Yield 48%. m.p. $122.0-122.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.46(\mathrm{~m}$, $1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{dd}, J=13.4,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{br}, 1 \mathrm{H}), 2.40-2.15(\mathrm{~m}, 5 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.3,157.2,152.6,141.1,131.3,130.6,126.6,126.1,123.7,123.2,120.5,118.2$, 116.3, 108.5, 89.2, 50.1, 30.6, 28.9, 28.8, 25.3, 18.0. HRMS-ESI, m/z: $350.1786[\mathrm{M}+\mathrm{H}]^{+}$(Calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{3}{ }^{+}, 350.1751$). Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3}: \mathrm{C}, 75.62 ; \mathrm{H}, 6.63 ; \mathrm{N}, 4.01$. Found: C, 75.57; H, 6.57; N, 3.65.
9. 2,4,4-Trimethyl-2-(m-tolylamino)-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one (4i)

Yield 46%. m.p. $141.1-141.6^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{dd}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50(\mathrm{ddd}, J=8.6,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.78(\mathrm{~m}, 2 \mathrm{H})$, $6.74(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{br}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.28-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H})$, $1.56(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 161.3,157.1,152.7,142.7,138.9,131.4,128.9,123.6$, $123.1,121.9,120.2,116.4,116.3,116.2,108.6,89.2,49.7,30.7,28.8,28.5,25.4,21.5$. HRMS-ESI, $\mathrm{m} / \mathrm{z}: 350.1788[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$Calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{3}{ }^{+}, 350.1751$). Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3}: \mathrm{C}, 75.62 ; \mathrm{H}$, 6.63; N, 4.01. Found: C, 75.69; H, 6.59; N, 3.65.
10. 2, 4, 4-Trimethyl-2-(p-tolylamino)-3,4-
dihydro-2H,5H-pyrano[3,2-c]chromen-5-one (4j)

Yield 52%. m.p. $122.5-123.1^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.50(\mathrm{ddd}, J=8.6,7.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.49(\mathrm{br}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.3,157.3,152.6,140.1,131.3,131.0,130.5,129.6,128.4,123.6,123.2,120.6$, 116.2, 108.4, 89.7, 49.6, 30.8, 28.7, 26.9, 26.5, 25.3, 20.6. HRMS-ESI, m/z: $350.1790[\mathrm{M}+\mathrm{H}]^{+}$(Calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{3}{ }^{+}, 350.1751$). Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3}: \mathrm{C}, 75.62 ; \mathrm{H}, 6.63 ; \mathrm{N}, 4.01$. Found: C, 74.94; H, 6.67; N, 3.61.
11. 2-((2-Methoxyphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one (4k)

Yield 52%. m.p. $183.1-183.6^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.48$ (ddd, J $=8.6,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{ddd}, J=7.8,6.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.77(\mathrm{~m}, 2 \mathrm{H})$, $5.12(\mathrm{br}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.38-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.3,157.1,152.6,148.2,132.8,131.2,123.6,123.1,120.8,119.5,116.7,116.2$, $109.9,108.8,88.6,55.5,49.9,30.5,29.1,28.1,25.4$. HRMS-ESI, m/z: $366.1740[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{Calcd}$. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+}, 366.1700$). Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4}$: C, $72.31 ; \mathrm{H}, 6.34 ; \mathrm{N}, 3.83$. Found: C, 72.33; H, 6.31; N, 3.47.
12. 2-((3-Methoxyphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one (41)
 Yield 52%. m.p 86.4-87.3 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ (ddd, $J=8.7,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.48(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{br}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H})$, 1.55(s, 3H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.2,160.4,157.0,152.6,144.3,131.4,129.8,123.6$, $123.1,116.3,116.1,111.5,108.6,106.1,104.9,88.9,55.2,49.8,30.7,28.8,28.5,25.4$. HRMS-ESI, $\mathrm{m} / \mathrm{z}: 366.1723[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$Calcd. for $\left.\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+}, 366.1700\right)$. Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4}: \mathrm{C}, 72.31 ; \mathrm{H}$, 6.34; N, 3.83. Found: C, 72.33; H, 6.31; N, 3.47.
13. 2-((4-Methoxyphenyl)amino)-2,4,4-trimethyl-3,4-dihydro- $2 H, 5 H$-pyrano[3,2-c]chromen-5-one (4m)

