Supporting Information For

Bran-new four-molecule and five-molecule cascade reactions for one-pot synthesis of pyrano[3,2-*c*]chromen-5-ones and spiro[benzo[*b*]-[1,4]diazepine-2,2'-pyrano[3,2-*c*]chromen]-5'-ones under catalyst- and solvent-free conditions

Guoxun Zhu, Zhou Yi, Jie Zhou, Zhiyong Chen, Pengran Guo, Yanying Huang,

Huacan Song* and Wei Yi*

Table of Contents

1. Mechanism speculation of the reaction
For the first kind of reaction, four-molecule reaction
For the second kind of reaction, five-molecule reaction
Substrate scope of ketone compounds ······S4
2. General experimental section
3. Experimental procedure for multicomponent reaction
General procedure for the synthesis of $4a$ and its analogs (Four-molecule) \cdots \cdot S6
General procedure for the synthesis of 4a on ten-gram scale
General procedure for the synthesis of $5a$ and its analogs (Five-molecule)S6
4. Single crystal data
Single crystal preparationS6
Relevant information
5. Characterization data for the products
6. NMR (¹ H, ¹³ C) spectra of the products
7. HRMS spectra used for the speculation of mechanism

Mechanism speculation of the reaction For the first kind of reaction, four-molecule reaction (Scheme S1)

A mixture of acetone, aniline and 4-hydroxychromen-2-one was refluxed for 6 h, then HRMS (high resolution mass spectrometer) was run for the reaction mixture. Five peaks were found from positive ion HRMS: 134.0964 ($C_9H_{12}N^+$, cald. 134.0964) [M+H]⁺, matched with *iso*-propylidenephenylamine (**I**), the condensed product of acetone and aniline; 203.0703 ($C_{12}H_{11}O_3^+$, cald. 203.0703) [M+H]⁺ and 225.0524 ($C_{12}H_{10}NaO_3^+$, cald. 225.0522) [M+Na]⁺, matched with 3-*iso*-propylidenechroman- 2,4-dione (**II**), the condensed product of acetone and 4-hydroxychromen-2-one; 336.1600 ($C_{21}H_{22}NO_3^+$, cald. 336.1594) [M+H]⁺ and 358.1419 ($C_{21}H_{21}NNaO_3^+$, cald. 358.1414) [M+Na]⁺, matched with target compound, 2,4,4-trimethyl-2-phenylamino-3,4-dihydro-2*H*-pyrano-[3,2-c]chromen-5-one (**III**).

Two peaks were found from negative ion HRMS: 201.0550 ($C_{12}H_9O_3$, cald. 201.0557) [M-H]⁻, matched with 3-*iso*-propylidenechroman-2,4-dione (**II**); 334.1448 ($C_{21}H_{20}NO_3$, cald. 334.1449)[M-H]⁻, matched with target compound 2,4,4-trimethyl-2-phenylamino-3,4-dihydro-2*H*-pyrano[3,2-c]chromen-5-one (**III**).

Scheme S1 Mechanism of the four-molecule cascading reaction of 4-hydroxychromen-2-one, aniline and acetone

For the second kind of reaction, five-molecule reaction (Scheme S2)

In order to verify this proposed five-molecule reaction mechanism, the key intermediate **IV** was prepared based on the reported method, then **IV** and 4-hydroxychromen-2-one in acetone were mixed and refluxed for 8h, HRMS was run for the reaction mixture. Three positive ion peaks were found: 189.1379 ($C_{12}H_{17}N_2^+$, cald. 189.1386) [M+H]⁺, matched with **IV**; 203.0691 ($C_{12}H_{11}O_3^+$, cald. 203.0703) [M+H]⁺, matched with **II**; 391.2001 ($C_{24}H_{27}N_2O_3^+$, cald. 391.2016)[M+H]⁺, matched with **V**. Three negative ion peaks were found: 161.0253 ($C_9H_5O_3^-$, cald. 161.0244) [M-H]⁻, matched with 4-hydroxychromen-2-one; 201.0552 ($C_{12}H_9O_3^-$, cald. 201.0557) [M-H]⁻, matched with **II**; 389.1863 ($C_{24}H_{25}N_2O_3^-$, cald. 389.1871)[M-H]⁻, matched with **V**.

Scheme S2 Mechanism of the five-molecule cascading reaction of 4-hydroxychromen-2-one, benzene-1,2-diamine and acetone

For 2,2,4',4'-tetramethyl-2,3,3',4'-tetrahydro-5H,5'H-spiro[benzo[b][1,4]oxazepine-4,2'-pyrano[3,2-c]chromen]-5'-one (**VII**), the mechanism of its formation was presumed to be similar to that of the formation of **V**, that is, the reaction went through forming **II** and 6,6,8-trimethyl-6,7-dihydro-5-oxa-9-azabenzocycloheptene (or 6,6-dimethyl-8-methylene-6,7,8,9-tetrahydro-5-oxa-9-azabenzocycloheptene (**VI**) steps (**Scheme S3, above**).

Scheme S3 Mechanism of the five-molecule cascading reaction of 4-hydroxychromen-2-one, 2-aminophenol and acetone

In order to confirm this reaction mechanism, 2-((2-hydroxyphenyl)amino)-2,4,4trimethyl-3,4-dihydro-2*H*,5*H*-pyrano[3,2-c]chromen-5-one (**VIII**), as an intermediate, was synthesized, firstly, by protecting hydroxyl group, then this intermediate (**VIII**) mixed with acetone, and the mixture was refluxed for 8h. But compound **6a** was not obtained, which demonstrated that this reaction went through the forming **VI**, instead of **VIII** (**Scheme S3, below**).

Substrate scope of ketone compounds

The reaction mixture of benzaldehyde, aniline and 4-hydroxychromen-2-one was refluxed for 8h, HRMS was run for the mixture. The result was that benzaldehyde reacted with 2-flod of 4-hydroxychromen-2-one to form 3,3'-(phenylmethylene)bis(4-hydroxy-2H-chromen-2-one) (**eqn** (S1)), which was confirmed by ion peaks of 411.0874 (C₂₅H₁₅O₆⁻, cald. 411.0874 [M-H]⁻ in the HRMS of the reacting mixture.

