Supporting information:

Phosphonate-Directed Catalytic Asymmetric Hydroboration: Delivery of Boron to the More Substituted Carbon Leading to Chiral Tertiary Benzylic Boronic Esters

Suman Chakrabarty and James M. Takacs*

Department of Chemistry and Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States.

Table of contents

(1) General information 3
(2) Synthesis of methylidene substrates 5
(3) Synthesis of conjugated (β-aryl) trisubstituted substrates 12
(4) Ligand screening data 20
(5) General procedure for catalytic asymmetric hydroboration (CAHB) and stereospecific functionalizations of chiral tertiary benzylic boronic esters. 22
(6) Synthesis of phosphonate-functionalized chiral tertiary benzylic boronic esters. 28
(7) Synthesis of phosphonate-functionalized chiral tertiary benzylic alcohols 47
(8) Oxidations leading to α-hydroxy and oxophosphonates and their synthetic utility 64
(9) Absolute configuration assignments 72
(10) Experimental procedures and characterization data for oximes 90
(11) References 92

(1) General information

All preparative reactions were carried out under a dry nitrogen atmosphere unless otherwise indicated. Tetrahydrofuran (THF) was freshly distilled over sodium and benzophenone before using in CAHB reactions. Pinacolborane (pinBH) was obtained from Acros Organics MS (97% purity, stabilized with triethylamine) and was distilled under nitrogen ($760 \mathrm{~mm} \mathrm{Hg}, 150^{\circ} \mathrm{C}$) prior to use. For long term storage, the distilled pinacolborane was stored in freezer in 8 mL vials with airtight screw cap under nitrogen. All substrates were subjected to high vacuum ($c a .1 \mathrm{~mm} \mathrm{Hg}$) at $100{ }^{\circ} \mathrm{C}$ for an hour to remove any residual diethyl phosphite, triethyl phosphite or triethyl phosphate. The latter are trace contaminants in commercial diethyl phosphite, and if present in even trace quantitates in the substrate, can greatly diminish the activity of the chiral rhodium catalyst. For convenience, CAHB reactions were set up in glovebox under a dry nitrogen atmosphere, although we have no evidence that use of the glove box is essential. Yields reported for the boronic esters/derivatives are an average of at least 2 runs.

Synthesized compounds were purified by flash chromatography using EMD Silica Gel 60 Geduran®. Thin Layer Chromatography analyses were performed on Analtech Silica Gel HLF (0.25 mm) precoated analytical plates and visualized with use of handheld short wavelength UV light, iodine stain (molecular iodine adsorbed on silica gel) or KMnO_{4} stain $\left(\mathrm{KMnO}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{NaOH}\right.$ and $\left.\mathrm{H}_{2} \mathrm{O}\right)$. HPLC analyses were performed with use of an ISCO model 2360 HPLC and Chiral Technologies, Inc Daicel Chiral HPLC 250 x 4.6 mm columns (column used is indicated below). HPLC grade solvents were used and samples were prepared in the indicated eluent solvent. HPLC analysis is monitored with UV-VIS detector (Shimadzu SPD-10AVP/10AVP, typical $\lambda=210 \mathrm{~nm}$ unless otherwise indicated).

NMR spectra were recorded on 300, 400 or 700 MHz Bruker Advance NMR spectrometers in the deuterated solvent specified. The solvent residual peaks were used for reference and spectra calibration unless otherwise indicated. Rather complex splitting patterns are found in the NMR spectra due to phosphorushydrogen coupling (J_{P-H}) and phosphorus-carbon coupling (J_{C-P}). Phosphorus-carbon coupling is seen up to 5 bonds (${ }^{5} J_{C-P}$); these splitting patterns were resolved and the corresponding coupling constants assigned. The quaternary carbon atoms connected directly to boron in tertiary boronic esters or trifluoroborate salts were not seen in the ${ }^{13} \mathrm{C}$ NMR spectra due to quadrupolar relaxation of boron. Peaks in the NMR spectra are described as s (singlet), br s (broad singlet), d (doublet), t (triplet), q (quartet), quin (quintet), dd (doublet of doublets), m (unresolved multiplet), etc. In several cases, $\mathrm{C}_{6} \mathrm{D}_{6}$ proved to be a superior NMR solvent for resolving the signals for diastereomers in ${ }^{31} \mathrm{P}$ NMR spectra for diastereoenriched chiral boronic esters. However, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are reported only for the major diastereomer.

IR spectra were recorded using an Avatar 360 FT-IR instrument. Optical rotations were typically measured as $1.0 \mathrm{~g} / 100 \mathrm{~mL}$ (i.e., $c=1.0$) solutions in the indicated solvent using an Autopol III automatic polarimeter. Specific rotation values are reported in units of deg $\mathrm{dm}^{-1} \mathrm{~cm}^{3} \mathrm{~g}^{-1}$. EI/ESI-HRMS analyses were carried out by the Nebraska Center for Mass Spectrometry.

The Routine Preparation of Synthetic Precursors. The Supporting Information given below for the preparation and CAHB of allylic phosphonates starts with the allyl bromide. These precursors were obtained either from (1) direct allylic bromination of α-methyl styrene using NBS (for substrate 5a), ${ }^{1}$ or (2) bromination of allylic alcohols using $\mathrm{PBr}_{3}{ }^{2}$ or $\mathrm{NBS} / \mathrm{PPh}_{3}{ }^{.}$The allyl alcohols were obtained either via the CuI-catalyzed addition of the corresponding aryl Grignard reagent to propargyl alcohol ${ }^{4}$ (e.g., for substrates $\mathbf{5 b}-\mathrm{k}$ and $\mathbf{5 n}$) or via Suzuki cross-coupling of the arylboronic acids with 2-iodoprop-2-en-1-ol (e.g., for thiophene derivatives $\mathbf{5 I}$ and $\mathbf{5 m}$; typical conditions: $5 \mathrm{~mol} \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, 2$ eq. $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{EtOH}$ at $70^{\circ} \mathrm{C}$ for 12 hours), or via the Horner-Wadsworth-Emmons olefination of triethyl-2-phosphono-2-(o-tolyl)acetate with formaldehyde ($37 \% \mathrm{w} / \mathrm{w}$ in $\mathrm{H}_{2} \mathrm{O}$) in the case of substrate 50. The allyl alcohol precursors for the β-aryl trisubstituted substrates were derived from the Suzuki cross-coupling reaction of the corresponding (Z) $-\beta$ -iodo- γ-(alkyl/aryl)-2-en-1-ol with the arylboronic acid derivatives for substrates in which the phosphonate and the γ-alkyl chain are trans to each other or via Stille cross coupling (with corresponding aryl bromides; typical conditions: $5 \mathrm{~mol} \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, 2$ eq. $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{EtOH}$ at $70^{\circ} \mathrm{C}$ for 12 hours) for substrates in which the phosphonate and the γ-alkyl chain are cis to each other. The vinyl tin precursors were obtained via Pdcatalyzed hydrostannation of the corresponding alkynyl ester. ${ }^{5}$ The α-vinyl tin allyl esters were reduced to the corresponding alcohols using DIBAL-H prior to their use in Stille cross coupling. Ligand T2 was prepared according to our previously reported procedure. ${ }^{6}$ Davis' Oxaziridine was prepared according to reported protocols. ${ }^{7}$

Comment on the Oxidation. We found that attempted oxidation of the crude CAHB reaction mixture led to unexpected side products and lower yields of the alcohol. In some cases, the boronic esters could not be cleanly separated by flash chromatography; nonetheless, the partially purified mixture of boronic esters and reduced products (if any) could be efficiently oxidized using standard conditions.

Comment on Absolute Configuration. The presence of the 2-thiophene subunit in the beta position of the substrates requires that the typical E-substrate substitution pattern is correctly described as Z since the 2thienyl unit is assigned the highest priority. This also results in a switch from the expected R-configuration of boronic esters obtained using $(R, R)-\mathbf{T} 2$ to S for the 2 -thienyl products.

