Supporting Information for

Adsorption Thicknesses of Confined Pure and Mixing Fluids in Nanopores

by
Kaiqiang Zhang ${ }^{1}$, $\mathrm{Na} \mathrm{Jia}^{1 *}$, and Lirong Liu ${ }^{2}$
${ }^{1}$ Petroleum Systems Engineering Faculty of Engineering and Applied Science
University of Regina
Regina, Saskatchewan S4S 0A2
Canada
${ }^{2}$ Institute for Energy, Environment and Sustainable Communities
University of Regina
Regina, Saskatchewan S4S 0A2
Canada

Figures 5
Equations 25
Pages 13

In the Supporting Information, the detailed derivations for the generalized equation of state (EOS), which considers the effects of pore radius, shifts of critical properties, molecule-molecule and molecule-wall interactions, are specified. Furthermore, the calculated adsorption thicknesses of the $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{C}_{5} \mathrm{H}_{12}, \mathrm{C}_{6} \mathrm{H}_{14}, \mathrm{C}_{7} \mathrm{H}_{16}$, and $\mathrm{C}_{8} \mathrm{H}_{18}$ substances at different temperatures, pressures, pore radii, and wall-effect distances are shown in Figs. S2-S5.

Derivations of the generalized EOS
In this study, a generalized EOS for the confined fluid in nanopores is obtained, which considers the confinement-induced effects of pore radius, molecule-molecule and molecule-wall interactions.

The canonical partition function from the statistical thermodynamics is shown as follows, ${ }^{1}$

$$
\begin{equation*}
Q(N, V, T)=\sum_{i} e^{-E_{i}(N, V) / k T}=\frac{1}{N!} \Lambda^{-3 N} q_{\mathrm{int}}^{N} Z(N, V, T) \tag{Eq.S1}
\end{equation*}
$$

where N is the number of molecules; V is the volume; T is the temperature; E is the overall energy state; k is the Boltzmann constant; Λ is the de Broglie wavelength, $\Lambda=\left(\frac{h^{2}}{2 \pi m k T}\right)^{0.5}, h$ is the Planck's constant, m is the molecular mass; $q_{\text {int }}$ is the internal partition function; Z is the configuration partition function, which is expressed as,

$$
\begin{equation*}
Z(N, V, T)=\iint_{V} e^{-\mathrm{U}\left(r_{1}, r_{2}, \ldots, r_{N}\right) / \mathrm{kT}} d r_{1} d r_{2} \ldots d r_{N} \tag{Eq.S2}
\end{equation*}
$$

where U is the potential energy of entire system of N molecules, whose positions are described by $r_{\mathrm{i}}, i=1,2, \ldots N$, and r_{i} is the distance of separation between molecules.

Since the configurational energy ($E^{\text {conf }}$) is expressed as,

$$
\begin{equation*}
E^{\text {conf }}(N, V, T)=E(N, V, T)-E(N, V, T=\infty)=k T^{2}\left(\frac{\partial \ln Z}{\partial T}\right)_{N, V} \tag{Eq.S3}
\end{equation*}
$$

So,

$$
\begin{equation*}
\ln Z(N, V, T)-\ln Z(N, V, T=\infty)=\int_{\infty}^{T} \frac{E^{\text {conf }}(N, V, T)}{k T^{2}} d T \tag{Eq.S4}
\end{equation*}
$$

where only the hard-core repulsive forces between molecules $Z^{H C}(\rho)$ are important when the configuration integral at infinite temperature, $Z(N, V, T=\infty)=Z^{H C}(\rho) . Z^{H C}(N, V, T=\infty)=V_{f}^{N}$ is defined from the literature, ${ }^{2}$ where V_{f}^{N} is the free volume. Thus, Eq. (S4) can be rewritten as,

$$
\begin{equation*}
\left.Z(N, V, T)=V_{f}^{N} e^{\left(\frac{T}{\Gamma} \frac{E^{\operatorname{con}}(N, V, T)}{\infty} k T^{2}\right.} d T\right) \tag{Eq.S5}
\end{equation*}
$$