For alphatic aldehyde compounds, such as propionaldehyde, the desired target compound 4-ethyl-3-methyl-2-(phenylamino)-3,4-dihydro-2*H*,5*H*-pyrano[3,2-c]chromen-5-one was obtained (**eqn** (**S2**)), confirmed by finding ion peak in HRMS $[334.1449 (C_{21}H_{20}NO_3, cald. 334.1421)[M-H]]$, but the yield was very low, due to the by-product formation by-products. The of main could be 2,4-diethyl-4H,5H[1,3]dioxino[5,4-c]chromen-5-one, as ion peak, 259.0980 (C₁₅H₁₅NO₄⁻, cald. 259.0976)[M-H]⁻, was found.

As butanone is structurally very similar to acetone, it was scanned for this reaction, too. The corresponding ion peak of target compound, 2,4-diethyl-4-methyl-2-phenylamino-3,4-dihydro-2*H*,5*H*-pyrano[3,2-c]chromen-5-one [364.1907 ($C_{23}H_{26}NO_3^+$, cald. 364.1907)[M+H]⁺], was found (**eqn (S3**)), but the abundance of the peak was very low, indicating that the yield was very low. Meantime, ion peaks of 3-(butan-2-ylidene)chromane-2,4-dione [215.0690 ($C_{13}H_{11}O_3^-$, cald. 215.0714)[M-H]⁻] and its additive product with aniline, 4-hydroxy-3-(1-methyl-1-phenylaminopropyl)chromen-2-one, [310.1442 ($C_{19}H_{20}NO_3^+$, cald. 310.1438)[M+H]⁺], were found, which demonstrated that butanone could react to form the designed compound as the acetone, but the yield for this reaction was lower, because the by-product was formed. The main by-product could be 2,4-diethyl-4*H*,5*H*-[1,3]-dioxino[5,4-c]chromen-5-one, because the ion peak, 310.1442 ($C_{19}H_{20}NO_3^-$, cald. 310.1438)[M-H]⁻, was found.

2. General experimental section

The starting materials were commercially available and were used without further purification. The products were isolated by column chromatography on silica gel. Melting points were determined by WRS-1B (Shanghai Precise Science Instrument Co. Ltd). NMR spectra were determined on Bruker 400 in CDCl₃. ¹H NMR and ¹³C NMR spectra were recorded on 400 MHz spectrometers using CDCl₃ as solvent. Element Analysis was performed on elemental analyzer (Germany Elementar Co. Ltd). HRMS

spectra were performed on Agilent QTOF-MS 6540. Single crystals were prepared in dichloromethane at room temperature by solvent evaporation method and their structure data were collected on a Smart 1000 CCD single crystal diffractometer.

3. Experimental procedure for multicomponent reaction General procedure for the synthesis of 4a-q

A mixture of 1.62 g (10 mmol) of 4-hydroxychromen-2-one, 10.5 mmol of the corresponding anilines, 5.80 g (100 mmol) 7.4 mL of acetone was stirred for 24 h under refluxing, then was concentrated in vacuum to obtain a residue which was separated by column chromatography with ethyl acetate and petroleum ether as the eluents to afford the corresponding products. All other compounds are synthesized in a similar manner, with the yields listed in the main text calculated from the isolated, pure products.

General procedure for the synthesis of 4a on 10-gram scale

A mixture of 16.2 g (100 mmol) of 4-hydroxychromen-2-one, 9.77 g (105 mmol) of aniline, 58.0 g (1000 mmol) 74 mL of acetone was stirred for 24 h under refluxing. The reaction mixture was cooled to room temperature, the product precipitated. The precipitated product was filtered and washed with petroleum ether to get pure product 18.0 g (yield: 54%).

General procedure for the synthesis of 5a-d and 6a-c

A mixture of 1.62 g (10.0 mmol) of 4-hydroxychromen-2-one, 10.5 mmol of the corresponding *o*-phenylenediamines or *o*-aminophenols, 5.80 g (100 mmol) 7.4 mL of acetone was stirred for 24 h under refluxing, then was concentrated in vacuum to obtain a residue which was separated by column chromatography with ethyl acetate and petroleum ether as the eluents to give the corresponding products. All other compounds are

synthesized in a similar manner, with the yields listed in the main text calculated from the isolated, pure products.

4. Single crystal data

Single crystal preparation

100mg (0.3mmol) of compound **4a** was dissolved in 2mL dichloromethane in a 5mL plastic centrifuge tube and the mixture was left standing for more than 48h. The obtained crystal was collected and analyzed. Single crystals of **5a** and **6a** were obtained as the same method.

Relevant information

The single crystal structures were analyzed and the obtained data were deposited in Cambridge Crystallographic Data Centre (CCDC). The information about these crystals was listed in **Table S1-2**.

Entry	1	2	3
Molecular structure	O H ₃ C CH ₃ CH ₃	O H ₃ C CH ₃ NH H ₃ C CH ₃	H ₃ C CH ₃ O O O O O H ₃ C CH ₃
Crystal structure			
Given number by CCDC	1555403	1555401	1555402
Given name by us	MCR-H	MCR-2NH ₂	MCR-2OH
Molecular formula	$C_{21}H_{21}NO_3$	$C_{24}H_{26}N_2O_3$	$C_{24}H_{25}NO_4$

Table S1Information of single crystals in this work

Name	MCR-H	MCR-2NH2	MCR-2OH
Empirical formula	C16 H10 N2 O2	C24 H26 N2 O3	C24 H25 N O4
Formula weight	262.26	390.47	391.45
Temperature	293(2) K	293(2) K	293(2) K