(2) Synthesis of methylidene substrates

General procedure for the synthesis of conjugated allyl methylidene phosphonates via Michaelis-Arbuzov Rearrangement (GP1). Synthesis of 5a: A mixture of allyl bromide 31a $(1.00 \mathrm{~g}, 5.07 \mathrm{mmol}, 1.00 \mathrm{eq})$ and triethyl phosphite $(0.38 \mathrm{~mL}, 2.20 \mathrm{mmol}, 1.10 \mathrm{eq})$ is heated to reflux for 1 hour. Afterwards, the reaction mixture is cooled down to room temperature and flash chromatography on silica gel (ethyl acetate/hexanes $2: 1$) affords the desired phosphonate substrate $\mathbf{5 a}(1.13 \mathrm{~g}, 88 \%)$ as a colorless viscous oil: TLC analysis (ethyl acetate/hexanes $2: 1) \mathrm{R}_{f}=0.5 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.26\left(5 \mathrm{H}, \mathrm{m}\right.$, aryl), $5.53\left(1 \mathrm{H}, \mathrm{dd}, J=5.5\left({ }^{4} J_{P-H}\right), 0.8\left({ }^{4} J_{H-H}\right) \mathrm{Hz}\right.$, H_{e} or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 5.37\left(1 \mathrm{H}, \mathrm{dd}, J=5.5\left({ }^{4} J_{P-H}\right), 0.8\left({ }^{4} J_{H-H}\right) \mathrm{Hz}, \mathrm{H}_{\mathrm{e}}\right.$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 4.09-3.94(4 \mathrm{H}, \mathrm{m}, \mathrm{b}), 3.08(2 \mathrm{H}$, dd, $\left.J=22.4\left({ }^{2} J_{P-H}\right), 0.8\left({ }^{4} J_{H-H}\right) \mathrm{Hz}, \mathrm{c}\right), 1.21(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{a}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 140.87\left(\mathrm{~d},{ }^{2} J_{C-P}=4.0 \mathrm{~Hz}, \mathrm{~d}\right), 138.89\left(\mathrm{~d},{ }^{3} J_{C-P}=10 \mathrm{~Hz}, \mathrm{f}\right), 128.44$ (aryl), 127.88 (aryl), 126.45 (aryl), 117.33 (d, $\left.{ }^{3} J_{C-P}=11 \mathrm{~Hz}, \mathrm{e}\right), 62.14\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}, \mathrm{~b}\right), 33.18\left(\mathrm{~d},{ }^{1} J_{C-P}=138 \mathrm{~Hz}\right.$, c), $16.44\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a) ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.53 \mathrm{ppm}$; IR (neat) 2981 (aromatic C-H), 2906 (aliphatic C-H), 1624 (C=C), 1250 (P=O), 1052 (C-O), 1020 (C-O), 934 (P$\mathrm{O}) \mathrm{cm}^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{P}=254.1072$, found $254.1071 \mathrm{~m} / \mathrm{z}$.

Synthesis of phosphonate functionalized alkene 5b: Following GP1, allyl bromide 31b (568 $\mathrm{mg}, 2.50 \mathrm{mmol}, 1.00 \mathrm{eq})$ yields the alkene substrate $\mathbf{5 b}(604 \mathrm{mg}, 85 \%)$ as a colorless viscous oil: TLC analysis (ethyl acetate/hexanes 3:1) $\mathrm{R}_{f}=0.5 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(1 \mathrm{H}, \mathrm{t}, J=$ 8.0 Hz , aryl), $7.07-7.03\left(2 \mathrm{H}, \mathrm{m}\right.$, aryl), $6.83\left(1 \mathrm{H}, \mathrm{dd}, J=2.0,0.6 \mathrm{~Hz}\right.$, aryl), $5.52\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=5.6\right.$ $\mathrm{Hz}, \mathrm{H}_{\mathrm{e}}$ or $\mathrm{H}_{\mathrm{e}^{\prime}}$, $5.36\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=5.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right.$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 4.09-3.94(4 \mathrm{H}, \mathrm{m}, \mathrm{b}), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{j}), 3.05$ $\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{P-H}=22.0 \mathrm{~Hz}, \mathrm{c}\right), 1.24(6 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.69$ (h), $142.43\left(\mathrm{~d},{ }^{2} J_{C-P}=4 \mathrm{~Hz}, \mathrm{~d}\right), 138.77$ (d, ${ }^{3} J_{C-P}=10 \mathrm{~Hz}, \mathrm{f}$), 129.39 (aryl), 118.96 (aryl), 117.47 (d, $\left.{ }^{3} J_{C-P}=10 \mathrm{~Hz}, ~ e\right), 113.30$ (aryl), 112.29 (aryl), 62.14 (d, $\left.{ }^{2} J_{C-P}=6 \mathrm{~Hz}, \mathrm{~b}\right), 55.39$ (j), 33.19 (d, $\left.{ }^{1} J_{C-P}=138 \mathrm{~Hz}, \mathrm{c}\right), 16.44\left(\mathrm{~d},{ }^{3} J_{C-P}=6 \mathrm{~Hz}\right.$, a) ppm; ${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.50 \mathrm{ppm}$; IR (neat) 3056 (aromatic C-H), 2980 (aliphatic C-H), 1687 (C=C), 1665 (C=C), 1249 (P=O), 1022 (C-O), 952 (P-O) cm^{-1}; HRMS (EI) calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{P}=284.1177$, found $284.1175 \mathrm{~m} / \mathrm{z}$.

Synthesis of phosphonate functionalized alkene 5c: Following GP1, allyl bromide $\mathbf{3 1 c}$ (568 mg , $2.50 \mathrm{mmol}, 1.00 \mathrm{eq})$ yields the alkene substrate $\mathbf{5 c}(533 \mathrm{mg}, 75 \%)$ as a colorless viscous oil: TLC analysis (ethyl acetate) $\mathrm{R}_{f}=0.5 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{~g}), 6.87$ $(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{~g}), 5.45\left(1 \mathrm{H}, \mathrm{dd}, J=6.4\left({ }^{4} J_{P-H}\right), 0.8\left({ }^{4} J_{H-H}\right) \mathrm{Hz}, \mathrm{H}_{\mathrm{e}}\right.$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 5.26\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=\right.$ $5.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 4.09-3.94(4 \mathrm{H}, \mathrm{m}, \mathrm{b}), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{j}), 3.04\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{P-H}=22.0 \mathrm{~Hz}, \mathrm{c}\right), 1.22(6 \mathrm{H}$, $\mathrm{t}, J=7.2 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.46$ (h), 138.11 (d, $\left.{ }^{3} J_{C-P}=10 \mathrm{~Hz}, \mathrm{f}\right), 133.23$ $\left(\mathrm{d},{ }^{2} J_{C-P}=4 \mathrm{~Hz}, \mathrm{~d}\right), 127.59(\mathrm{~g}), 115.64\left(\mathrm{~d},{ }^{3} J_{C-P}=10 \mathrm{~Hz}, \mathrm{e}\right), 113.75(\mathrm{~h}), 62.14\left(\mathrm{~d},{ }^{2} J_{C-P}=6 \mathrm{~Hz}, \mathrm{~b}\right)$, 55.43 (j), $33.25\left(\mathrm{~d},{ }^{1} J_{C-P}=137 \mathrm{~Hz}, \mathrm{c}\right), 16.47\left(\mathrm{~d},{ }^{3} J_{C-P}=6 \mathrm{~Hz}, \mathrm{a}\right) \mathrm{ppm} ;{ }^{31} \mathrm{P} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 26.72 \mathrm{ppm}$; IR (neat) 3056 (aromatic C-H), 2980 (aliphatic C-H), 1606 (C=C), 1512 (aromatic $\mathrm{C}=\mathrm{C}$), 1246 ($\mathrm{P}=\mathrm{O}$), 1051 (C-O), 1021 (C-O), $958(\mathrm{P}-\mathrm{O}) \mathrm{cm}^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{P}$ $=284.1177$, found $284.1171 \mathrm{~m} / \mathrm{z}$.

Synthesis of phosphonate functionalized alkene 5d: Following GP1, allyl bromide 31d (602 $\mathrm{mg}, 2.50 \mathrm{mmol}, 1.00 \mathrm{eq}$) yields the alkene substrate $\mathbf{5 d}(537 \mathrm{mg}, 72 \%$) as a colorless oil (Note: This substrate is air sensitive and slowly decomposes on exposure to air and turns into a dark brown mass. This compound was stored in vial with airtight screw cap under nitrogen in the freezer): TLC analysis (ethyl acetate) $\mathrm{R}_{f}=0.5 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.00(1 \mathrm{H}, \mathrm{d}, J=2.4$ Hz , aryl), $6.97(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}$, aryl), $6.78(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}$, aryl), $5.96(2 \mathrm{H}, \mathrm{s}, \mathrm{j}), 5.43(1 \mathrm{H}, \mathrm{d}$, ${ }^{4} J_{P-H}=5.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 5.27\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=5.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right.$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 4.11-3.97(4 \mathrm{H}, \mathrm{m}, \mathrm{b}), 3.01(2 \mathrm{H}$, $\left.\mathrm{d},{ }^{2} J_{P-H}=22.4 \mathrm{~Hz}, \mathrm{c}\right), 1.25\left(6 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.85(\mathrm{~h}$ or i), 147.42 (h or i), $138.34\left(\mathrm{~d},{ }^{3} J_{C-P}=10 \mathrm{~Hz}, \mathrm{f}\right), 135.18\left(\mathrm{~d},{ }^{2} J_{C-P}=4 \mathrm{~Hz}, \mathrm{~d}\right), 120.20$ (aryl), 116.28 (d, ${ }^{3} J_{C-P}=11 \mathrm{~Hz}$, e), 108.11 (aryl), 107.04 (aryl), 101.28 (j), 62.19 (d, $\left.{ }^{2} J_{C-P}=7 \mathrm{~Hz}, \mathrm{~b}\right), 33.43$ (d, $\left.{ }^{1} J_{C-P}=138 \mathrm{~Hz}, \mathrm{c}\right), 16.51\left(\mathrm{~d},{ }^{3} J_{C-P}=6 \mathrm{~Hz}\right.$, a) ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.52 \mathrm{ppm}$; IR (neat) 2980 (aromatic C-H), 2903 (aliphatic C-H), 1604 (C=C), 1489 (aromatic C=C), 1441 (aromatic $\mathrm{C}=\mathrm{C}$), 1231 ($\mathrm{P}=\mathrm{O}$), $1020(\mathrm{C}-\mathrm{O}), 933(\mathrm{P}-\mathrm{O}) \mathrm{cm}^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{P}$ $=298.0970$, found $298.0974 \mathrm{~m} / \mathrm{z}$.