The free volume V_{f}^{N} can be expressed by using the following simple expression, ${ }^{2}$

$$
\begin{equation*}
V_{f}=V-N \beta=V-\frac{N}{\rho_{\max }} \tag{Eq.S6}
\end{equation*}
$$

where β is the excluded volume per fluid molecule and $\rho_{\max }$ is the molecular density of the full-distributed fluid. Eqs. (S5) and (S6) are substituted into Eq. (S1) to be,

$$
\begin{equation*}
Q(N, V, T)=\sum_{i} e^{-E_{i}(N, V) / k T}=\frac{1}{N!} \Lambda^{-3 N} q_{\text {int }}^{N}(V-N \beta)^{N} e^{\left.\substack{\left(\int_{\infty} \frac{E^{(\operatorname{con}}(N, V, T)}{\infty} \\ k T^{2}\right.} T\right)} \tag{Eq.S7}
\end{equation*}
$$

It is worthwhile to mention that $\rho_{\max }$ is function of the ratio of the pore size $\left(r_{\mathrm{p}}\right)$ and fluid molecule size $(\sigma), r_{\mathrm{p}} / \sigma$, whose specific formulation is shown below, ${ }^{3}$

$$
\begin{gather*}
\rho_{\max }=\frac{6}{\pi \sigma^{3}}(1-\phi) \tag{Eq.S8}\\
\phi=c_{1}+c_{2} e^{c_{3}\left(0.5-r_{\mathrm{p}} / \sigma\right)}-c_{4} e^{c_{5}\left(0.5-r_{\mathrm{p}} / \sigma\right)} \tag{Eq.S9}
\end{gather*}
$$

where ϕ is the mean porosity of the porous medium initiated by Mueller (2005) ${ }^{4}$ and $c_{\mathrm{i}}, i=1,2,3,4,5$ are the numerical coefficients obtained from the curve fitting. ${ }^{3}$ Eq. (S8) change to be $\rho_{\max }=\frac{6}{\pi \sigma^{3}}\left(1-c_{1}\right)$ when r_{p} / σ tends to be infinite (i.e., bulk phase), so,

$$
\begin{equation*}
\sigma=\sqrt[3]{\frac{6\left(1-c_{1}\right)}{\pi \rho_{\max }}}=\sqrt[3]{\frac{6 \beta\left(1-c_{1}\right)}{\pi}}=\sqrt[3]{\frac{6\left(1-c_{1}\right) b}{\pi N_{\mathrm{A}}}} \tag{Eq.S10}
\end{equation*}
$$

where b is the volume parameter of the cubic EOS and N_{A} is the Avogadro constant.
From the statistical thermodynamics, ${ }^{1}$

$$
\begin{equation*}
P(N, V, T)=k T\left(\frac{\partial \ln Z(N, V, T)}{\partial V}\right)_{N, T} \tag{Eq.S11}
\end{equation*}
$$

Given that $\frac{1}{N!} \Lambda^{-3 N} q_{\text {int }}^{N}=$ constant, Eq. (S7) is substituted into Eq. (S11) to be,

$$
\begin{align*}
P(N, V, T) & =k T\left(\frac{\partial \ln \left[(V-N \beta)^{N} e^{\left(\int^{\left.\frac{T}{E^{\text {coorf }}(N, V, T)} d T\right)} k T^{2}\right.}\right]}{\partial V}\right)_{N, T} \tag{Eq.S12}\\
& =\frac{N k T}{V-N \beta}-\frac{\partial \ln \left(e^{E^{\operatorname{conf}}(N, V, T)}\right)}{\partial V}
\end{align*}
$$

It is easily found from Eq. (S12) that $E^{\text {conf }}(N, V, T)$ is the key part to explicitly illustrate the relationships of P, V, and T. The configurational energy ($E^{c o n f}$) is consist of the configurational energy between molecule and molecule ($E_{\text {molecule-molecule }}^{\text {conf }}$) as well as between the molecule and wall ($\left.E_{\text {molecule-wall }}^{\text {conf }}\right)$, which is demonstrated in Fig. S1 and presented as follows,

$$
\begin{equation*}
E^{\text {conf }}(N, V, T)=E_{\text {molecule-molecule }}^{\text {conf }}+E_{\text {molecule-wall }}^{\text {conf }} \tag{Eq.S13}
\end{equation*}
$$

In this study, the molecule-molecule interactions ($\left.E_{\text {moleculle-molecule }}^{\text {conf }}\right)$ are expressed as, ${ }^{5}$

$$
\begin{equation*}
E_{\text {molecule-molecule }}^{\text {conf }}=\frac{k T N^{2}}{2 V^{2}} \iint \frac{U_{\mathrm{mm}}\left(r_{1}, r_{2} \ldots r_{N}\right)}{k T} g(r ; \rho, T) d V_{1} d V_{2} \tag{Eq.S14}
\end{equation*}
$$

where $g(r ; \rho, T)$ is the pair correlation function for molecules interacting through the potential $U(r)$. In the literature, the pair correlation function at low densities was stated clearly, ${ }^{6}$

$$
\begin{equation*}
\lim _{\rho \rightarrow 0} g(r ; \rho, T)=e^{-u(r) / k T} \tag{Eq.S15}
\end{equation*}
$$