Wavelength	1.54178 A	1.54178 A	1.54178 A
Crystal system, space group	Triclinic, P-1	Monoclinic, P2(1)/n	Monoclinic, C2/c
Unit cell dimensions Volume Z, Calculated density Absorption coefficient	a = 7.7916(3) A alpha = 68.596(4) deg. b = 8.7127(4) A beta = 77.302(4) deg. c = 10.0548(4) A gamma = 69.280(4) deg. 591.17(5) A^3 2, 1.473 Mg/m^3 0.812 mm^-1	a = 10.63300(10) A alpha = 90 deg. b = 11.8182(2) A beta = 95.6420(10) deg. c = 16.2353(2) A gamma = 90 deg. 2030.29(5) A^3 4, 1.277 Mg/m^3 0.676 mm^-1	a = 18.1869(5) A alpha = 90 deg. b = 11.8032(3) A beta = 103.632(3) deg. c = 19.0131(5) A gamma = 90 deg. 3966.44(19) A^3 8, 1.311 Mg/m^3 0.719 mm^-1
F(000)	272	832	1664
Crystal size	0.340 x 0.260 x 0.210 mm	0.500 x 0.320 x 0.250 mm	0.6 x 0.4 x 0.18 mm
Theta range for data collection	4.749 to 73.983 deg.	4.636 to 73.733 deg.	4.504 to 74.111 deg.
Limiting indices	-9<=h<=6, -10<=k<=10, -12<=l<=12	-12<=h<=13, -14<=k<=13, -19<=l<=20	-22<=h<=22, -11<=k<=14, -16<=l<=23
Reflections collected / unique	3791 / 2310 [R(int) = 0.0142]	20882 / 4072 [R(int) = 0.0278]	7262 / 3890 [R(int) = 0.0236]
Completeness to theta = 67.679	99.6 %	100.0 %	99.8 %
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents
Max. and min. transmission	1 and 0.85712	1 and 0.22983	1 and 0.74611
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Data / restraints / parameters	2310 / 0 / 181	4072 / 0 / 275	3890 / 0 / 270
Goodness-of-fit on F^2	1.038	1.035	1.050
Final R indices	R1 = 0.0424,	R1 = 0.0372,	R1 = 0.0397,
[I>2sigma(I)]	wR2 = 0.1252	wR2 = 0.0992	wR2 = 0.1077
R indices (all	R1 = 0.0460,	R1 = 0.0392,	R1 = 0.0432,
data)	wR2 = 0.1299	wR2 = 0.1014	wR2 = 0.1111
Extinction coefficient	n/a	0.00083(18)	n/a
Largest diff. peak	0.310 and	0.314 and	0.244 and
and hole	-0.272 e.A^-3	-0.193 e.A^-3	-0.202 e.A^-3

5. Characterization data for the products

1. 2,4,4-Trimethyl-2-(phenylamino)-3,4-dihydro-

2H,5H-pyrano[3,2-c]chromen-5-one (4a)

Yield 58%. m.p., 168.4-168.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (dd, J = 8.2, 1.6 Hz, 1H), 7.50 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.36–7.18 (m, 4H), 7.00 (d, J = 7.6 Hz, 2H), 6.92 (t, J = 7.3 Hz, 1H), 4.44 (br, 1H), 2.33–2.11 (m, 2H), 1.82 (s, 3H), 1.66 (s, 3H), 1.56 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.2, 157.1, 152.6, 142.8, 131.4, 129.1, 123.7, 123.2, 121.1, 119.4, 116.3, 116.2, 108.5, 89.2, 49.6, 30.8, 28.8, 28.6, 25.4. HRMS-ESI, m/z: 336.1637 [M+H]⁺ (Calcd. for C₂₁H₂₂NO₃⁺, 336.1594). Anal. Calcd. For C₂₁H₂₁NO₃: C, 75.20; H, 6.31; N, 4.18. Found: C, 75.07; H, 6.28; N, 3.82.

2. 2-((4-Fluorophenyl)amino)-2,4,4-trimethyl-3,4dihydro-2*H*,5*H*-pyrano[3,2-c]chromen-5-one (**4b**)

Yield 23%. m.p.108.4-109.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, J = 7.9, 1.6 Hz, 1H), 7.52 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.37–7.26 (m, 5H), 6.89 (d, J = 8.2 Hz, 2H), 4.39 (br, 1H), 2.30– 2.10 (m, 2H), 1.80 (s, 3H), 1.65 (s, 3H) , 1.55 (s, 3H).¹³C NMR (75 MHz, CDCl₃) δ 161.2, 157.2, 157.0, 152.6, 138.5, 131.4, 123.7, 123.0, 122.9, 122.7, 116.3, 116.1, 115.7, 115.4, 108.5, 89.7, 49.5, 30.8, 28.7, 28.6, 25.3. HRMS-ESI, m/z: 354.1501 [M+H]+ (Calcd. for C₂₁H₂₁FNO₃⁺, 354.1500). Anal. Calcd. For C₂₂H₂₃NO₄: C, 71.37; H, 5.70; N, 3.96. Found: C, 71.08; H, 5.69; N, 3.68.

 2-((2-Chlorophenyl)amino)-2,4,4-trimethyl-3,4dihydro-2*H*,5*H*-pyrano[3,2-c]chromen-5-one (4c)

Yield 43%. m.p. 142.2-142.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, J = 8.2, 1.7 Hz, 1H), 7.53–7.47 (m, 1H), 7.40 (dd, J = 8.3, 1.5 Hz, 1H), 7.32–7.27 (m, 3H), 7.16 (ddd, J = 8.4, 7.5, 1.6 Hz, 1H), 6.78 (td, J = 7.7, 1.5 Hz, 1H), 5.11 (br, 1H), 2.37–2.16 (m, 2H), 1.89 (s, 3H), 1.75 (s, 3H), 1.56 (s, 3H).¹³C NMR (75 MHz, CDCl₃) δ 161.1, 156.7, 152.6, 139.7, 131.4, 129.4, 127.4, 123.7, 122.9, 121.7, 120.2, 117.4, 116.3, 116.0, 109.0, 88.1, 50.1, 30.4, 29.1, 28.2, 25.4. HRMS-ESI, m/z: 370.1234 [M+H]+ (Calcd. for C₂₁H₂₁ClNO₃⁺, 370.1204). Anal. Calcd. For C₂₁H₂₀ClNO₃: C, 68.20; H, 5.45; N, 3.79. Found: C, 68.44; H, 4.95; N, 2.99.