Yield 56%. m.p. $99.2-99.9^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J$
$=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{br}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 2.28-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $161.3,157.5,155.8,152.7,135.2,131.3,124.6 .123 .6,123.2,116.2,114.2,108.3,90.5,55.5,49.3$, 30.9, 28.9, 28.5, 25.3. HRMS-ESI, m/z: $366.1747[\mathrm{M}+\mathrm{H}]^{+}$(Calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+}, 366.1700$). Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4}$: C, $72.31 ; \mathrm{H}, 6.34 ; \mathrm{N}, 3.83$. Found: C, $72.31 ; \mathrm{H}, 6.35 ; \mathrm{N}, 3.48$.
14. Methyl 4-((2,4,4-trimethyl-5-oxo-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-2-yl)amino)benzoate (4n)

Yield 19%. m.p, $180.3-180.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51(\mathrm{dq}, J=7.3,2.1,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{br}, 1 \mathrm{H})$, $2.31-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9,161.1$, $156.6,152.6,147.5,131.5,131.2,123.8,122.9,121.1,116.3,116.0,115.8,108.8,88.1,51.7,49.6$, 30.6, 28.8, 28.3, 25.4. HRMS-ESI, m/z: $394.1652[\mathrm{M}+\mathrm{H}]^{+}$(Calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{5}{ }^{+}$, 394.1649). Anal. Calcd. For $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{5}$: C, 70.21; H, 5.89; N, 3.56. Found: C, 69.74; H, 5.89; N, 3.39.
15. 2-((2,4-Dimethylphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one (4o)

Yield 61%. m.p. $169.7-169.7^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{dd}, J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.53-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{br}, 1 \mathrm{H}), 2.22(\mathrm{~d}, J=29.4 \mathrm{~Hz}$, $8 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.4,157.4,152.7,138.3$, $131.3,130.5,127.3,127.0,123.7,123.2,119.7,116.3,108.4,89.8,50.0,30.8,28.8,25.2,20.5,18.1$. HRMS-ESI, m/z: $364.1960[\mathrm{M}+\mathrm{H}]^{+}$(Calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{3}{ }^{+}, 364.1907$). Anal. Calcd. For $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3}$: C, 76.01; H, 6.93; N, 3.85. Found: C, 76.01; H, 7.06; N, 3.32.
16. 2-((3,5-Dimethylphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one (4p)

Yield 59%. m.p. $176.3-176.6^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50(\mathrm{ddd}, J=8.6,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{~m}, J=29.9 \mathrm{~Hz}, 3 \mathrm{H}), 4.33(\mathrm{br}, 1 \mathrm{H})$, 2.29-2.12 (m, 8H), $1.82(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.3,157.1$, 152.7, 138.7, 131.3, 123.5, 123.1, 122.9, 117.3, 116.3, 116.2, 108.7, 89.2, 49.7, 30.7, 28.8, 28.5, 25.4,
21.4. HRMS-ESI, m/z: $364.1968[\mathrm{M}+\mathrm{H}]^{+}$(Calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{3}{ }^{+}, 364.1907$). Anal. Calcd. For $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3}$: C, 76.01; H, 6.93; N, 3.85. Found: C, 76.07; H, 6.93; N, 3.52.
17. 2,4,4-Trimethyl-2-(naphthalen-1-ylamino)-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one (4q)