Synthesis of phosphonate functionalized alkene 5e: Following GP1, allyl bromide $\mathbf{3 1 e}$ (563 mg , $2.50 \mathrm{mmol}, 1.00 \mathrm{eq})$ yields the alkene substrate $\mathbf{5 e}(600 \mathrm{mg}, 85 \%)$ as a colorless oil: TLC analysis (ethyl acetate/hexanes 3:1) $\mathrm{R}_{f}=0.5$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.09(2 \mathrm{H}, \mathrm{s}, \mathrm{g}), 6.93(1 \mathrm{H}, \mathrm{s}, \mathrm{i})$, $5.50\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=5.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right.$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 5.33\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=5.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right.$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 4.09-3.95(4 \mathrm{H}, \mathrm{m}$, b), $3.05\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{P-H}=22 \mathrm{~Hz}, \mathrm{c}\right), 2.32(6 \mathrm{H}, \mathrm{s}, \mathrm{j}), 1.23(6 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{a}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.92\left(\mathrm{~d},{ }^{2} J_{C-P}=4.5 \mathrm{~Hz}, \mathrm{~d}\right), 139.00\left(\mathrm{~d},{ }^{3} J_{C-P}=10 \mathrm{~Hz}, \mathrm{f}\right), 137.82$ (h), 129.49 (i),
$124.33(\mathrm{~g}), 116.89\left(\mathrm{~d},{ }^{3} J_{C-P}=10.8 \mathrm{~Hz}, \mathrm{e}\right), 62.09\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}, \mathrm{~b}\right), 33.15\left(\mathrm{~d},{ }^{1} J_{C-P}=138.65, \mathrm{c}\right)$, 21.49 (j), 16.43 (d, ${ }^{3} J_{C-P}=6.5 \mathrm{~Hz}$, a) ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.74 \mathrm{ppm}$; IR (neat) 2979 (aromatic C-H), 2910 (aliphatic C-H), 1599 (C=C), 1252 ($\mathrm{P}=\mathrm{O}$), 1053 (C-O), 1022 (C-O), 953 (P-O) cm^{-1}; HRMS (EI) calculated for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{P}=282.1385$, found $282.1380 \mathrm{~m} / \mathrm{z}$.

Synthesis of phosphonate functionalized alkene 5f: Following GP1, allyl bromide $\mathbf{3 1 f}$ (528 mg , $2.50 \mathrm{mmol}, 1.00 \mathrm{eq}$) yields the alkene substrate $\mathbf{5 f}(610 \mathrm{mg}, 91 \%)$ as a colorless viscous oil: TLC analysis (ethyl acetate/hexanes 3:1) $\mathrm{R}_{f}=0.5 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(2 \mathrm{H}, \mathrm{d}, J=8.0$ Hz, g or h), $7.16\left(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{~g}\right.$ or h), $5.52\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=5.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right.$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 5.33(1 \mathrm{H}, \mathrm{d}$, ${ }^{4} J_{P-H}=5.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 4.10-3.95(4 \mathrm{H}, \mathrm{m}, \mathrm{b}), 3.07\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{P-H}=22.4 \mathrm{~Hz}, \mathrm{c}\right), 2.36(3 \mathrm{H}, \mathrm{s}, \mathrm{j})$, $1.23(6 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{a}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.65\left(\mathrm{~d},{ }^{3} J_{C-P}=10 \mathrm{~Hz}, \mathrm{f}\right), 137.97$ (d, ${ }^{2} J_{C-P}=5 \mathrm{~Hz}, \mathrm{~d}$), 137.74 (i), 129.16 (g or h), 126.34 (g or h), 116.53 ($\mathrm{d},{ }^{3} J_{C-P}=10 \mathrm{~Hz}, \mathrm{e}$), 62.20 (d, $\left.{ }^{2} J_{C-P}=7 \mathrm{~Hz}, \mathrm{~b}\right), 33.18\left(\mathrm{~d},{ }^{1} J_{C-P}=138 \mathrm{~Hz}, \mathrm{c}\right), 21.29(\mathrm{j}), 16.50\left(\mathrm{~d},{ }^{3} J_{C-P}=6 \mathrm{~Hz}, \mathrm{a}\right) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.72 \mathrm{ppm}$; IR (neat) 2980 (aromatic C-H), 2905 (aliphatic C-H), 1621 ($\mathrm{C}=\mathrm{C}$), 1514 (aromatic $\mathrm{C}=\mathrm{C}$), 1391 (aromatic $\mathrm{C}=\mathrm{C}$), 1249 ($\mathrm{P}=\mathrm{O}$), 1052 (C-O), 1021 (C-O), 939 (P-O) $\mathrm{cm}^{-1} ;$ HRMS (EI) calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{P}=268.1228$, found $268.1230 \mathrm{~m} / \mathrm{z}$.

Synthesis of phosphonate functionalized alkene 5g: Following GP1, allyl bromide $\mathbf{3 1 g}$ (663 $\mathrm{mg}, 2.50 \mathrm{mmol}, 1.00 \mathrm{eq})$ yields the alkene substrate $\mathbf{5 g}(580 \mathrm{mg}, 72 \%)$ as a colorless oil: TLC analysis (ethyl acetate/hexanes 2:1) $\mathrm{R}_{f}=0.5 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(4 \mathrm{H}$, s, aryl), 5.59 $\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=5.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right.$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 5.45\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=5.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right.$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 4.10-3.96(4 \mathrm{H}, \mathrm{m}, \mathrm{b}), 3.07$ $\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{P-H}=22 \mathrm{~Hz}, \mathrm{c}\right), 1.22(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{a}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.41$ (d), $138.09\left(\mathrm{~d},{ }^{3} J_{C-P}=11 \mathrm{~Hz}, \mathrm{f}\right), 129.89\left(\mathrm{q},{ }^{2} J_{C-F}=32 \mathrm{~Hz}, \mathrm{i}\right), 126.86(\mathrm{j}), 125.42\left(\mathrm{q},{ }^{3} J_{C-F}=4 \mathrm{~Hz}\right.$, h), $124.31\left(\mathrm{q},{ }^{1} J_{C-F}=271 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 119.27\left(\mathrm{~d},{ }^{3} J_{C-P}=11 \mathrm{~Hz}, \mathrm{e}\right), 62.26\left(\mathrm{~d},{ }^{2} J_{C-P}=6 \mathrm{~Hz}, \mathrm{~b}\right), 33.21$ (d, $\left.{ }^{1} J_{C-P}=138 \mathrm{~Hz}, \mathrm{c}\right), 16.45\left(\mathrm{~d},{ }^{3} J_{C-P}=6 \mathrm{~Hz}, \mathrm{a}\right) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.83 \mathrm{ppm}$; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.61 \mathrm{ppm}$; IR (neat) 2984 (aromatic C-H), 2907 (aliphatic C-H), 1616 (C=C), 1324 (C-F), 1250 (P=O), 1052 (C-O), 1023 (C-O), 959 (P-O) cm ${ }^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{P}=322.0946$, found $322.0950 \mathrm{~m} / \mathrm{z}$.

