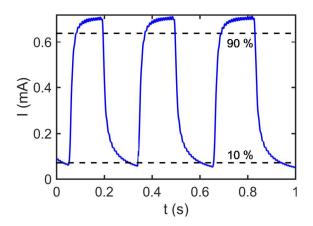
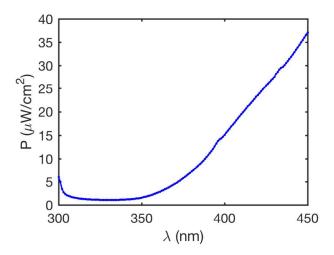
Supporting Information

High Responsivity, Low Dark Current Ultraviolet Photodetectors based on Two-dimensional Electron Gas Interdigitated Transducers


Peter F. Satterthwaite,^{1,a)} Ananth Saran Yalamarthy,^{2,a)}, Noah A. Scandrette,³ A. K. M. Newaz,³ and Debbie G. Senesky^{1,4,b)}

¹Department of Electrical Engineering, Stanford University, Stanford, California, 94305, USA ²Department of Mechanical Engineering, Stanford University, Stanford, California, 94305, USA ³Department of Physics and Astronomy, San Francisco State University, San Francisco, California, 94132, USA


^{a)} P. F. Satterthwaite and A. S. Yalamarthy contributed equally to this work

^{b)} Author to whom correspondence should be addressed: dsenesky@stanford.edu

⁴Department of Aeronautics and Astronautics, Stanford University, Stanford, California, 94305, USA

Figure S1. Response time of a 2DEG-IDT photodetector passivated with ~20 nm of ALD-Al₂O₃ dielectric to ~0.2 mW/cm² 365 nm illumination chopped at ~5 Hz. The rise and fall times are ~30 ms and ~100 ms, respectively, comparable to measurements of devices without alumina.

Figure S2. Incident power vs. wavelength calibration curve for Setup II. Incident power was measured using a Hamamatsu S1223 photodetector.