Yield 38%. m.p. $159.7-161.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50(\mathrm{ddd}, J=8.6,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{~m}, J=29.9 \mathrm{~Hz}, 3 \mathrm{H}), 4.33(\mathrm{br}, 1 \mathrm{H})$, 2.29-2.12 (m, 8H), $1.82(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.3,157.1$, 152.7, 138.7, 131.3, 123.5, 123.1, 122.9, 117.3, 116.3, 116.2, 108.7, 89.2, 49.7, 30.7, 28.8, 28.5, 25.4, 21.4. HRMS-ESI, m/z: $386.1756[\mathrm{M}+\mathrm{H}]^{+}$(Calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NO}_{3}{ }^{+}, 386.1751$). Anal. Calcd. For $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3}: \mathrm{C}, 77.90 ; \mathrm{H}, 6.01 ; \mathrm{N}, 3.63$. Found: C, $77.44 ; \mathrm{H}, 6.13 ; \mathrm{N}, 3.50$.
18. $4,4,4^{\prime}, 4^{\prime}-$ Tetramethyl-1,3,3',4, $\mathbf{4}^{\prime}, 5$-hexahydro- $5^{\prime} H$-spiro[benzo-[b][1,4]diazepine-2,2'-pyrano[3,2-c]chromen]-5'-one (5a)

Yield 66%. m.p. $151.2-151.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.24(\mathrm{~m}$, $1 \mathrm{H}), 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{td}, J$ $=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 2 \mathrm{H}), 2.22(\mathrm{~d}, J=$ $29.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.14(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.4,157.4,152.5,138.9,134.0$, $131.4,123.7,123.6,123.3,122.5,122.1,121.4,116.1,115.9,108.2,90.6,52.1,51.2,50.9,30.9,30.5$, 29.3. HRMS-ESI, m/z: $391.2041[\mathrm{M}+\mathrm{H}]^{+}$(Calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}, 391.2016$). Anal. Calcd. For $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 73.82 ; \mathrm{H}, 6.71 ; \mathrm{N}, 7.17$. Found: C, $73.45 ; \mathrm{H}, 6.84 ; \mathrm{N}, 6.85$.
19. 4,4,4',4',7-Pentamethyl-1,3,3',4,4',5-hexahydro-5'H-spiro[benzo-
[b][1,4]diazepine-2,2'-pyrano[3,2-c]chromen]-5'-one (5b)

Yield 41%. m.p: $121.1-121.6{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 2.34-2.21(\mathrm{~m}, 7 \mathrm{H}), 1.78-1.35(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.3$, $157.5,152.5,138.9,136.3,134.0,133.2,131.5,131.3,124.1,123.6,123.4,123.0,122.5,122.4,121.9$, $121.4,116.0,115.9,108.2,108.1,90.8,52.1,51.9,51.3,51.2,51.0,50.9,30.6,29.3,20.7,20.4$. HRMS-ESI, m/z: $405.2222[\mathrm{M}+\mathrm{H}]^{+}$(Calcd. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}$, 405.2173). Anal. Calcd. For
$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 74.23; H, 6.98; N, 6.93. Found: C, 73.94; H, 7.12; N, 6.63.
20. 7-Chloro-4,4,4',4'-tetramethyl-1,3,3',4,4',5-hexahydro-5'H-spiro-[benzo[b][1,4]diazepine-2,2'-pyrano[3,2-c]chromen]-5'-one (5c)

Yield 37\%. m.p:155.3-156.7 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=8.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 1 \mathrm{H}), 2.31-2.06(\mathrm{~m}, 4 \mathrm{H}), 1.77-1.24(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 161.3,157.3,154.0,152.5,140.3,132.5,131.5,128.2,123.7,123.3,123.2,121.5,120.8$, 116.1, 115.7, 108.2, 90.3, 52.3, 50.8, 50.7, 30.6, 30.5. HRMS-ESI, m/z: $425.1656[\mathrm{M}+\mathrm{H}]^{+}$(Calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}^{+}$, 425.1626). Anal. Calcd. For $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}: \mathrm{C}, 67.84 ; \mathrm{H}, 5.93$; N, 6.59. Found: C, 67.78; H, 6.07; N, 6.29.
21. 4,4,4',4'-tetramethyl-8-nitro-1,3,3',4,4',5-hexahydro-5'H-spiro-[benzo[b][1,4]diazepine-2,2'-pyrano[3,2-c]chromen]-5'-one (5d)