4. 2-((3-chlorophenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2*H*,5*H*-pyrano[3,2-c]chromen-5-one (4d)

Yield 43%. m.p. 156.1-156.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (dd, J = 8.2, 1.7 Hz, 1H), 7.51 (td, J = 7.7, 7.0, 1.6 Hz, 1H), 7.35–7.27 (m, 2H), 7.13 (t, J = 8.1 Hz, 1H), 7.04 (t, J = 2.1 Hz, 1H), 6.84 (td, J = 8.5, 2.0 Hz, 2H), 4.45 (br, 1H), 2.30–2.11 (m, 2H), 1.83 (s, 3H), 1.67 (s, 3H), 1.55 (s, 3H). ¹³C NMR (75 MHz, CDCl3) δ 161.2, 156.8, 152.6, 144.3, 134.7, 131.5, 130.1, 123.8, 123.0, 120.4, 118.3, 116.5, 116.3, 116.0, 108.8, 88.6, 49.7, 30.6, 28.8, 28.4, 25.3. HRMS-ESI, m/z: 370.1233 [M+H]⁺ (Calcd. for C₂₁H₂₁ClNO₃⁺, 370.1204). Anal. Calcd. For C₂₁H₂₀ClNO₃: C, 68.20; H, 5.45; N, 3.79. Found: C, 67.92; H, 5.32; N, 3.40.

 2-((4-Chlorophenyl)amino)-2,4,4-trimethyl-3,4dihydro-2*H*,5*H*-pyrano[3,2-c]chromen-5-one (4e)

Yield 49%. m.p. 135.4-135.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.52 (ddd, *J* = 8.6, 7.2, 1.6 Hz, 1H), 7.33–7.25 (m, 2H), 7.22–7.16 (m, 2H), 6.96–6.89 (m, 2H), 4.38 (br, 1H), 2.26 (d, *J* = 14.6 Hz, 2H), 1.79 (s, 3H), 1.65 (s, 3H), 1.55 (s, 3H).¹³C NMR (75 MHz, CDCl₃) δ 161.1, 156.9, 152.6, 141.5, 131.5, 129.0, 126.1, 123.7, 122.9, 120.5, 116.3, 116.0, 108.6, 88.9, 49.6, 30.7, 28.7, 28.6, 25.3. HRMS-ESI, m/z: 370.1233 [M+H]⁺ (Calcd. for C₂₁H₂₁ClNO₃⁺, 370.1204). Anal. Calcd. For C₂₁H₂₀ClNO₃: C, 68.20; H, 5.45; N, 3.79. Found: C, 67.91; H, 5.30; N, 3.37.

 2-((4-Bromophenyl)amino)-2,4,4-trimethyl-3,4dihydro-2*H*,5*H*-pyrano[3,2-c]chromen-5-one (4f)

Yield 42%. m.p. 134.4-134.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.52 (ddd, *J* = 8.6, 7.2, 1.6 Hz, 1H), 7.37–7.26 (m, 5H), 6.89 (d, *J* = 8.2 Hz, 2H), 4.39 (br, 1H), 2.30– 2.10 (m, 2H), 1.80 (s, 3H), 1.65 (s, 3H) , 1.55 (s, 3H).¹³C NMR (75 MHz, CDCl₃) δ 162.3, 161.2, 156.9, 152.6, 142.0, 131.9, 131.5, 123.8, 123.0, 120.6, 116.3, 116.0, 113.2, 108.6, 88.8, 49.6, 30.7, 28.8, 28.4, 25.3. HRMS-ESI, m/z: 414.0690 [M+H]⁺ (Calcd. for C₂₁H₂₁BrNO₃⁺, 414.0699). Anal. Calcd. For C₂₁H₂₀BrNO₃: C, 60.88; H, 4.87; N, 3.38. Found: C, 60.80; H, 4.90; N, 3.11.

 2-((4-Iodophenyl) amino)-2,4,4-trimethyl-3,4dihydro-2H,5H-pyrano[3,2-c]chromen-5-one (4g)

Yield 40%. m.p.130.3-130.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, J = 7.9, 1.6 Hz, 1H), 7.51 (dq, J = 7.3, 2.1, 1.6 Hz, 3H), 7.34–7.27 (m, 2H), 6.80 (d, J = 8.2 Hz, 2H), 4.34 (br, 1H), 2.31–2.10 (m, 2H), 1.81 (s, 3H), 1.64 (s, 3H), 1.55 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.1, 156.9, 152.6, 142.7, 137.8, 131.5, 123.8, 122.9, 120.8, 116.3, 115.9, 108.7, 88.7, 82.8, 49.6, 31.6, 30.7, 28.8, 28.5, 25.3, 22.7. HRMS-ESI, m/z: 462.0592 [M+H]⁺ (Calcd. for C₂₁H₂₁INO₃⁺, 462.0561). Anal. Calcd. For C₂₁H₂₀INO₃: C, 54.68; H, 4.37; N, 3.04. Found: C, 54.41; H, 4.57; N, 2.71.

 2, 4, 4-Trimethyl-2-(*o*-tolylamino)-3,4dihydro-2*H*,5*H*-pyrano[3,2-c]chromen-5-one (4h)

Yield 48%. m.p. 122.0-122.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.95–7.88 (m, 1H), 7.53–7.46 (m, 1H), 7.35 (d, *J* = 8.1 Hz, 1H), 7.28 (d, *J* = 14.2 Hz, 2H), 7.14 (dd, *J* = 13.4, 7.2 Hz, 2H), 6.84 (t, *J* = 7.4 Hz, 1H), 4.36 (br, 1H), 2.40-2.15 (m, 5H), 1.86 (s, 3H), 1.70 (s, 3H), 1.57 (s, 3H).¹³C NMR (75 MHz, CDCl₃) δ 161.3, 157.2, 152.6, 141.1, 131.3, 130.6, 126.6, 126.1, 123.7, 123.2, 120.5, 118.2, 116.3, 108.5, 89.2, 50.1, 30.6, 28.9, 28.8, 25.3, 18.0. HRMS-ESI, m/z: 350.1786 [M+H]⁺ (Calcd. for C₂₂H₂₄NO₃⁺, 350.1751). Anal. Calcd. For C₂₂H₂₃NO₃: C, 75.62; H, 6.63; N, 4.01. Found: C, 75.57; H, 6.57; N, 3.65.