Here, $C=C(N, V, T)=\int_{r} g(r ; \rho, T) d r$. Molecule-molecule interactions $U_{\mathrm{mm}}(r)$ are assumed to be numerically represented through the Lennard-Jones potential, whose schematic diagram is shown in Fig. S1 and numerical equation is,

$$
\begin{equation*}
U_{\mathrm{mm}}\left(r_{12}\right)=4 \varepsilon_{\mathrm{LJ}}\left[\left(\frac{\sigma_{\mathrm{LJ}}}{r_{12}}\right)^{12}-\left(\frac{\sigma_{\mathrm{LJ}}}{r_{12}}\right)^{6}\right] \tag{Eq.S16}
\end{equation*}
$$

where $\varepsilon_{\mathrm{LJ}}$ is the molecule-molecule Lennard-Jones energy parameter and and σ_{LJ} is the molecule-molecule Lennard-Jones size parameter.

Thus, Eq. (S14) is re-written as,

$$
\begin{equation*}
E_{\text {moleculle-molecule }}^{\text {conf }}=\frac{k T N^{2} C}{2 V^{2}} \iint_{r_{i}>\sigma} \frac{U\left(r_{1}, r_{2} \ldots r_{N}\right)}{k T} d V_{1} d V_{2} \tag{Eq.S17}
\end{equation*}
$$

Then, the integral part of Eq. (S17) is solved semi-analytically as,

$$
\begin{gather*}
\frac{1}{V} \iint_{r_{12}>\sigma} \frac{U_{\mathrm{mm}}\left(r_{1}, r_{2} \ldots r_{N}\right)}{k T} d V_{1} d V_{2}=\frac{4 \varepsilon_{\mathrm{LJ}}}{k T} \sigma_{\mathrm{LJ}}^{3} f(A) \tag{Eq.S18}\\
f(A)=c_{0}+\frac{c_{1}}{\sqrt{A}}+\frac{c_{2}}{A}
\end{gather*}
$$

where $c_{0}=-\frac{8 \pi}{9}, c_{1}=3.5622$, and $c_{2}=-0.6649$. It should be noted that the value of c_{0} was calculated by solving Eq. (S5) analytically, while the values of c_{1} and c_{2} are obtained from a non-linear least-square method. The calculated $f(A)$ values from Eq. (S5) and fitting curve by tuning c_{1} and c_{2} can be found elsewhere. ${ }^{5}$ Thus, the molecule-molecule interactions ($E_{\text {molecule-molecule }}^{\text {conf }}$) are presented as,

$$
\begin{equation*}
E_{\text {molecule-molecule }}^{\text {conf }}=\frac{a N^{2}-2 N^{2} C \varepsilon_{\mathrm{LJ}} \sigma_{\mathrm{LJ}}^{3} \cdot\left(\frac{c_{1}}{\sqrt{A}}+\frac{c_{2}}{A}\right)}{V} \tag{Eq.S19}
\end{equation*}
$$

On the other hand, the molecule-wall interactions $U_{\text {mw }}(r)$ are assumed to be well modeled through the square-well potential, which is shown in Fig. S1 and stated as follows,

$$
U_{\mathrm{mw}}\left(r_{\mathrm{ij}}\right)=\left\{\begin{array}{l}
+\infty, r_{\mathrm{ij}}<\sigma_{\mathrm{sw}-\mathrm{ij}} \tag{Eq.S20}\\
-\varepsilon_{\mathrm{sw}-\mathrm{ij}}, \sigma_{\mathrm{sw-ij}} \leq r_{\mathrm{ij}} \leq\left(\sigma_{\mathrm{sw}-\mathrm{ij}}+\delta_{\mathrm{sw-ij}}\right) \\
0, r_{\mathrm{ij}}>\left(\sigma_{\mathrm{sw}-\mathrm{ij}}+\delta_{\mathrm{sw}-\mathrm{ij}}\right)
\end{array}\right.
$$

where r_{ij} is the distance between the molecule and wall; $\varepsilon_{\mathrm{sw}-\mathrm{ij}}$ is the molecule-wall square-well energy parameter; $\sigma_{\text {sw-ij }}$ is the molecule-wall square-well size parameter; and $\delta_{\text {sw-ij }}$ is the molecule-wall square-well width of interactions, which is assumed to be equal to σ_{LJ} for each system. Hence, the molecule-wall interactions ($\left.E_{\text {moleculle-wall }}^{\text {conf }}\right)$ are expressed as, ${ }^{3}$

$$
\begin{equation*}
E_{\text {molecule-wall }}^{\text {conf }}=-N \cdot F_{\mathrm{p}} \cdot \varepsilon_{\mathrm{sw}} \tag{Eq.S21}
\end{equation*}
$$

where F_{p} is the fraction of the confined fluid molecules that interact with the pore wall (i.e., in the square-well region). The local distributions of fluid molecules interacting with the pore wall are numerically represented by F_{p}, which is function of the temperature, fluid density, degree of confinement, and molecule-wall interaction potential. ${ }^{3}$ An empirical correlation rather than a complex theoretical model is capable of describing F_{p} in an accurate and simple way as follows,

$$
\begin{gather*}
F_{\mathrm{p}}=F_{\mathrm{pr}}+\left(1-F_{\mathrm{pr}}\right)\left(1-e^{-\varepsilon_{\mathrm{sv}} / k T}\right)\left(1-\frac{\rho}{\rho_{\max }}\right)^{\theta} \tag{Eq.S22}\\
F_{\mathrm{pr}}=\frac{\left(r_{\mathrm{p}}-\sigma / 2\right)^{2}-\left(r_{\mathrm{p}}-\sigma / 2-\delta_{\mathrm{p}}\right)^{2}}{\left(r_{\mathrm{p}}-\sigma / 2\right)^{2}} \\
\theta=\frac{r_{\mathrm{p}}}{\delta_{\mathrm{p}}+\sigma / 2}
\end{gather*}
$$

where F_{pr} is the fraction of the random distributed fluid molecules in the square-well region of
the pores and θ is the geometric term. Thus, Eq. (S22) is substituted into Eq. (S21) to be,

$$
\begin{equation*}
E_{\text {molecule-wall }}^{\text {conf }}=-N \cdot \varepsilon_{\mathrm{sw}}\left[F_{\mathrm{pr}}+\left(1-F_{\mathrm{pr}}\right)\left(1-e^{-\varepsilon_{\mathrm{sw}} / k T}\right)\left(1-\frac{\rho}{\rho_{\max }}\right)^{\theta}\right] \tag{Eq.S23}
\end{equation*}
$$

Hence, the total configurational energy between molecule and molecule as well as between the molecule and wall is obtained by combining Eqs. (S13), (S19), and (S23),

$$
E^{c o n f}(N, V, T)=\frac{a N^{2}-2 N^{2} C \varepsilon_{\mathrm{LJ}} \sigma_{\mathrm{LJ}}^{3}\left(\frac{c_{1}}{\sqrt{A}}+\frac{c_{2}}{A}\right)}{V}-N \cdot \varepsilon_{\mathrm{sw}}\left[F_{\mathrm{pr}}+\left(1-F_{\mathrm{pr}}\right)\left(1-e^{-\varepsilon_{\mathrm{sv}} / k T}\right)\left(1-\frac{\rho}{\rho_{\max }}\right)^{\theta}\right.
$$

(Eq. S24)
On a basis of Eq. (S12), the generalized expression of the EOS for confined fluids considering the effects of pore radius, molecule-molecule, and molecule-wall interactions is shown as,

$$
\begin{gather*}
P(N, V, T)=\frac{R T}{V-N b}-\frac{N^{2}}{V^{2}}\left[a-2 \varepsilon_{\mathrm{LJ}} \sigma_{\mathrm{LJ}}^{3} \cdot\left(\frac{c_{1}}{\sqrt{A}}+\frac{c_{2}}{A}\right)\right] \tag{Eq.S25}\\
-\frac{b \theta}{V^{2}}\left(1-\frac{b}{V}\right)^{\theta-1}\left(1-F_{\mathrm{pr}}\right)\left[R T\left(1-e^{-N_{\mathrm{A}} \varepsilon_{\mathrm{sw}} / R T}\right)-N_{\mathrm{A}} \varepsilon_{\mathrm{sw}}\right] \\
b=\frac{N_{\mathrm{A}}}{\rho_{\max }}
\end{gather*}
$$

Eq. (S25) is the newly-derived generalized EOS for calculating the fluid phase properties at the nanoscale.