Synthesis of phosphonate functionalized alkene 5h: Following GP1, allyl bromide 31h (538 $\mathrm{mg}, 2.50 \mathrm{mmol}, 1.00 \mathrm{eq})$ yields the alkene substrate $\mathbf{5 h}(517 \mathrm{mg}, 76 \%)$ as a colorless oil: TLC
analysis (ethyl acetate/hexanes 2:1) $\mathrm{R}_{f}=0.5$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.44(2 \mathrm{H}, \mathrm{m}, \mathrm{g})$, 7.06-7.00 ($2 \mathrm{H}, \mathrm{m}, \mathrm{h}$), $5.47\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=5.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right.$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 5.33\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=5.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right.$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right)$, 4.10-3.96 (4H, m, b), $3.04\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{P-H}=22 \mathrm{~Hz}, \mathrm{c}\right), 1.23(6 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{a}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.63\left(\mathrm{~d},{ }^{1} J_{C-F}=245 \mathrm{~Hz}, \mathrm{i}\right), 138.00\left(\mathrm{~d},{ }^{3} J_{C-P}=10 \mathrm{~Hz}, \mathrm{f}\right), 136.97\left(\mathrm{~d},{ }^{2} J_{C-P}=\right.$ $4 \mathrm{~Hz}, \mathrm{~d}), 128.21\left(\mathrm{~d},{ }^{3} J_{C-F}=8 \mathrm{~Hz}, \mathrm{~g}\right), 117.31\left(\mathrm{~d},{ }^{3} J_{C-P}=11 \mathrm{~Hz}, \mathrm{e}\right), 115.27\left(\mathrm{~d},{ }^{2} J_{C-F}=21 \mathrm{~Hz}, \mathrm{~h}\right)$, $62.20\left(\mathrm{~d},{ }^{2} J_{C-P}=6 \mathrm{~Hz}, \mathrm{~b}\right), 33.45\left(\mathrm{~d},{ }^{1} J_{C-P}=138 \mathrm{~Hz}, \mathrm{c}\right), 16.49\left(\mathrm{~d},{ }^{3} J_{C-P}=6 \mathrm{~Hz}, \mathrm{a}\right) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.28 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-114.75 \mathrm{ppm}$; IR (neat) 2982 (aromatic C-H), 2907 (aliphatic C-H), 1624 (C=C), 1601 (C=C), 1509 (C-F), 1249 ($\mathrm{P}=\mathrm{O}$), 1052 (C-O), 1022 (C-O), 902 (P-O) cm ${ }^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{FO}_{3} \mathrm{P}=272.0978$, found $272.0982 \mathrm{~m} / \mathrm{z}$.

Synthesis of phosphonate functionalized alkene 5i: Following GP1, allyl bromide $\mathbf{3 1 i}$ (579 mg , $2.50 \mathrm{mmol}, 1.00 \mathrm{eq})$ yields the alkene substrate $\mathbf{5 i}(577 \mathrm{mg}, 80 \%)$ as a colorless oil: TLC analysis (ethyl acetate/hexanes $2: 1$) $\mathrm{R}_{f}=0.6$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{~g}$ or h), $7.29\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{~g}\right.$ or h), $5.50\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=5.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right.$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 5.35\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=5.6\right.$ $\mathrm{Hz}, \mathrm{H}_{\mathrm{e}}$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 4.06-3.96(4 \mathrm{H}, \mathrm{m}, \mathrm{b}), 3.01\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{P-H}=22.4 \mathrm{~Hz}, \mathrm{c}\right), 1.21(6 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{a})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.23\left(\mathrm{~d},{ }^{2} J_{C-P}=4 \mathrm{~Hz}, \mathrm{~d}\right), 137.87\left(\mathrm{~d},{ }^{3} J_{C-P}=10 \mathrm{~Hz}, \mathrm{f}\right)$, 133.72 (i), 128.52 (g or h), 127.78 (g or h), 117.79 (d, $\left.{ }^{3} J_{C-P}=11 \mathrm{~Hz}, \mathrm{e}\right), 62.17\left(\mathrm{~d},{ }^{2} J_{C-P}=7 \mathrm{~Hz}, \mathrm{~b}\right)$, $33.17\left(\mathrm{~d},{ }^{1} J_{C-P}=138 \mathrm{~Hz}, \mathrm{c}\right), 16.44\left(\mathrm{~d},{ }^{3} J_{C-P}=6 \mathrm{~Hz}, \mathrm{a}\right) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.13$ ppm; IR (neat) 2981 (aromatic C-H), 2905 (aliphatic C-H), 1623 (C=C), 1248 (P=O), 1022 (C-O), 940 (P-O), $835(\mathrm{C}-\mathrm{Cl}) \mathrm{cm}^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ClO}_{3} \mathrm{P}=288.0682$, found 288.0690 m / z.

Synthesis of phosphonate functionalized alkene 5j: Following GP1, allyl bromide $\mathbf{3 1 j}$ (579 mg , $2.50 \mathrm{mmol}, 1.00 \mathrm{eq}$) yields the alkene substrate $\mathbf{5 j}$ ($584 \mathrm{mg}, 81 \%$) as a colorless oil: TLC analysis (ethyl acetate/hexanes 2:1) $\mathrm{R}_{f}=0.5 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(1 \mathrm{H}, \mathrm{dd}, J=2.0,0.8 \mathrm{~Hz}$, aryl), 7.39-7.34 ($1 \mathrm{H}, \mathrm{m}$, aryl), 7.29-7.25 ($2 \mathrm{H}, \mathrm{m}$, aryl), $5.53\left(1 \mathrm{H}, \mathrm{dd}, J=5.5\left({ }^{4} J_{P-H}\right), 0.4\left({ }^{4} J_{H-H}\right) \mathrm{Hz}\right.$, H_{e} or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 5.39\left(1 \mathrm{H}, \mathrm{dd}, J=5.6\left({ }^{4} J_{P-H}\right), 0.5\left({ }^{4} J_{H-H}\right) \mathrm{Hz}, \mathrm{H}_{\mathrm{e}}\right.$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 4.10-3.96(4 \mathrm{H}, \mathrm{m}, \mathrm{b}), 3.03(2 \mathrm{H}$, dd, $\left.J=22\left({ }^{2} J_{P-H}\right), 0.8\left({ }^{4} J_{H-H}\right) \mathrm{Hz}, \mathrm{c}\right), 1.23(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{a}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.74$ (d, $\left.{ }^{2} J_{C-P}=4 \mathrm{~Hz}, \mathrm{~d}\right), 137.90\left(\mathrm{~d},{ }^{3} J_{C-P}=10 \mathrm{~Hz}, \mathrm{f}\right), 134.38$ (h), 129.69 (aryl), 127.89 (aryl), 126.72 (aryl), 124.71 (aryl), 118.47 (d, $\left.{ }^{3} J_{C-P}=11 \mathrm{~Hz}, \mathrm{e}\right), 62.21$ (d, $\left.{ }^{2} J_{C-P}=7 \mathrm{~Hz}, \mathrm{~b}\right), 33.15\left(\mathrm{~d},{ }^{1} J_{C-P}\right.$ $=139 \mathrm{~Hz}, \mathrm{c}), 16.45\left(\mathrm{~d},{ }^{3} J_{C-P}=6 \mathrm{~Hz}\right.$, a) ppm; ${ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.96 \mathrm{ppm}$; IR (neat) 2981 (aromatic C-H), 2906 (aliphatic C-H), 1625 (C=C), 1248 ($\mathrm{P}=\mathrm{O}$), 1051 (C-O), 1021 (C-O),

960 (P-O), 788 (C-Cl) cm ${ }^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ClO}_{3} \mathrm{P}=288.0682$, found 288.0691 m / z.

Synthesis of phosphonate functionalized alkene 5k: Following GP1, allyl bromide 31k (690 $\mathrm{mg}, 2.50 \mathrm{mmol}, 1.00 \mathrm{eq})$ yields the alkene substrate $\mathbf{5 k}(616 \mathrm{mg}, 74 \%)$ as a colorless viscous oil: TLC analysis (ethyl acetate/hexanes 3:1) $\mathrm{R}_{f}=0.5 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(2 \mathrm{H}, \mathrm{d}, J=$ 8.8 Hz , g or h), $7.36\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}\right.$, g or h), $5.52\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=5.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right.$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 5.37(1 \mathrm{H}$, $\mathrm{d},{ }^{4} J_{P-H}=5.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 4.10-3.96(4 \mathrm{H}, \mathrm{m}, \mathrm{b}), 3.03\left(2 \mathrm{H}, \mathrm{dd}, J=22.4\left({ }^{2} J_{P-H}\right), 0.8\left({ }^{4} J_{H-H}\right) \mathrm{Hz}, \mathrm{c}\right)$, $1.23(6 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{a}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.75\left(\mathrm{~d},{ }^{2} J_{C-P}=4 \mathrm{~Hz}, \mathrm{~d}\right), 137.98$ (d, $\left.{ }^{3} J_{C-P}=10 \mathrm{~Hz}, \mathrm{f}\right), 131.54$ (g or h), 128.15 (g or h), 121.94 (i), 117.91 ($\mathrm{d},{ }^{3} J_{C-P}=11 \mathrm{~Hz}, \mathrm{e}$), 62.24 $\left(\mathrm{d},{ }^{2} J_{C-P}=7 \mathrm{~Hz}, \mathrm{~b}\right), 33.16\left(\mathrm{~d},{ }^{1} J_{C-P}=139 \mathrm{~Hz}, \mathrm{c}\right), 16.49\left(\mathrm{~d},{ }^{3} J_{C-P}=6 \mathrm{~Hz}\right.$, a) ppm; ${ }^{31} \mathrm{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.15 \mathrm{ppm}$; IR (neat) 2980 (aromatic C-H), 2902 (aliphatic C-H), 1620 ($\mathrm{C}=\mathrm{C}$), 1248 ($\mathrm{P}=\mathrm{O}$), 1052 (C-O), 1021 (C-O), 955 (P-O), 759 (C-Br) cm ${ }^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{BrO}_{3} \mathrm{P}=332.0177$, found $332.0168 \mathrm{~m} / \mathrm{z}$.