9. 2,4,4-Trimethyl-2-(m-tolylamino)-3,4-

dihydro-2H,5H-pyrano[3,2-c]chromen-5-one (4i)

Yield 46%. m.p. 141.1-141.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, J = 8.1, 1.6 Hz, 1H), 7.50 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.35–7.24 (m, 2H), 7.12 (t, J = 7.7 Hz, 1H), 6.89–6.78 (m, 2H), 6.74 (d, J = 7.5 Hz, 1H), 4.41 (br, 1H), 2.30 (s, 3H), 2.28–2.11 (m, 2H), 1.82 (s, 3H), 1.67 (s, 3H), 1.56 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.3, 157.1, 152.7, 142.7, 138.9, 131.4, 128.9, 123.6, 123.1, 121.9, 120.2, 116.4, 116.3, 116.2, 108.6, 89.2, 49.7, 30.7, 28.8, 28.5, 25.4, 21.5. HRMS-ESI, m/z: 350.1788 [M+H]⁺ (Calcd. for C₂₂H₂₄NO₃⁺, 350.1751). Anal. Calcd. For C₂₂H₂₃NO₃: C, 75.62; H, 6.63; N, 4.01. Found: C, 75.69; H, 6.59; N, 3.65.

2, 4, 4-Trimethyl-2-(p-tolylamino)-3,4 dihydro-2H,5H-pyrano[3,2-c]chromen-5-one (4j)

O H₃C CH₃ H

Yield 52%. m.p. 122.5-123.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (dd, J = 7.9, 1.6 Hz, 1H),

7.50 (ddd, J = 8.6, 7.3, 1.6 Hz, 1H), 7.32–7.25 (m, 2H), 7.06 (d, J = 8.0 Hz, 2H), 6.94 (d, J = 8.1 Hz, 2H), 4.49(br, 1H), 2.29 (s, 3H), 2.26–2.10 (m, 2H), 1.77 (s, 3H), 1.63 (s, 3H), 1.55 (s, 3H).¹³C NMR (75 MHz, CDCl₃) δ 161.3, 157.3, 152.6, 140.1, 131.3, 131.0, 130.5, 129.6, 128.4, 123.6, 123.2, 120.6, 116.2, 108.4, 89.7, 49.6, 30.8, 28.7, 26.9, 26.5, 25.3, 20.6. HRMS-ESI, m/z: 350.1790 [M+H]⁺ (Calcd. for C₂₂H₂₄NO₃⁺, 350.1751). Anal. Calcd. For C₂₂H₂₃NO₃: C, 75.62; H, 6.63; N, 4.01. Found: C, 74.94; H, 6.67; N, 3.61.

 2-((2-Methoxyphenyl)amino)-2,4,4-trimethyl-3,4dihydro-2*H*,5*H*-pyrano[3,2-c]chromen-5-one (4k)

Yield 52%. m.p. 183.1-183.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92–7.87 (m, 1H), 7.48 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.30–7.24 (m, 3H), 6.88 (ddd, J = 7.8, 6.8, 2.2 Hz, 1H), 6.84–6.77 (m, 2H), 5.12 (br, 1H), 3.78 (s, 3H), 2.38–2.13 (m, 2H), 1.88 (s, 3H), 1.72 (s, 3H), 1.55 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.3, 157.1, 152.6, 148.2, 132.8, 131.2, 123.6, 123.1, 120.8, 119.5, 116.7, 116.2, 109.9, 108.8, 88.6, 55.5, 49.9, 30.5, 29.1, 28.1, 25.4. HRMS-ESI, m/z: 366.1740 [M+H]⁺ (Calcd. for C₂₂H₂₄NO₄⁺, 366.1700). Anal. Calcd. For C₂₂H₂₃NO₄: C, 72.31; H, 6.34; N, 3.83. Found: C, 72.33; H, 6.31; N, 3.47.

 2-((3-Methoxyphenyl)amino)-2,4,4-trimethyl-3,4dihydro-2H,5H-pyrano[3,2-c]chromen-5-one (4l)

Yield 52%. m.p 86.4-87.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (dd, J = 7.9, 1.6 Hz, 1H), 7.50 (ddd, J = 8.7, 7.2, 1.6 Hz, 1H), 7.32–7.25 (m, 2H), 7.13 (t, J = 8.1 Hz, 1H), 6.58 (d, J = 8.0 Hz, 2H), 6.48 (d, J = 8.3 Hz, 1H), 4.42 (br, 1H), 3.77 (s, 3H), 2.32–2.11 (m, 2H), 1.84 (s, 3H), 1.66 (s, 3H), 1.55(s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.2, 160.4, 157.0, 152.6, 144.3, 131.4, 129.8, 123.6, 123.1, 116.3, 116.1, 111.5, 108.6, 106.1, 104.9, 88.9, 55.2, 49.8, 30.7, 28.8, 28.5, 25.4. HRMS-ESI, m/z: 366.1723 [M+H]⁺ (Calcd. for C₂₂H₂₄NO₄⁺, 366.1700). Anal. Calcd. For C₂₂H₂₃NO₄: C, 72.31; H, 6.34; N, 3.83. Found: C, 72.33; H, 6.31; N, 3.47.

 13. 2-((4-Methoxyphenyl)amino)-2,4,4-trimethyl-3,4dihydro-2*H*,5*H*-pyrano[3,2-c]chromen-5-one (4m)

Yield 56%. m.p. 99.2-99.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 7.9 Hz, 1H), 7.51 (t, J

= 7.8 Hz, 1H), 7.34–7.25 (m, 2H), 7.00 (d, J = 8.5 Hz, 2H), 6.82 (d, J = 8.6 Hz, 2H), 4.18 (br, 1H), 3.79 (s, 3H), 2.28–2.08 (m, 2H), 1.69 (s, 3H),1.61 (s, 3H),1.56(s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.3, 157.5, 155.8, 152.7, 135.2, 131.3, 124.6. 123.6, 123.2, 116.2, 114.2, 108.3, 90.5, 55.5, 49.3, 30.9, 28.9, 28.5, 25.3. HRMS-ESI, m/z: 366.1747 [M+H]⁺ (Calcd. for C₂₂H₂₄NO₄⁺, 366.1700). Anal. Calcd. For C₂₂H₂₃NO₄: C, 72.31; H, 6.34; N, 3.83. Found: C, 72.31; H, 6.35; N, 3.48.