Yield 20%. m.p:125.1-125.9 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50(\mathrm{ddd}, J=8.6,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{~m}, J=29.9 \mathrm{~Hz}, 3 \mathrm{H}), 4.33(\mathrm{br}, 1 \mathrm{H})$, $2.29-2.12(\mathrm{~m}, 8 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.3$, $157.1,152.7,138.7,131.3,123.5,123.1,122.9,117.3,116.3,116.2,108.7,89.2,49.7,30.7,28.8,28.5$, 25.4, 21.4. HRMS-ESI, m/z: $436.1867[\mathrm{M}+\mathrm{H}]^{+}$(Calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{5}{ }^{+}, 436.1867$). Anal. Calcd. For $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5}$: C, 66.19; H, 5.79; N, 9.65. Found: C, 66.46; H, 6.19; N, 9.01.

22. 2,2,4',4'-Tetramethyl-2,3,3',4'-tetrahydro-5H,5'H-spiro-

 [benzo[b][1,4]oxazepine-4,2'-pyrano[3,2-c]chromen]-5'-one (6a)

Yield 49%. m.p: $142.0-142.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.12(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.85(\mathrm{td}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.26(\mathrm{~s}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 6 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.4,157.3,152.5$, $147.3,135.9,131.5,123.9,123.7,123.4,123.3,121.7,116.1,115.8,108.2,50.8,49.8,30.9,30.6$. HRMS-ESI, m/z: $392.1883[\mathrm{M}+\mathrm{H}]^{+}$(Calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{4}{ }^{+}$, 392.1856). Anal. Calcd. For $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{4}$: C, 73.64; H, 6.44; N, 3.58. Found: C, 73.36; H, 6.54; N, 3.26.
23. 2,2,4',4',8-Pentamethyl-2,3,3',4'-tetrahydro-5H,5'H-spiro-[benzo[b][1,4]oxazepine-4,2'-pyrano[3,2-c]chromen]-5'-one (6b)

Yield 42%. m.p:155.2-155.5 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.47(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 7 \mathrm{H}), 1.76-1.35(\mathrm{~m}, 12 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.4,157.4,152.5,147.2,133.2,131.5,123.8,123.7,123.6,123.3,121.6,116.1$, 115.9, 108.1, 50.7, 49.6, 30.9, 30.6, 29.2, 20.6. HRMS-ESI, m/z: $406.2032[\mathrm{M}+\mathrm{H}]^{+}$(Calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{4}{ }^{+}, 406.2013$). Anal. Calcd. For $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{4}$: C, $74.05 ; \mathrm{H}, 6.71$; $\mathrm{N}, 3.45$. Found: C, 73.39; H , 6.96; N, 3.04.
24. 2,2,4',4',7-Pentamethyl-2,3,3',4'-tetrahydro-5H,5'H-spiro-[benzo[b][1,4]oxazepine-4,2'-pyrano[3,2-c]chromen]-5'-one (6c)

Yield 39%. m.p:152.5-152.6 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}$, $1 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=8.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 2.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.35(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.4,157.4,152.5,144.8,135.6,133.5,131.5,123.7,123.4,123.3,122.1,116.1$, $115.9,108.2,50.9,49.9,31.6,30.9,30.6,29.2,27.5,22.6,20.5$. HRMS-ESI, m/z: $406.2032[\mathrm{M}+\mathrm{H}]^{+}$ (Calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{4}{ }^{+}, 406.2013$). Anal. Calcd. For $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{4}: \mathrm{C}, 74.05 ; \mathrm{H}, 6.71$; $\mathrm{N}, 3.45$. Found: C, 73.45; H, 6.86; N, 3.29.