Synthesis of phosphonate functionalized alkene 51: Following GP1, allyl bromide $\mathbf{3 1 1}$ (508 mg , $2.50 \mathrm{mmol}, 1.00 \mathrm{eq})$ yields the alkene substrate $\mathbf{5 l}(540 \mathrm{mg}, 83 \%)$ as a light buff colored oil: TLC analysis (ethyl acetate) $\mathrm{R}_{f}=0.5 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19(1 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}, \mathrm{i}), 7.15$ $(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}, \mathrm{~g}), 7.00-6.98(1 \mathrm{H}, \mathrm{m}, \mathrm{h}), 5.61\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=5.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right.$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 5.23(1 \mathrm{H}, \mathrm{d}$, ${ }^{4} J_{P-H}=5.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 4.14-4.00(4 \mathrm{H}, \mathrm{m}, \mathrm{b}), 3.05\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{P-H}=22 \mathrm{~Hz}, \mathrm{c}\right), 1.26(6 \mathrm{H}, \mathrm{t}, J=7.0$ Hz , a) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.60\left(\mathrm{~d},{ }^{2} J_{C-P}=5 \mathrm{~Hz}, \mathrm{~d}\right), 132.33\left(\mathrm{~d},{ }^{3} J_{C-P}=10 \mathrm{~Hz}\right.$, f), 127.63 (h), 125.05 (g), 124.98 (i), $115.56\left(\mathrm{~d},{ }^{3} J_{C-P}=10 \mathrm{~Hz}, ~ e\right), 62.38\left(\mathrm{~d},{ }^{2} J_{C-P}=6 \mathrm{~Hz}, \mathrm{~b}\right), 33.46$ (d, $\left.{ }^{1} J_{C-P}=139 \mathrm{~Hz}, \mathrm{c}\right), 16.53\left(\mathrm{~d},{ }^{3} J_{C-P}=6 \mathrm{~Hz}, \mathrm{a}\right) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.85 \mathrm{ppm}$; IR (neat) 3091 (aromatic C-H), 2980 (aliphatic C-H), 1622 (C=C), 1247 (P=O), 1051 (C-O), 1020 (C-O/C=S), 954 (P-O) cm ${ }^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{PS}=260.0636$, found 260.0630 m / z.

Synthesis of phosphonate functionalized alkene 5m: Following GP1, allyl bromide 31m (508 $\mathrm{mg}, 2.50 \mathrm{mmol}, 1.00 \mathrm{eq})$ yields the alkene substrate $\mathbf{5 m}(555 \mathrm{mg}, 85 \%)$ as a light buff oil: TLC analysis (ethyl acetate) $\mathrm{R}_{f}=0.6 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(1 \mathrm{H}, \mathrm{s}, \mathrm{i}), 7.28-7.25(2 \mathrm{H}, \mathrm{m}$, $\mathrm{g}+\mathrm{h}), 5.57\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=5.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right.$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 5.28\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=5.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right.$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 4.12-4.98(4 \mathrm{H}$,
$\mathrm{m}, \mathrm{b}), 3.02\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{P-H}=22 \mathrm{~Hz}, \mathrm{c}\right), 1.25(6 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{a}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.96\left(\mathrm{~d},{ }^{2} J_{C-P}=4 \mathrm{~Hz}, \mathrm{~d}\right), 133.37\left(\mathrm{~d},{ }^{3} J_{C-P}=11 \mathrm{~Hz}, \mathrm{f}\right), 125.94(\mathrm{~g}$ or h), $125.77(\mathrm{~g}$ or h), 121.97 (i), $115.87\left(\mathrm{~d},{ }^{3} J_{C-P}=11 \mathrm{~Hz}, \mathrm{e}\right), 62.27\left(\mathrm{~d},{ }^{2} J_{C-P}=7 \mathrm{~Hz}, \mathrm{~b}\right), 33.59\left(\mathrm{~d},{ }^{1} J_{C-P}=138 \mathrm{~Hz}, \mathrm{c}\right), 16.49(\mathrm{~d}$, $\left.{ }^{3} J_{C-P}=7 \mathrm{~Hz}, \mathrm{a}\right) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.63 \mathrm{ppm}$; IR (neat) 3090 (aromatic C-H), 2978 (aliphatic C-H), 1621 (C=C), 1250 ($\mathrm{P}=\mathrm{O}$), 1052 (C-O), 1020 (C-O/C=S), 955 (P-O) cm ${ }^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{PS}=260.0636$, found $260.0630 \mathrm{~m} / \mathrm{z}$.

Synthesis of phosphonate functionalized alkene 5n: Following GP1, allyl bromide 31n (528 $\mathrm{mg}, 2.50 \mathrm{mmol}, 1.00 \mathrm{eq})$ yields the alkene substrate $\mathbf{5 n}(590 \mathrm{mg}, 88 \%)$ as a colorless oil: TLC analysis (ethyl acetate/hexanes 2:1) $\mathrm{R}_{f}=0.5$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21-7.13(4 \mathrm{H}, \mathrm{m}$, aryl), $5.50\left(1 \mathrm{H}, \mathrm{d}, J=5.2\left({ }^{4} J_{P-H}\right), 1.0\left({ }^{4} J_{H-H}\right) \mathrm{Hz}, \mathrm{H}_{\mathrm{e}}\right.$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 5.13\left(1 \mathrm{H}, \mathrm{d}, J=5.0\left({ }^{4} J_{P-H}\right), 1.2\left({ }^{4} J_{H-H}\right)\right.$ $\mathrm{Hz}, \mathrm{H}_{\mathrm{e}}$ or $\left.\mathrm{H}_{\mathrm{e}}\right), 4.05-3.88(4 \mathrm{H}, \mathrm{m}, \mathrm{b}), 2.95\left(2 \mathrm{H}, \mathrm{dd}, J=22\left({ }^{2} J_{P-H}\right), 1.0\left({ }^{4} J_{H-H}\right) \mathrm{Hz}, \mathrm{c}\right), 1.20(6 \mathrm{H}, \mathrm{t}, J$ $=7.0 \mathrm{~Hz}, \mathrm{a}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.15\left(\mathrm{~d},{ }^{2} J_{C-P}=5 \mathrm{~Hz}, \mathrm{~d}\right), 139.73\left(\mathrm{~d},{ }^{3} J_{C-P}=10\right.$ $\mathrm{Hz}, \mathrm{f}), 134.98$ (g), 130.34 (aryl), 128.76 (aryl), 127.41 (aryl), 125.64 (aryl), 119.59 (d, ${ }^{3} J_{C-P}=11$ $\mathrm{Hz}, \mathrm{e}), 61.87\left(\mathrm{~d},{ }^{2} J_{C-P}=7 \mathrm{~Hz}, \mathrm{~b}\right), 35.01\left(\mathrm{~d},{ }^{1} J_{C-P}=137 \mathrm{~Hz}, \mathrm{c}\right), 20.09(\mathrm{j}), 16.40\left(\mathrm{~d},{ }^{3} J_{C-P}=7 \mathrm{~Hz}, \mathrm{a}\right)$ ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.25 \mathrm{ppm}$; IR (neat) 2980 (aromatic C-H), 2906 (aliphatic $\mathrm{C}-\mathrm{H}), 1633(\mathrm{C}=\mathrm{C}), 1251$ ($\mathrm{P}=\mathrm{O}$), 1052 (C-O), 1022 (C-O), 958 (P-O) cm ${ }^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{P}=268.1228$, found $268.1226 \mathrm{~m} / \mathrm{z}$.