14. Methyl 4-((2,4,4-trimethyl-5-oxo-3,4-dihydro-

2H,*5H*-pyrano[3,2-c]chromen-2-yl)amino)benzoate (**4n**)

Yield 19%. m.p,180.3-180.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, J = 7.9, 1.6 Hz, 1H), 7.51 (dq, J = 7.3, 2.1, 1.6 Hz, 3H), 7.34–7.27 (m, 2H), 6.80 (d, J = 8.2 Hz, 2H), 4.34 (br, 1H), 2.31–2.10 (m, 2H), 1.81 (s, 3H), 1.64 (s, 3H), 1.55 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.9, 161.1, 156.6, 152.6, 147.5, 131.5, 131.2, 123.8, 122.9, 121.1, 116.3, 116.0, 115.8, 108.8, 88.1, 51.7, 49.6, 30.6, 28.8, 28.3, 25.4. HRMS-ESI, m/z: 394.1652 [M+H]⁺ (Calcd. for C₂₃H₂₅NO₅⁺, 394.1649). Anal. Calcd. For C₂₃H₂₄NO₅: C, 70.21; H, 5.89; N, 3.56. Found: C, 69.74; H, 5.89; N, 3.39.

 2-((2,4-Dimethylphenyl)amino)-2,4,4-trimethyl-3,4dihydro-2H,5H-pyrano[3,2-c]chromen-5-one (40)

Yield 61%. m.p. 169.7-169.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, J = 8.3, 1.6 Hz, 1H), 7.53–7.46 (m, 1H), 7.32–7.20 (m, 3H), 6.95 (d, J = 6.6 Hz, 2H), 4.21 (br, 1H), 2.22 (d, J = 29.4 Hz, 8H), 1.81 (s, 3H), 1.67 (s, 3H), 1.57 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.4, 157.4, 152.7, 138.3, 131.3, 130.5, 127.3, 127.0, 123.7, 123.2, 119.7, 116.3, 108.4, 89.8, 50.0, 30.8, 28.8, 25.2, 20.5, 18.1. HRMS-ESI, m/z: 364.1960 [M+H]⁺ (Calcd. for C₂₃H₂₆NO₃⁺, 364.1907). Anal. Calcd. For C₂₃H₂₅NO₃: C, 76.01; H, 6.93; N, 3.85. Found: C, 76.01; H, 7.06; N, 3.32.

16. 2-((3,5-Dimethylphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one (4p)

Yield 59%. m.p. 176.3-176.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, J = 7.9, 1.6 Hz, 1H), 7.50 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.33–7.24 (m, 2H), 6.61 (m, J = 29.9 Hz, 3H), 4.33 (br, 1H), 2.29–2.12 (m, 8H), 1.82 (s, 3H), 1.66 (s, 3H), 1.54 (s, 3H).¹³C NMR (75 MHz, CDCl₃) δ 161.3, 157.1, 152.7, 138.7, 131.3, 123.5, 123.1, 122.9, 117.3, 116.3, 116.2, 108.7, 89.2, 49.7, 30.7, 28.8, 28.5, 25.4, 21.4. HRMS-ESI, m/z: 364.1968 $[M+H]^+$ (Calcd. for $C_{23}H_{26}NO_3^+$, 364.1907). Anal. Calcd. For $C_{23}H_{25}NO_3$: C, 76.01; H, 6.93; N, 3.85. Found: C, 76.07; H, 6.93; N, 3.52.

17. 2,4,4-Trimethyl-2-(naphthalen-1-ylamino)-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one (4q)

Yield 38%. m.p. 159.7-161.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, J = 7.9, 1.6 Hz, 1H), 7.50 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.33–7.24 (m, 2H), 6.61 (m, J = 29.9 Hz, 3H), 4.33 (br, 1H), 2.29–2.12 (m, 8H), 1.82 (s, 3H), 1.66 (s, 3H), 1.54 (s, 3H).¹³C NMR (75 MHz, CDCl₃) δ 161.3, 157.1, 152.7, 138.7, 131.3, 123.5, 123.1, 122.9, 117.3, 116.3, 116.2, 108.7, 89.2, 49.7, 30.7, 28.8, 28.5, 25.4, 21.4. HRMS-ESI, m/z: 386.1756 [M+H]⁺ (Calcd. for C₂₅H₂₄NO₃⁺, 386.1751). Anal. Calcd. For C₂₃H₂₅NO₃: C, 77.90; H, 6.01; N, 3.63. Found: C, 77.44; H, 6.13; N, 3.50.

18. 4,4,4',4'-Tetramethyl-1,3,3',4,4',5-hexahydro-5'H-spiro[benzo[b][1,4]diazepine-2,2'-pyrano[3,2-c]chromen]-5'-one (5a)

Yield 66%. m.p. 151.2-151.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.37 (m, 2H), 7.31–7.24 (m, 1H), 7.08 (t, *J* = 7.6 Hz, 1H), 6.89 (td, *J* = 7.5, 1.4 Hz, 1H), 6.78 (dd, *J* = 7.8, 1.4 Hz, 1H), 6.71 (td, *J* = 7.5, 1.4 Hz, 1H), 6.52 (dd, *J* = 7.7, 1.4 Hz, 1H), 4.86 (s, 1H), 3.51 (s, 1H), 2.23 (s, 2H), 2.22 (d, *J* = 29.9 Hz, 2H), 1.83–1.14 (m, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 161.4, 157.4, 152.5, 138.9, 134.0, 131.4, 123.7, 123.6, 123.3, 122.5, 122.1, 121.4, 116.1, 115.9, 108.2, 90.6, 52.1, 51.2, 50.9, 30.9, 30.5, 29.3. HRMS-ESI, m/z: 391.2041 [M+H]⁺ (Calcd. for C₂₄H₂₇N₂O₃⁺, 391.2016). Anal. Calcd. For C₂₄H₂₆N₂O₃: C, 73.82; H, 6.71; N, 7.17. Found: C, 73.45; H, 6.84; N, 6.85.

19. 4,4,4',4',7-Pentamethyl-1,3,3',4,4',5-hexahydro-5'H-spiro[benzo-

[b][1,4]diazepine-2,2'-pyrano[3,2-c]chromen]-5'-one (5b)

Yield 41%. m.p: 121.1-121.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51–7.42 (m, 2H), 7.27 (d, J = 8.3 Hz, 1H), 7.15–7.09 (m, 1H), 6.81 (d, J = 1.9 Hz, 1H), 6.65 (dd, J = 7.8, 1.9 Hz, 1H), 6.46 (d, J = 7.8 Hz, 1H), 4.60 (s, 1H), 2.34–2.21 (m, 7H), 1.78–1.35 (m, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 161.3, 157.5, 152.5, 138.9, 136.3, 134.0, 133.2, 131.5, 131.3, 124.1, 123.6, 123.4, 123.0, 122.5, 122.4, 121.9, 121.4, 116.0, 115.9, 108.2, 108.1, 90.8, 52.1, 51.9, 51.3, 51.2, 51.0, 50.9, 30.6, 29.3, 20.7, 20.4. HRMS-ESI, m/z: 405.2222 [M+H]⁺ (Calcd. for C₂₅H₂₉N₂O₃⁺, 405.2173). Anal. Calcd. For

C₂₅H₂₈N₂O₃: C, 74.23; H, 6.98; N, 6.93. Found: C, 73.94; H, 7.12; N, 6.63.

20. 7-Chloro-4,4,4',4'-tetramethyl-1,3,3',4,4',5-hexahydro-5'H-spiro-[benzo[b][1,4]diazepine-2,2'-pyrano[3,2-c]chromen]-5'-one (5c)

(belizb(b))(1,4)diazepine-2,2-pyrano(3,2-c)entoment-3-one (3c) $(3c)^{-1}$ (3c) $(3c)^{-1}$ (4c) $(3c)^{-1}$ (5c) $(3c)^{-1$

21. 4,4,4',4'-tetramethyl-8-nitro-1,3,3',4,4',5-hexahydro-5'H-spiro-[benzo[b][1,4]diazepine-2,2'-pyrano[3,2-c]chromen]-5'-one **(5d)**

Yield 20%. m.p:125.1-125.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, J = 7.9, 1.6 Hz, 1H), 7.50 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.33 – 7.24 (m, 2H), 6.61 (m, J = 29.9 Hz, 3H), 4.33 (br, 1H), 2.29 – 2.12 (m, 8H), 1.82 (s, 3H), 1.66 (s, 3H), 1.54 (s, 3H).¹³C NMR (75 MHz, CDCl₃) δ 161.3, 157.1, 152.7, 138.7, 131.3, 123.5, 123.1, 122.9, 117.3, 116.3, 116.2, 108.7, 89.2, 49.7, 30.7, 28.8, 28.5, 25.4, 21.4. HRMS-ESI, m/z: 436.1867 [M+H]⁺ (Calcd. for C₂₄H₂₆N₃O₅⁺, 436.1867). Anal. Calcd. For C₂₄H₂₅N₃O₅: C, 66.19; H, 5.79; N, 9.65. Found: C, 66.46; H, 6.19; N, 9.01.

22. 2,2,4',4'-Tetramethyl-2,3,3',4'-tetrahydro-*5H*,*5'H*-spiro-[benzo[b][1,4]oxazepine-4,2'-pyrano[3,2-c]chromen]-5'-one (**6a**) H₃C O NH H₃C O CH₃ O CH₃ CH₃C O 6a

Yield 49%. m.p: 142.0-142.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.42 (m, 2H), 7.27 (d, J = 7.3 Hz, 1H), 7.12 (td, J = 7.6, 1.2 Hz, 1H), 7.00 (dd, J = 7.9, 1.7 Hz, 1H), 6.93 (td, J = 7.6, 1.6 Hz, 1H), 6.85 (td, J = 7.5, 1.7 Hz, 1H), 6.58 (dd, J = 7.6, 1.6 Hz, 1H), 4.69 (s, 1H), 2.33 (d, J = 12.6 Hz, 2H), 2.26 (s, 2H), 1.70 (s, 3H), 1.56 (s, 6H), 1.41 (s, 3H).¹³C NMR (75 MHz, CDCl₃) δ 161.4, 157.3, 152.5, 147.3, 135.9, 131.5, 123.9, 123.7, 123.4, 123.3, 121.7, 116.1, 115.8, 108.2, 50.8, 49.8, 30.9, 30.6. HRMS-ESI, m/z: 392.1883 [M+H]⁺ (Calcd. for C₂₄H₂₆NO₄⁺, 392.1856). Anal. Calcd. For C₂₄H₂₅NO₄: C, 73.64; H, 6.44; N, 3.58. Found: C, 73.36; H, 6.54; N, 3.26.

CH₃ H₃C O NH H₃C O CH₃ CH₃ CH₃ CH₃ CH₃

23. 2,2,4',4',8-Pentamethyl-2,3,3',4'-tetrahydro-5H,5'H-spiro-

[benzo[b][1,4]oxazepine-4,2'-pyrano[3,2-c]chromen]-5'-one (6b)

Yield 42%. m.p:155.2-155.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.52–7.42 (m, 2H), 7.28 (d, J = 7.1 Hz, 1H), 7.13 (td, J = 7.6, 1.1 Hz, 1H), 6.81 (d, J = 1.9 Hz, 1H), 6.65 (dd, J = 7.8, 1.9 Hz, 1H), 6.47 (d, J = 7.9 Hz, 1H), 4.56 (s, 1H), 2.26 (d, J = 5.6 Hz, 7H), 1.76–1.35 (m, 12H).¹³C NMR (75 MHz, CDCl₃) δ 161.4, 157.4, 152.5, 147.2, 133.2, 131.5, 123.8, 123.7, 123.6, 123.3, 121.6, 116.1, 115.9, 108.1, 50.7, 49.6, 30.9, 30.6, 29.2, 20.6. HRMS-ESI, m/z: 406.2032 [M+H]⁺ (Calcd. for C₂₅H₂₈NO₄⁺, 406.2013). Anal. Calcd. For C₂₅H₂₇NO₄: C, 74.05; H, 6.71; N, 3.45. Found: C, 73.39; H, 6.96; N, 3.04.

24. 2,2,4',4',7-Pentamethyl-2,3,3',4'-tetrahydro-5H,5'H-spiro-[benzo[b][1,4]oxazepine-4,2'-pyrano[3,2-c]chromen]-5'-one (6c) H₃C O NH H₃C O CH₃ CH₃ O O 6c

Yield 39%. m.p:152.5-152.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.52–7.43 (m, 2H), 7.30–7.25 (m, 1H), 7.16–7.10 (m, 1H), 6.87 (d, *J* = 8.0 Hz, 1H), 6.72 (dd, *J* = 8.1, 2.0 Hz, 1H), 6.37 (d, *J* = 2.0 Hz, 1H), 4.65 (s, 1H), 2.31 (d, *J* = 8.0 Hz, 2H), 2.23 (s, 2H), 2.14 (s, 3H), 1.79 – 1.35 (m, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 161.4, 157.4, 152.5, 144.8, 135.6, 133.5, 131.5, 123.7, 123.4, 123.3, 122.1, 116.1, 115.9, 108.2, 50.9, 49.9, 31.6, 30.9, 30.6, 29.2, 27.5, 22.6, 20.5. HRMS-ESI, m/z: 406.2032 [M+H]⁺ (Calcd. for C₂₅H₂₈NO₄⁺, 406.2013). Anal. Calcd. For C₂₅H₂₇NO₄: C, 74.05; H, 6.71; N, 3.45. Found: C, 73.45; H, 6.86; N, 3.29.

6. NMR Spectra of the products

4a 2,4,4-Trimethyl-2-(phenylamino)-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4a 2,4,4-Trimethyl-2-(phenylamino)-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4b 2-((4-Fluorophenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2*H*,5*H*-pyrano[3,2-c]chromen-5-one

4b 2-((4-Fluorophenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2*H*,5*H*-pyrano[3,2-c]chromen-5-one

4c 2-((2-Chlorophenyl)amino)-2,4,4-trimethyl-3,4- dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4c 2-((2-Chlorophenyl)amino)-2,4,4-trimethyl-3,4- dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4d 2-((3-Chlorophenyl)amino)-2,4,4-trimethyl-3,4- dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4d 2-((3-Chlorophenyl)amino)-2,4,4-trimethyl-3,4- dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4e 2-((4-Chlorophenyl)amino)-2,4,4-trimethyl-3,4- dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4f 2-((4-Bromophenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4f 2-((4-Bromophenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4g 2-((4- Iodophenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4g 2-((4- Iodophenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4h 2, 4, 4-Trimethyl-2-(o-tolylamino)-3,4- dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4h 2, 4, 4-Trimethyl-2-(o-tolylamino)-3,4- dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4i 2, 4, 4-Trimethyl-2-(m-tolylamino)-3,4- dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4i 2, 4, 4-Trimethyl-2-(m-tolylamino)-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4j 2, 4, 4-Trimethyl-2-(p-tolylamino)-3,4- dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4j 2, 4, 4-Trimethyl-2-(p-tolylamino)-3,4- dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4k 2-((2-Methoxyphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4k 2-((2-Methoxyphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

41 2-((3-Methoxyphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

100 90 f1 (ppm)

4m 2-((4-Methoxyphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4m 2-((4-Methoxyphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4n Methyl 4-((2,4,4-trimethyl-5-oxo-3,4-dihydro-2*H*,5*H*-pyrano[3,2-c]chromen-2yl)amino)-benzoate

4n Methyl 4-((2,4,4-trimethyl-5-oxo-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-2yl)amino)-benzoate

40 2-((2,4-Dimethylphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

40 2-((2,4-Dimethylphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4p 2-((3,5-Dimethylphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

4p 2-((3,5-Dimethylphenyl)amino)-2,4,4-trimethyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-5-one

5a 4,4,4',4'-Tetramethyl-1,3,3',4,4',5-hexahydro-5'H-spiro[benzo-[b][1,4]diazepine-2,2'-

pyrano[3,2-c]chromen]-5'-one

5a 4,4,4',4'-Tetramethyl-1,3,3',4,4',5-hexahydro-5'H-spiro[benzo-[b][1,4]diazepine-2,2'-

GG-844.2.fid ~ 161.40 ~ 157.42 ~ 152.53 134.01 131.36 123.70 123.62 123.52 122.52 122.52 122.14 121.40 115.87 108.23 138.86 90.62 52.13 51.17 50.94 30.52 Me, HN Me Me Me 100 90 f1 (ppm) 190 180 170 160 150 140 130 120 110 80 70 60 50 40 30 20 10

pyrano[3,2-c]chromen]-5'-one

 $\textbf{5b}\ 4,4,4',4',7-Pentamethyl-1,3,3',4,4',5-hexahydro-\textit{5'H-spiro[benzo-[b][1,4]} diazepine-2,2'-benzo-[b][1,4]$

5b 4,4,4',4',7-Pentamethyl-1,3,3',4,4',5-hexahydro-*5'H*-spiro[benzo-[b][1,4]diazepine-2,2'-pyrano[3,2-*c*]chromen]-5'-one

5c 7-Chloro-4,4,4',4'-tetramethyl-1,3,3',4,4',5-hexahydro-5'H-spiro-[benzo[b][1,4]diazepine-2,2'-

pyrano[3,2-c]chromen]-5'-one

5c 7-Chloro-4,4,4',4'-tetramethyl-1,3,3',4,4',5-hexahydro-5'H-spiro-[benzo[b][1,4]diazepine-2,2'-pyrano[3,2-c]chromen]-5'-one

6a 2,2,4',4'-Tetramethyl-2,3,3',4'-tetrahydro-*5H*,*5'H*-spiro-[benzo[b][1,4]oxazepine-4,2'-pyrano[3,2-c]chromen]-5'-one

6a 2,2,4',4'-Tetramethyl-2,3,3',4'-tetrahydro-*5H*,*5'H*-spiro-[benzo[b][1,4]oxazepine-4,2'-pyrano[3,2-c]chromen]-5'-one

6b 2,2,4',4',8-Pentamethyl-2,3,3',4'-tetrahydro-5H,5'H-spiro-[benzo[b][1,4]oxazepine-4,2'pyrano[3,2-c]chromen]-5'-one

6b 2,2,4',4',8-Pentamethyl-2,3,3',4'-tetrahydro-5H,5'H-spiro-[benzo[b][1,4]oxazepine-4,2'pyrano[3,2-c]chromen]-5'-one

6c 2,2,4',4',7-Pentamethyl-2,3,3',4'-tetrahydro-5H,5'H-spiro-[benzo[b][1,4]oxazepine-4,2'pyrano[3,2-c]chromen]-5'-one

6c 2,2,4',4',7-Pentamethyl-2,3,3',4'-tetrahydro-5H,5'H-spiro-[benzo[b][1,4]oxazepine-4,2'-

pyrano[3,2-c]chromen]-5'-one

7. HRMS spectra used for the speculation of mechanism

Supporting information Figures

Figure S1

Counts vs. Mass-to-Charge (m/z)