6. NMR Spectra of the products

4a 2,4,4-Trimethyl-2-(phenylamino)-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4a 2,4,4-Trimethyl-2-(phenylamino)-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one GG-698. 2. fid

$$
\begin{gathered}
\text { N్ } \\
\text { ®. }
\end{gathered}
$$

+

4b 2-((4-Fluorophenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4b 2-((4-Fluorophenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4c 2-((2-Chlorophenyl)amino)-2,4,4-trimethyl-3,4- dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4c 2-((2-Chlorophenyl)amino)-2,4,4-trimethyl-3,4- dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4d 2-((3-Chlorophenyl)amino)-2,4,4-trimethyl-3,4- dihydro-2H,5H-pyrano[3,2-c]chromen-5-one
04282017-MCR-3C1/10
Proton CDC13 $\{\mathrm{E}:$: data 2\} 2 shczgx 41

4d 2-((3-Chlorophenyl)amino)-2,4,4-trimethyl-3,4- dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4e 2-((4-Chlorophenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one
03302017-MCR-4C1/10
PROTON CDC13 \{E: \data2\} 2shczgx 42

4e 2-((4-Chlorophenyl)amino)-2,4,4-trimethyl-3,4- dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4f 2-((4-Bromophenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one 03272017 -MCR-4Br/10
PROTON CDC13 \{E:\data2\} 2shczgx 46
M
0
0

4f 2-((4-Bromophenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

∞
∞
∞
∞
∞
1

4g 2-((4- Iodophenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4g 2-((4- Iodophenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4h 2, 4, 4-Trimethyl-2-(o-tolylamino)-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one
04282017-MCR-2Me/ 10
PRoton CDCl3 $\{\mathrm{E}:$: data 2\} 2 shczgx 42

4h 2, 4, 4-Trimethyl-2-(o-tolylamino)-3,4- dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4i 2, 4, 4-Trimethyl-2-(m-tolylamino)-3,4- dihydro-2H,5H-pyrano[3,2-c]chromen-5-one
04282017-MCR-3Me/10
PROTON CDC13 $\{$ E: \backslash data2 $\}$ 2shczgx 43

$$
\begin{aligned}
& \begin{array}{l}
\text { n } \\
0 \\
0 \\
0
\end{array}
\end{aligned}
$$

4i 2, 4, 4-Trimethyl-2-(m-tolylamino)-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4j 2, 4, 4-Trimethyl-2-(p-tolylamino)-3,4- dihydro-2H,5H-pyrano[3,2-c]chromen-5-one
03302017-MCR-4Me/10
PRoToN CDC13 $\{$ E: \backslash data2 $\}$ 2shczgx 43

-
\qquad $\overbrace{1.0}^{1}$

4j 2, 4, 4-Trimethyl-2-(p-tolylamino)-3,4- dihydro-2H,5H-pyrano[3,2-c]chromen-5-one GG-692. 2. fid

∞
0
0
∞
∞
 $+$

4k 2-((2-Methoxyphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4k 2-((2-Methoxyphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one GG-816. 2. fid

[^0]41 2-((3-Methoxyphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one $03272017-\mathrm{MCR}$ - $30 \mathrm{Me} / 10$
PROTON CDC13 응
0 몸

41 2-((3-Methoxyphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one GG-829. 2. fid

$\stackrel{\infty}{\infty}$ $\stackrel{\circ}{\circ}$

4m 2-((4-Methoxyphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one
$\begin{aligned} & \text { 01192017-MCR-1g/10 } \\ & \text { PROTON CDC13 } \\ & \text { \{E: } \backslash \text { data }\}\end{aligned}$
2 2sh

4m 2-((4-Methoxyphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one GG-697. 2. fid

H
O.
Qi
屿

\qquad

4n Methyl 4-((2,4,4-trimethyl-5-oxo-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-2yl)amino)-benzoate

4n Methyl 4-((2,4,4-trimethyl-5-oxo-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-2yl)amino)-benzoate
(2)

40 2-((2,4-Dimethylphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

					5		1								
8.0	7.5	7. 0	6.5	6. 0	5. 5	5.0	4. 5	4. 0	3.5	3.0	2. 5	2.0	1.5	1.0	0.5

40 2-((2,4-Dimethylphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

[^1]4p 2-((3,5-Dimethylphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4p 2-((3,5-Dimethylphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

5a 4,4,4',4'-Tetramethyl-1,3,3',4,4',5-hexahydro-5'H-spiro[benzo-[b][1,4]diazepine-2,2'-
pyrano[3,2-c]chromen]-5'-one
O5262017-MCR-2NH2/10
PROTON CDC13