Synthesis of phosphonate functionalized alkene 50: Following GP1, allyl bromide 310 (568 $\mathrm{mg}, 2.50 \mathrm{mmol}, 1.00 \mathrm{eq})$ yields the alkene substrate $\mathbf{5 0}(570 \mathrm{mg}, 80 \%)$ as a colorless oil: TLC analysis (ethyl acetate/hexanes 3:1) $\mathrm{R}_{f}=0.5 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.30(2 \mathrm{H}, \mathrm{m}$, aryl), 6.95-6.87 $(1 \mathrm{H}, \mathrm{m}$, aryl $), 6.86(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{~h}), 5.38-5.36\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{e}}\right.$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 5.25(1 \mathrm{H}$, dd, $J=5.0\left({ }^{4} J_{P-H}\right), 1.6\left({ }^{4} J_{H-H}\right) \mathrm{Hz}, \mathrm{H}_{\mathrm{e}}$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 3.18\left(2 \mathrm{H}, \mathrm{dd}, J=21.6\left({ }^{2} J_{P-H}\right), 1.0\left({ }^{4} J_{H-H}\right) \mathrm{Hz}, \mathrm{c}\right), 1.70$ $(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{a}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.53(\mathrm{~g}), 139.39\left(\mathrm{~d},{ }^{3} J_{C-P}=10 \mathrm{~Hz}, \mathrm{f}\right)$, 131.15 (d, $\left.{ }^{2} J_{C-P}=4 \mathrm{~Hz}, \mathrm{~d}\right), 130.75$ (aryl), 129.11 (aryl), 120.79 (aryl), 119.45 (d, $\left.{ }^{3} J_{C-P}=12 \mathrm{~Hz}, \mathrm{e}\right)$, $110.57(\mathrm{~h}), 61.73\left(\mathrm{~d},{ }^{2} J_{C-P}=6 \mathrm{~Hz}, \mathrm{~b}\right), 55.53(\mathrm{j}), 33.48\left(\mathrm{~d},{ }^{1} J_{C-P}=137 \mathrm{~Hz}, \mathrm{c}\right), 16.40\left(\mathrm{~d},{ }^{3} J_{C-P}=6 \mathrm{~Hz}\right.$, a) ppm; ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.34 \mathrm{ppm}$; IR (neat) 2980 (aromatic C-H), 2905 (aliphatic C-H), 1629 (C=C), 1598 (C=C), 1241 ($\mathrm{P}=\mathrm{O}$), 1047 (C-O), 1021 (C-O), 957 (P-O) cm ${ }^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{P}=284.1177$, found $284.1167 \mathrm{~m} / \mathrm{z}$.

Synthesis of phosphonate functionalized alkene 7: Following GP1, allyl bromide $32(527 \mathrm{mg}$, $2.50 \mathrm{mmol}, 1.00 \mathrm{eq})$ yields the alkene substrate $7(543 \mathrm{mg}, 81 \%)$ as a colorless oil: TLC analysis (ethyl acetate/hexanes 3:1) $\mathrm{R}_{f}=0.5 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.21(5 \mathrm{H}, \mathrm{m}$, aryl), 5.06 $\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=5.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right.$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 4.98\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=5.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right.$ or $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 4.17-4.08(4 \mathrm{H}, \mathrm{m}, \mathrm{b}), 3.53$ $(2 \mathrm{H}, \mathrm{s}, \mathrm{f}), 2.52\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{P-H}=22 \mathrm{~Hz}, \mathrm{c}\right), 1.33(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{a}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 139.60\left(\mathrm{~d},{ }^{2} J_{C-P}=11 \mathrm{~Hz}, \mathrm{~d}\right), 138.94$ (g), 129.29 (aryl), 128.51 (aryl), 126.46 (aryl), $116.50\left(\mathrm{~d},{ }^{3} J_{C-P}=11 \mathrm{~Hz}, \mathrm{e}\right), 62.00\left(\mathrm{~d},{ }^{2} J_{C-P}=7 \mathrm{~Hz}, \mathrm{~b}\right), 43.40\left(\mathrm{~d},{ }^{3} J_{C-P}=4 \mathrm{~Hz}, \mathrm{f}\right), 32.91\left(\mathrm{~d},{ }^{1} J_{C-P}=\right.$ $137 \mathrm{~Hz}, \mathrm{c}), 16.56\left(\mathrm{~d},{ }^{3} J_{C-P}=6 \mathrm{~Hz}\right.$, a) ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.02 \mathrm{ppm}$; IR (neat) 2981 (aromatic C-H), 2904 (aliphatic C-H), 1645 (C=C), 1247 ($\mathrm{P}=\mathrm{O}$), 1052 (C-O), 1023 (C-O), 956 (P-O) cm ${ }^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{P}=268.1228$, found $268.1231 \mathrm{~m} / \mathrm{z}$.

Synthesis of homoallylic phosphonate substrate 10: This synthesis was carried out according to our previously reported procedure. ${ }^{6}$ Allyl bromide 31a ($492 \mathrm{mg}, 2.50 \mathrm{mmol}, 1.10 \mathrm{eq}$) yields the homoallylic phosphonate $\mathbf{1 0}$ ($470 \mathrm{mg}, 70 \%$) as a colorless oil: TLC analysis (ethyl acetate/hexanes 3:1) $\mathrm{R}_{f}=0.5 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.28\left(5 \mathrm{H}, \mathrm{m}\right.$, aryl), $5.32\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{f}}\right.$ or $\left.\mathrm{H}_{\mathrm{f}}\right), 5.12$ $\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{H-H}=1.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{f}}\right.$ or $\left.\mathrm{H}_{\mathrm{f}}\right), 4.14-4.07(4 \mathrm{H}, \mathrm{m}, \mathrm{b}), 2.84-2.78(2 \mathrm{H}, \mathrm{m}, \mathrm{d}), 1.94-1.85(2 \mathrm{H}, \mathrm{m}, \mathrm{c})$, $1.34(6 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{a}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.45\left(\mathrm{~d},{ }^{3} J_{C-P}=19 \mathrm{~Hz}, \mathrm{e}\right), 140.27$ (g), 128.60 (aryl), 127.84 (aryl), 126.23 (aryl), 112.76 (f), 61.70 ($\mathrm{d},{ }^{2} J_{C-P}=7 \mathrm{~Hz}, \mathrm{~b}$), 28.29 (d, ${ }^{2} J_{C-}$ $\left.{ }_{P}=4 \mathrm{~Hz}, \mathrm{~d}\right), 24.96\left(\mathrm{~d},{ }^{1} J_{C-P}=140 \mathrm{~Hz}, \mathrm{c}\right), 16.64\left(\mathrm{~d},{ }^{3} J_{C-P}=6 \mathrm{~Hz}, \mathrm{a}\right) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $(162 \mathrm{MHz}$, CDCl_{3}) $\delta 31.46 \mathrm{ppm}$; IR (neat) 3082 (aromatic C-H), 2980 (aliphatic C-H), 1629 (C=C), 1243 ($\mathrm{P}=\mathrm{O}$), 1054 (C-O), $1024(\mathrm{C}-\mathrm{O}), 958(\mathrm{P}-\mathrm{O}) \mathrm{cm}^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{P}=$ 268.1228, found $268.1232 \mathrm{~m} / \mathrm{z}$.

(3) Synthesis of conjugated (β-aryl) trisubstituted substrates

Synthesis of phosphonate functionalized alkene (\boldsymbol{Z})-15a: The substrates in this class of trisubstituted alkenes were prepared according to our previously reported synthesis of trialkyl substituted allyl alkenes (GP2). ${ }^{6}$ Following GP2, allyl bromide (E)-33a ($317 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00$ eq) yields the alkene substrate $(Z) \mathbf{- 1 5 a}(326 \mathrm{mg}, 87 \%)$ as a colorless oil: TLC analysis (ethyl acetate/hexanes 3:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+25.0^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29$ $(1 \mathrm{H}, \mathrm{dd}, J=5.2,1.2 \mathrm{~Hz}, \mathrm{n}), 7.07(1 \mathrm{H}, \mathrm{dd}, J=3.6,0.8 \mathrm{~Hz}, \mathrm{l}), 7.02(1 \mathrm{H}, \mathrm{dd}, J=5.2,3.6 \mathrm{~Hz}, \mathrm{~m})$, $5.79(1 \mathrm{H}, \mathrm{dd}, J=12.8,7.0 \mathrm{~Hz}, \mathrm{e}), 4.21-3.96\left(6 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}^{\prime}+\mathrm{g}+\mathrm{h}(1 \mathrm{H})\right), 3.57(1 \mathrm{H}, \mathrm{dd}, J=8.0,7.0 \mathrm{~Hz}$, $\mathrm{h}(1 \mathrm{H})), 2.99\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{P-H}=21.6 \mathrm{~Hz}, \mathrm{c}\right), 2.64-2.58(2 \mathrm{H}, \mathrm{m}, \mathrm{f}), 1.42(3 \mathrm{H}, \mathrm{s}, \mathrm{j}$ or j '), $1.36(3 \mathrm{H}, \mathrm{s}, \mathrm{j}$ or $\left.\mathrm{j}^{\prime}\right), 1.24\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a'), $1.23\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 141.46\left(\mathrm{~d},{ }^{2} J_{C-P}=4.0 \mathrm{~Hz}, \mathrm{~d}\right), 128.87\left(\mathrm{~d},{ }^{3} J_{C-P}=11 \mathrm{~Hz}, \mathrm{e}\right), 127.06(1 \mathrm{or} \mathrm{m}), 126.98(1 \mathrm{or}$ m), 126.12 (d, $\left.{ }^{3} J_{C-P}=11 \mathrm{~Hz}, \mathrm{k}\right), 125.35$ (n), 109.25 (i), 75.62 (d, $\left.{ }^{5} J_{C-P}=3 \mathrm{~Hz}, \mathrm{~g}\right), 69.17$ (h), 62.10 (d, ${ }^{2} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{~b}+\mathrm{b}$) $, 37.15\left(\mathrm{~d},{ }^{1} J_{C-P}=138 \mathrm{~Hz}, \mathrm{c}\right), 34.02\left(\mathrm{~d},{ }^{4} J_{C-P}=2.0 \mathrm{~Hz}, \mathrm{f}\right), 27.05\left(\mathrm{j}\right.$ or j$\left.{ }^{\prime}\right)$, 25.84 (j or j'), 16.53 ($\left.\mathrm{d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{a}+\mathrm{a}^{\prime}\right) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.20 \mathrm{ppm}$; Proof of stereochemistry: Strong NOE is observed between vinyl hydrogen $\left(\mathrm{H}_{\mathrm{e}}\right)$ and the methylene hydrogens adjacent to phosphonate functionality $\left(\mathrm{H}_{\mathrm{c}}\right)$. IR (neat) 2983 (aromatic C-H), 2905 (aliphatic C-H), 1368 (aromatic $\mathrm{C}=\mathrm{C}$), 1248 ($\mathrm{P}=\mathrm{O}$), 1022 (C-O), 958 (P-O) cm^{-1}; HRMS (ESI) calculated for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{PS}+\mathrm{Na}^{+}=397.1215$, found $397.1218 \mathrm{~m} / \mathrm{z}$.

Synthesis of phosphonate functionalized alkene (E)-15a: Following GP2, allyl bromide (Z)33a ($158 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.00 \mathrm{eq}$) yields the alkene substrate $(E) \mathbf{- 1 5 a}(150 \mathrm{mg}, 80 \%)$ as a colorless oil: TLC analysis (ethyl acetate/hexanes 3:1) $\mathrm{R}_{f}=0.5 ;[\alpha]{ }_{\mathrm{D}}{ }^{20}=+7.0^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{n}), 7.09(1 \mathrm{H}, \mathrm{d}, J=3.5 \mathrm{~Hz}, \mathrm{l}), 6.96(1 \mathrm{H}, \mathrm{dd}, J=5.0$, $3.5 \mathrm{~Hz}, \mathrm{~m}), 6.12(1 \mathrm{H}, \mathrm{dd}, J=13.5,7.0 \mathrm{~Hz}, \mathrm{e}), 4.29-4.23(1 \mathrm{H}, \mathrm{m}, \mathrm{g}), 4.10-3.95(5 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}+\mathrm{h}(1 \mathrm{H}))$, $3.65(1 \mathrm{H}, \mathrm{dd}, J=8.0,7.0 \mathrm{~Hz}, \mathrm{~h}(1 \mathrm{H})), 3.08\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{P-H}=22.0 \mathrm{~Hz}, \mathrm{c}\right), 2.66-2.53(2 \mathrm{H}, \mathrm{m}, \mathrm{f}), 1.45$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{j}\right.$ or $\left.\mathrm{j}^{\prime}\right), 1.37(3 \mathrm{H}, \mathrm{s}, \mathrm{j}$ or j'), $1.22(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{a}$ or a'), $1.21(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{a}$ or a') ppm; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.93\left(\mathrm{~d},{ }^{3} J_{C-P}=3.0 \mathrm{~Hz}, \mathrm{~d}\right), 127.46(\mathrm{~m}), 126.29\left(\mathrm{~d},{ }^{3} J_{C-P}=\right.$
$11.0 \mathrm{~Hz}, \mathrm{e} \& \mathrm{k}$), 124.00 (l), 123.97 (n), 109.24 (i), 75.34 (d, $\left.{ }^{5} J_{C-P}=3.0 \mathrm{~Hz}, \mathrm{~g}\right), 69.05$ (h), 62.27 (d, ${ }^{2} J_{C-P}=6.0 \mathrm{~Hz}$, b or b'), $62.23\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $33.17\left(\mathrm{~d},{ }^{4} J_{C-P}=3.0 \mathrm{~Hz}, \mathrm{f}\right), 29.58\left(\mathrm{~d},{ }^{1} J_{C-}\right.$ $\left.{ }_{P}=140 \mathrm{~Hz}, \mathrm{c}\right), 27.04\left(\mathrm{j}\right.$ or j'), $25.80\left(\mathrm{j}\right.$ or $\left.\mathrm{j}^{\prime}\right), 16.48\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{a}+\mathrm{a}^{\prime}\right) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.78 \mathrm{ppm}$; Proof of stereochemistry: Strong NOE is observed between methylene hydrogens H_{f} and the methylene hydrogens adjacent to phosphonate functionality H_{c}. IR (neat) 2985 (aromatic C-H), 2903 (aliphatic C-H), 1370 (aromatic C=C), 1248 ($\mathrm{P}=\mathrm{O}$), 1023 (C-O), 957 (P-O) cm^{-1}; HRMS (ESI) calculated for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{PS}+\mathrm{Na}^{+}=397.1215$, found $397.1214 \mathrm{~m} / \mathrm{z}$.

Synthesis of phosphonate functionalized alkene (\boldsymbol{Z})-15b: Following GP2, allyl bromide (E) $\mathbf{3 3 b}(307 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00 \mathrm{eq})$ yields the alkene substrate $(Z) \mathbf{- 1 5 b}(295 \mathrm{mg}, 81 \%)$ as a colorless oil: TLC analysis (ethyl acetate/hexanes 3:1) $\mathrm{R}_{f}=0.5 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.26$ $(3 \mathrm{H}, \mathrm{m}$, aryl), $7.22-7.18(3 \mathrm{H}, \mathrm{m}$, aryl), $7.02-7.00(2 \mathrm{H}, \mathrm{m}, \mathrm{m}+\mathrm{n}), 5.82(1 \mathrm{H}, \mathrm{dd}, J=12.5,7.0 \mathrm{~Hz}, \mathrm{e})$, 4.08-3.92 ($4 \mathrm{H}, \mathrm{m}, \mathrm{b}$), $2.98\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{P-H}=21.5 \mathrm{~Hz}, \mathrm{c}\right), 2.78(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{~g}), 2.68-2.61(2 \mathrm{H}$, $\mathrm{m}, \mathrm{f}), 1.23\left(6 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.75\left(\mathrm{~d},{ }^{2} J_{C-P}=4.0 \mathrm{~Hz}\right.$, d), 141.65 (h), 133.49 (d, ${ }^{3} J_{C-P}=11.0 \mathrm{~Hz}$, e), 128.63 (aryl), 128.52 (aryl), 126.85 (aryl), 126.70 (aryl), 126.10 (aryl), 125.07 (aryl), 124.02 (d, ${ }^{3} J_{C-P}=11.0 \mathrm{~Hz}, \mathrm{l}$), 62.04 (d, $\left.{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}, \mathrm{~b}\right), 36.90$ $\left(\mathrm{d},{ }^{1} J_{C-P}=139 \mathrm{~Hz}, \mathrm{c}\right), 36.00\left(\mathrm{~d},{ }^{5} J_{C-P}=3.5 \mathrm{~Hz}, \mathrm{~g}\right), 31.66\left(\mathrm{~d},{ }^{4} J_{C-P}=3.0 \mathrm{~Hz}, \mathrm{f}\right), 16.51\left(\mathrm{~d},{ }^{3} J_{C-P}=6.5\right.$ Hz , a) ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.55 \mathrm{ppm}$; IR (neat) 2983 (aromatic C-H), 2904 (aliphatic C-H), $1605(\mathrm{C}=\mathrm{C}), 1494$ (aromatic $\mathrm{C}=\mathrm{C}$), 1368 (aromatic $\mathrm{C}=\mathrm{C}$), $1249(\mathrm{P}=\mathrm{O}), 1023(\mathrm{C}-$ O), 957 (P-O) cm ${ }^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{PS}=364.1262$, found $364.1253 \mathrm{~m} / \mathrm{z}$.