References

(1) Abrams, D. S.; Prausnitz, J. M. Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems. AIChE J. 1975, 21 (1), 116-128.
(2) Sandler, S. I. The Generalized van Der Waals Partition Function. I. Basic Theory. Fluid Phase Equilib. 1985, 19 (3), 238-257.
(3) Travalloni, L.; Castier, M.; Tavares, F. W.; Sandler, S. I. Thermodynamic Modeling of Confined Fluids Using an Extension of the Generalized van Der Waals Theory. Chem. Eng. Sci. 2010, 65 (10), 3088-3099.
(4) Mueller, G. E. Numerically Packing Spheres in Cylinders. Powder Technol. 2005, 159 (2), 105-110.
(5) Zarragoicoechea, G. J.; Kuz, V. A. Van Der Waals Equation of State for a Fluid in a Nanopore. Phys. Rev. E 2002, 65 (2), 21110.
(6) Islam, A. W.; Patzek, T. W.; Sun, A. Y. Thermodynamics Phase Changes of Nanopore Fluids. J. Nat. Gas Sci. Eng. 2015, 25, 134-139.

Figure S1. Schematic diagram of the molecule-molecule and molecule-wall potentials in this study.

Figure S2. Calculated adsorption thicknesses of the (a) $\mathrm{C}_{2} \mathrm{H}_{6}$; (b) $\mathrm{C}_{3} \mathrm{H}_{8}$; (c) $\mathrm{C}_{5} \mathrm{H}_{12}$; (d) $\mathrm{C}_{6} \mathrm{H}_{14}$; (e) $\mathrm{C}_{7} \mathrm{H}_{16}$; and (f) $\mathrm{C}_{8} \mathrm{H}_{18}$ at the pore radius of $r_{\mathrm{p}}=10 \mathrm{~nm}$ and five different temperatures of $T=15.6,30.0,53.0,80.0,116.1^{\circ} \mathrm{C}$.

Figure S3. Calculated adsorption thicknesses of the (a) $\mathrm{C}_{2} \mathrm{H}_{6}$; (b) $\mathrm{C}_{3} \mathrm{H}_{8}$; (c) $\mathrm{C}_{5} \mathrm{H}_{12}$; (d) $\mathrm{C}_{6} \mathrm{H}_{14}$; (e) $\mathrm{C}_{7} \mathrm{H}_{16}$; and (f) $\mathrm{C}_{8} \mathrm{H}_{18}$ at the pore radius of $r_{\mathrm{p}}=10 \mathrm{~nm}$, three different pressures of $P=1.0,8.5$, and 25.0 MPa , and five different temperatures of $T=15.6,30.0,53.0$, 80.0 , and $116.1^{\circ} \mathrm{C}$.

Figure S4. Calculated adsorption thicknesses of the (a) $\mathrm{C}_{2} \mathrm{H}_{6}$; (b) $\mathrm{C}_{3} \mathrm{H}_{8}$; (c) $\mathrm{C}_{5} \mathrm{H}_{12}$; (d) $\mathrm{C}_{6} \mathrm{H}_{14}$; (e) $\mathrm{C}_{7} \mathrm{H}_{16}$; and (f) $\mathrm{C}_{8} \mathrm{H}_{18}$ at the temperature of $T=53.0^{\circ} \mathrm{C}$ and six different pore radii of $r_{\mathrm{p}}=1,5,10,50,100$, and 1000 nm .

Figure S5. Calculated adsorption thicknesses of the (a) $\mathrm{C}_{2} \mathrm{H}_{6}$; (b) $\mathrm{C}_{3} \mathrm{H}_{8}$; (c) $\mathrm{C}_{5} \mathrm{H}_{12}$; (d) $\mathrm{C}_{6} \mathrm{H}_{14}$; (e) $\mathrm{C}_{7} \mathrm{H}_{16}$; and (f) $\mathrm{C}_{8} \mathrm{H}_{18}$ at the temperature of $T=53.0^{\circ} \mathrm{C}$, three different pressures of $P=1.0,8.5$, and 25.0 MPa , and six different pore radii of $r_{\mathrm{p}}=1,5,10,50,100$, and 1000 nm (i.e., $\delta_{\mathrm{p}} / r_{\mathrm{p}}=1,0.2,0.1,0.02,0.01$, and 0.001 , respectively).