M
0
0

5a 4,4,4',4'-Tetramethyl-1,3,3',4,4',5-hexahydro-5'H-spiro[benzo-[b][1,4]diazepine-2,2'-
pyrano[3,2-c]chromen]-5'-one

5b 4,4,4',4',7-Pentamethyl-1,3,3',4,4',5-hexahydro-5'H-spiro[benzo-[b][1,4]diazepine-2,2'-pyrano[3,2-c]chromen]-5'-one

5b 4,4,4',4',7-Pentamethyl-1,3,3',4,4',5-hexahydro-5'H-spiro[benzo-[b][1,4]diazepine-2,2'-pyrano[3,2-c]chromen]-5'-one

5c 7-Chloro-4,4,4',4'-tetramethyl-1,3,3',4,4',5-hexahydro-5'H-spiro-[benzo[b][1,4]diazepine-2,2'-pyrano[3,2-c]chromen]-5'-one

5c 7-Chloro-4,4,4',4'-tetramethyl-1,3,3',4,4',5-hexahydro-5'H-spiro-[benzo[b][1,4]diazepine-2,2'-pyrano[3,2-c]chromen]-5'-one

6a 2,2,4',4'-Tetramethyl-2,3,3',4'-tetrahydro-5H,5'H-spiro-[benzo[b][1,4]oxazepine-4,2'-pyrano[3,2-c]chromen]-5'-one

6a $2,2,4^{\prime}, 4^{\prime}-$ Tetramethyl-2,3,3',4'-tetrahydro- $5 H, 5^{\prime} H$-spiro-[benzo[b][1,4]oxazepine-4, 2'-pyrano[3,2-c]chromen]-5'-one

GG-848.2.fid		 	$\begin{aligned} & \text { o. } \\ & \text { o } \\ & \text { io } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { Hi } \\ & \text { ơ } \\ & \text { oे } \end{aligned}$

6b $2,2,4^{\prime}, 4^{\prime}, 8$-Pentamethyl-2,3,3',4'-tetrahydro-5H,5'H-spiro-[benzo[b] [1,4]oxazepine-4, 2'-pyrano[3,2-c]chromen]-5'-one

J1,

							$\stackrel{N}{\infty}$				فِ.			$\begin{aligned} & \text { - } \\ & \stackrel{6}{6} \end{aligned}$			त				
9.5	9.0	8.5	8.0	7.5	7.0	6.5	6. 0	5.5	5.0	$\begin{gathered} \hline 1.5 \\ (\mathrm{ppm}) \end{gathered}$	4. 0	3. 5	3.0	2.5	2. 0		. 5	1. 0	${ }^{1} .5$	${ }^{1} .0$	${ }_{-0.5}$

6b 2,2,4', 4',8-Pentamethyl-2,3,3',4'-tetrahydro-5H,5'H-spiro-[benzo[b][1,4]oxazepine-4,2'-pyrano[3,2-c]chromen]-5'-one

「	NNN
iog	

6c 2,2,4',4',7-Pentamethyl-2,3,3',4'-tetrahydro-5H,5'H-spiro-[benzo[b][1,4]oxazepine-4,2'-pyrano[3,2-c]chromen]-5'-one

6c $2,2,4$ ', 4',7-Pentamethyl-2,3,3',4'-tetrahydro- $5 \mathrm{H}, 5^{\prime} \mathrm{H}$-spiro-[benzo[b][1,4]oxazepine-4, 2^{\prime} -pyrano[3,2-c]chromen]-5'-one

7. HRMS spectra used for the speculation of mechanism

Supporting information Figures

Figure S1

Figure S2

Figure S3

Figure S4

Figure S5

Figure S6

Figure S7

Figure $\mathbf{S 8}$

 Counts vs. Mass-to-Charge (m/z)

Figure $\mathbf{S 9}$

Figure S10

Figure S11

[^0]: | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | $\begin{array}{c}90 \\ \mathrm{f} 1\end{array}(\mathrm{ppm})$ |
 | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

[^1]:

