Supporting Information

Palladium-Catalyzed Hydroxycarbonylation of

1-Dodecene in Microemulsion Systems: Does

Reaction Performance Care about Phase Behavior?

Marcel Schmidtl ${ }^{*}$, Carolina Urban ${ }^{l}$, Svenja Schmidt ${ }^{1}$, Reinhard Schomäcker ${ }^{1}$
${ }^{1}$ Department of Chemistry, Technische Universität Berlin, Str. des 17. Juni 124, Sekr. TC-8, D-10623 Berlin, Germany
*corresponding author: Marcel Schmidt (marcel.schmidt@tu-berlin.de)

S1 Chemical structure of the applied surfactants

$$
\begin{aligned}
& \mathrm{i}=11-13 \\
& \mathrm{j}=2 \text { (Marlipal 24/20) } \\
& \mathrm{j}=3 \text { (Marlipal 24/30) } \\
& \mathrm{j}=4 \text { (Marlipal 24/40) } \\
& \mathrm{j}=5 \text { (Marlipal 24/50) } \\
& \mathrm{j}=6 \text { (Marlipal 24/60) } \\
& \mathrm{j}=7 \text { (Marlipal 24/70) } \\
& \mathrm{j}=8 \text { (Marlipal 24/80) }
\end{aligned}
$$

Figure S1. Chemical structure of the applied surfactants.

S2 Variation of the ionic strength

We investigated the effect on the initial rate of hydroxycarbonylation, the $1: b$ regioselectivity and the chemoselectivity with different amounts of sodium sulfate as shown in Figure S1. In general, the initial rate of hydroxycarbonylation decreases significantly from $18 \mathrm{mmol} /(\mathrm{L} \cdot \mathrm{h})$ for no added salt to $1.5 \mathrm{mmol} /(\mathrm{L} \cdot \mathrm{h})$ for $6 \mathrm{wt} \%$ sodium sulfate. We have to mention that it was found that the ligand SulfoXantPhos precipitates at salt concentrations above $6 \mathrm{wt} \%$ due to a salting out effect. The increase of the ionic strength leads to a lower solubility of SulfoXantPhos in water which results in its precipitation.

Figure S2. Effect of salt concentration on the hydroxycarbonylation of 1-dodecene. Experimental conditions: $\mathrm{Pd}_{2}(\text { allyl })_{2} \mathrm{Cl}_{2}(0.08 \mathrm{mmol}), \mathrm{Pd} / \mathrm{SX} / \mathrm{MSA} / 1$-dodecene (1:4:40:110), $\alpha=0.5$, tetradecane as the cosolvent (9 g), water (12 g), Marlipal 24/70 as the surfactant, $\gamma=9 \%, \mathrm{Na}_{2} \mathrm{SO}_{4}$ as salt, $\mathrm{p}(\mathrm{CO})=30 \mathrm{bar}, \mathrm{T}=85^{\circ} \mathrm{C}, \mathrm{n}=1200 \mathrm{rpm}, \mathrm{t}=20 \mathrm{~h}, \mathrm{~V}_{\mathrm{R}}=0.03 \mathrm{~L}$.

Besides the reaction rate, the $1: b$ selectivity remains constant at $65: 35$ and the chemoselectivity at a value of 90% for salt concentrations of up to $4 w t \%$. The chemoselectivity drops to 80% with $6 \mathrm{wt} \%$ sodium sulfate in the reaction mixture. Apparently, the precipitation of the catalyst complex leads to a higher isomerization of 1-dodecene. For all experiments $1 \mathrm{wt} \%$ sodium sulfate was chosen because of an accelerated phase separation.

