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In the Supporting Information, the detailed derivations for the generalized equation of state 

(EOS), which considers the effects of pore radius, shifts of critical properties, 

molecule‒molecule and molecule‒wall interactions, are specified. Furthermore, the calculated 

adsorption thicknesses of the C2H6, C3H8, C5H12, C6H14, C7H16, and C8H18 substances at different 

temperatures, pressures, pore radii, and wall-effect distances are shown in Figs. S2‒S5. 

Derivations of the generalized EOS

In this study, a generalized EOS for the confined fluid in nanopores is obtained, which 

considers the confinement-induced effects of pore radius, moleculemolecule and moleculewall 

interactions. 

The canonical partition function from the statistical thermodynamics is shown as follows,1 
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is the Planck’s constant,  is the molecular mass;  is the internal partition function;  is the m intq Z

configuration partition function, which is expressed as,
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where only the hard-core repulsive forces between molecules  are important when the )(HCZ

configuration integral at infinite temperature, .  )(),,( HCZTVNZ  N
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is defined from the literature,2 where  is the free volume. Thus, Eq. (S4) can be rewritten as,N
fV
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The free volume  can be expressed by using the following simple expression,2N
fV
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where  is the excluded volume per fluid molecule and  is the molecular density of the  max

full-distributed fluid. Eqs. (S5) and (S6) are substituted into Eq. (S1) to be,

          (Eq. S7)
)),,((

int
3/),( 2)(

!
1),,(

dT
kT

TVNE
NNN

i

kTVNE
T conf

i eNVq
N

eTVNQ
  

It is worthwhile to mention that  is function of the ratio of the pore size  and fluid max )( pr

molecule size , , whose specific formulation is shown below,3)( /pr
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where  is the mean porosity of the porous medium initiated by Mueller (2005)4 and  

 are the numerical coefficients obtained from the curve fitting.3 Eq. (S8) change 54,3,2,1,,i ic
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where  is the volume parameter of the cubic EOS and  is the Avogadro constant.b AN

From the statistical thermodynamics,1
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It is easily found from Eq. (S12) that  is the key part to explicitly illustrate the ),,( TVNE conf

relationships of P, V, and T. The configurational energy  is consist of the configurational )( confE

energy between molecule and molecule  as well as between the molecule and )( conf
moleculemoleculeE 

wall , which is demonstrated in Fig. S1 and presented as follows,)( conf
wallmoleculeE 
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where  is the pair correlation function for molecules interacting through the potential ),;( Trg 

. In the literature, the pair correlation function at low densities was stated clearly,6)(rU
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Here,  Moleculemolecule interactions  are assumed to  r drTrgTVNCC .),;(),,(  )(mm rU

be numerically represented through the Lennard-Jones potential, whose schematic diagram is 

shown in Fig. S1 and numerical equation is,
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where  is the moleculemolecule Lennard‒Jones energy parameter and and  is the LJ LJ

moleculemolecule Lennard‒Jones size parameter.

Thus, Eq. (S14) is re-written as,
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Then, the integral part of Eq. (S17) is solved semi-analytically as,
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where  = ,  = , and  = . It should be noted that the value of  was 0c
9

8
 1c 5622.3 2c 6649.0 0c

calculated by solving Eq. (S5) analytically, while the values of  and  are obtained from a 1c 2c

non-linear least-square method. The calculated  values from Eq. (S5) and fitting curve by )(Af

tuning  and  can be found elsewhere.5 Thus, the moleculemolecule interactions 1c 2c

 are presented as,)( conf
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On the other hand, the moleculewall interactions  are assumed to be well modeled )(mw rU

through the square-well potential, which is shown in Fig. S1 and stated as follows,

                                         (Eq. S20)
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where  is the distance between the molecule and wall;  is the moleculewall square-well ijr ij-sw

energy parameter;  is the moleculewall square-well size parameter; and  is the ij-sw ij-sw

moleculewall square-well width of interactions, which is assumed to be equal to  for each LJ

system. Hence, the moleculewall interactions  are expressed as,3)( conf
wallmoleculeE 
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where  is the fraction of the confined fluid molecules that interact with the pore wall (i.e., in pF

the square-well region). The local distributions of fluid molecules interacting with the pore wall 

are numerically represented by , which is function of the temperature, fluid density, degree of pF

confinement, and moleculewall interaction potential.3 An empirical correlation rather than a 

complex theoretical model is capable of describing  in an accurate and simple way as follows,pF
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where  is the fraction of the random distributed fluid molecules in the square-well region of prF
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the pores and  is the geometric term. Thus, Eq. (S22) is substituted into Eq. (S21) to be,
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Hence, the total configurational energy between molecule and molecule as well as between the 

molecule and wall is obtained by combining Eqs. (S13), (S19), and (S23),
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On a basis of Eq. (S12), the generalized expression of the EOS for confined fluids considering 

the effects of pore radius, moleculemolecule, and moleculewall interactions is shown as,
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Eq. (S25) is the newly-derived generalized EOS for calculating the fluid phase properties at the 

nanoscale.
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Figure S1. Schematic diagram of the molecule‒molecule and molecule‒wall potentials in this study.



S10

P (MPa)

0 5 10 15 20 25 30

 a
d (

nm
)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

15.6 C
30.0 C
53.0 C
80.0 C
116.1 C

P (MPa)

0 5 10 15 20 25 30

 a
d (

nm
)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
15.6 C
30.0 C
53.0 C
80.0 C
116.1 C

P (MPa)

0 5 10 15 20 25 30

 a
d (

nm
)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

15.6 C
30.0 C
53.0 C
80.0 C
116.1 C

P (MPa)

0 5 10 15 20 25 30

 a
d (

nm
)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

15.6 C
30.0 C
53.0 C
80.0 C
116.1 C

P (MPa)

0 5 10 15 20 25 30

 a
d (

nm
)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

15.6 C
30.0 C
53.0 C
80.0 C
116.1 C

P (MPa)

0 5 10 15 20 25 30

 a
d (

nm
)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

15.6 C
30.0 C
53.0 C
80.0 C
116.1 C

Figure S2. Calculated adsorption thicknesses of the (a) C2H6; (b) C3H8; (c) C5H12; (d) C6H14; (e) C7H16; and (f) C8H18 at the pore 
radius of rp = 10 nm and five different temperatures of T = 15.6, 30.0, 53.0, 80.0, 116.1 °C.
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Figure S3. Calculated adsorption thicknesses of the (a) C2H6; (b) C3H8; (c) C5H12; (d) C6H14; (e) C7H16; and (f) C8H18 at the pore 
radius of rp = 10 nm, three different pressures of P = 1.0, 8.5, and 25.0 MPa, and five different temperatures of T = 15.6, 30.0, 53.0, 
80.0, and 116.1 °C.
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Figure S4. Calculated adsorption thicknesses of the (a) C2H6; (b) C3H8; (c) C5H12; (d) C6H14; (e) C7H16; and (f) C8H18 at the 
temperature of T = 53.0 °C and six different pore radii of rp = 1, 5, 10, 50, 100, and 1000 nm.
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Figure S5. Calculated adsorption thicknesses of the (a) C2H6; (b) C3H8; (c) C5H12; (d) C6H14; (e) C7H16; and (f) C8H18 at the 
temperature of T = 53.0 °C, three different pressures of P = 1.0, 8.5, and 25.0 MPa, and six different pore radii of rp = 1, 5, 10, 50, 100, 
and 1000 nm (i.e.,  = 1, 0.2, 0.1, 0.02, 0.01, and 0.001, respectively).pp / r
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