Synthesis of phosphonate functionalized alkene (Z)-15c: Following GP2, allyl bromide (E)-33c $(327 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00 \mathrm{eq})$ yields the alkene substrate $(Z) \mathbf{- 1 5 c}(308 \mathrm{mg}, 80 \%)$ as a light buff oil: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+24.1^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.25(1 \mathrm{H}, \mathrm{m}, \mathrm{q}), 7.04-7.00(2 \mathrm{H}, \mathrm{m}, \mathrm{o}+\mathrm{p}), 5.78(1 \mathrm{H}, \mathrm{dd}, J=13.0,7.0 \mathrm{~Hz}$, e), $5.09(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{k}), 4.08-3.93(4 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b} '), 2.98\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{P-H}=21.2 \mathrm{~Hz}, \mathrm{c}\right), 2.35-2.11$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{f}), 2.05-1.89(2 \mathrm{H}, \mathrm{m}, \mathrm{j}), 1.68(3 \mathrm{H}, \mathrm{s}, \mathrm{m}$ or m'), 1.63-1.55(1H, m, g), $1.60(3 \mathrm{H}, \mathrm{s}, \mathrm{m}$ or m'), $1.42-1.32(1 \mathrm{H}, \mathrm{m}, \mathrm{i}), 1.23(6 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{a}+\mathrm{a}), 1.26-1.13(1 \mathrm{H}, \mathrm{m}, \mathrm{i}), 0.92(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}$, h) $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.12\left(\mathrm{~d},{ }^{2} J_{C-P}=4.0 \mathrm{~Hz}, \mathrm{~d}\right), 133.82\left(\mathrm{~d},{ }^{3} J_{C-P}=11.0 \mathrm{~Hz}\right.$, e), 131.35 (l), 126.75 (o or p), 126.64 (o or p), $124.91(\mathrm{k}), 126.64\left(\mathrm{~d},{ }^{4} J_{C-P}=1.0 \mathrm{~Hz}, \mathrm{o}\right), 123.74(\mathrm{~d}$, $\left.{ }^{3} J_{C-P}=11.0 \mathrm{~Hz}, \mathrm{n}\right), 61.98\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}, \mathrm{~b}+\mathrm{b}\right.$ '), $36.98\left(\mathrm{~d},{ }^{1} J_{C-P}=137 \mathrm{~Hz}, \mathrm{c}\right), 36.99\left(\mathrm{~d},{ }^{4} J_{C-P}=\right.$ $3.0 \mathrm{~Hz}, \mathrm{f}), 36.97$ (i), 33.49 (d, ${ }^{5} J_{C-P}=3.0 \mathrm{~Hz}, \mathrm{~g}$), 25.89 (m or m'), 25.74 (j), 19.74 (h), 17.81 (m or
$\left.\mathrm{m}^{\prime}\right), 16.51\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{~d}\right) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.77 \mathrm{ppm}$; IR (neat) 2963 (aromatic C-H), 2907 (aliphatic C-H), 1440 (aromatic $\mathrm{C}=\mathrm{C}$), 1377 (aromatic $\mathrm{C}=\mathrm{C}$), $1252(\mathrm{P}=\mathrm{O}$), 1051 (C-O), 1025 (C-O), 957 (P-O) cm ${ }^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{PS}=384.1888$, found $384.1897 \mathrm{~m} / \mathrm{z}$.

Synthesis of phosphonate functionalized alkene (E)-15d: Following GP2, allyl bromide (E)33d $(367 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00 \mathrm{eq})$ yields the alkene substrate (Z) - $\mathbf{1 5 d}(378 \mathrm{mg}, 89 \%)$ as a colorless oil: TLC analysis (ethyl acetate) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+13.8^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(700 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.81(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{q}), 7.76(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{l}), 7.37-7.29(3 \mathrm{H}, \mathrm{m}, \mathrm{n}+\mathrm{o}+\mathrm{p}), 5.93$ $(1 \mathrm{H}, \mathrm{dd}, J=12.6,7.0 \mathrm{~Hz}, \mathrm{e}), 7.23-7.20(1 \mathrm{H}, \mathrm{m}, \mathrm{g}), 4.08-4.00(5 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}+\mathrm{h}(1 \mathrm{H})), 3.59(1 \mathrm{H}, \mathrm{dd}$, $\left.J=7.7,7.0 \mathrm{~Hz}, \mathrm{~h}(1 \mathrm{H})), 3.05\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{P-H}=21 \mathrm{~Hz}, \mathrm{c}\right), 2.71-2.61(2 \mathrm{H}, \mathrm{m}, \mathrm{f}), 1.43(3 \mathrm{H}, \mathrm{s}, \mathrm{j} \text { or j})^{\prime}\right)$, $1.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{j}\right.$ or j '), $1.24-1.21(6 \mathrm{H}, \mathrm{m}, \mathrm{a}+\mathrm{a}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.67\left(\mathrm{~d},{ }^{2} J_{C-P}\right.$ $=3.5 \mathrm{~Hz}, \mathrm{~d}), 139.90(\mathrm{~m}$ or $r), 139.70(\mathrm{~m}$ or $r), 130.70\left(\mathrm{~d},{ }^{3} J_{C-P}=10.5 \mathrm{~Hz}, \mathrm{e}\right), 126.51\left(\mathrm{~d},{ }^{3} J_{C-P}=\right.$ $10.5 \mathrm{~Hz}, \mathrm{k}$), 124.58 (aryl), 123.83 (aryl), 123.79 (aryl), 122.20 (q), 109.32 (i), 75.55 (d, ${ }^{5} J_{C-P}=$ $1.72 \mathrm{~Hz}, \mathrm{~g}), 69.18(\mathrm{~h}), 62.21\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $62.19\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $36.78(\mathrm{~d}$, $\left.{ }^{1} J_{C-P}=136.5 \mathrm{~Hz}, \mathrm{c}\right), 34.06\left(\mathrm{~d},{ }^{4} J_{C-P}=1.75 \mathrm{~Hz}, \mathrm{f}\right), 27.06\left(\mathrm{j}\right.$ or j'), $25.84\left(\mathrm{j}\right.$ or j'), $16.55\left(\mathrm{~d},{ }^{3} J_{C-P}=7.0\right.$ Hz , a or a'), $16.53\left(\mathrm{~d},{ }^{3} J_{C-P}=7.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.96 \mathrm{ppm}$; IR (neat) 2982 (aromatic C-H), 2904 (aliphatic C-H), 1661 (C=C), 1456 (aromatic C=C), 1437 (aromatic $\mathrm{C}=\mathrm{C}), 1248(\mathrm{P}=\mathrm{O}), 1052(\mathrm{C}-\mathrm{O}), 1022(\mathrm{C}-\mathrm{O}), 958(\mathrm{P}-\mathrm{O}) \mathrm{cm}^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{PS}=424.1473$, found $424.1453 \mathrm{~m} / \mathrm{z}$.

Synthesis of phosphonate functionalized alkene (E)-15e: Following GP2, allyl bromide (E)-33e ($351 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00 \mathrm{eq}$) yields the alkene substrate $(E)-\mathbf{1 5 e}(319 \mathrm{mg}, 78 \%)$ as a colorless oil: TLC analysis (ethyl acetate) $\mathrm{R}_{f}=0.6 ;[\alpha]_{\mathrm{D}}{ }^{20}=+5.45^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (700 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.57(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{n}), 7.46(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{q}), 7.31-7.28(1 \mathrm{H}, \mathrm{m}, o$ or q), 7.24 $(1 \mathrm{H}, \mathrm{dd}, J=7.7,7.0 \mathrm{~Hz}, o$ or q), $6.82(1 \mathrm{H}, \mathrm{s}, \mathrm{l}), 5.90(1 \mathrm{H}, \mathrm{dd}, J=12.6,7.0 \mathrm{~Hz}, \mathrm{e}), 4.32-4.28(1 \mathrm{H}$, $\mathrm{m}, \mathrm{g}), 4.11(1 \mathrm{H}, \mathrm{dd}, J=7.7,6.3 \mathrm{~Hz}, \mathrm{~h}(1 \mathrm{H})), 4.09-4.00(4 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}), 3.67(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}$, $\mathrm{h}(1 \mathrm{H})), 3.08\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{P-H}=21.7 \mathrm{~Hz}, \mathrm{c}\right), 2.94-2.87(2 \mathrm{H}, \mathrm{m}, \mathrm{f}), 1.46(3 \mathrm{H}, \mathrm{s}, \mathrm{j}$ or j'), $1.39(3 \mathrm{H}, \mathrm{s}, \mathrm{j}$ or $\left.\mathrm{j}^{\prime}\right), 1.23-1.20\left(6 \mathrm{H}, \mathrm{m}, \mathrm{a}+\mathrm{a}^{\prime}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.63\left(\mathrm{~d},{ }^{2} J_{C-P}=4.50 \mathrm{~Hz}, \mathrm{~d}\right)$,
$154.45(\mathrm{r}), 130.90\left(\mathrm{~d},{ }^{3} J_{C-P}=11.0 \mathrm{~Hz}, \mathrm{e}\right), 128.56(\mathrm{~m}), 124.79(o$ or p), 123.11 (o or p), 122.27 (d, $\left.{ }^{3} J_{C-P}=10.5 \mathrm{~Hz}, \mathrm{k}\right), 121.28(\mathrm{n}), 111.22(\mathrm{q}), 109.34$ (i), 106.50 (l), $75.65\left(\mathrm{~d},{ }^{5} J_{C-P}=3.5 \mathrm{~Hz}, \mathrm{~g}\right), 69.23$ (h), $62.22\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}, \mathrm{~b}+\mathrm{b}^{\prime}\right), 34.11\left(\mathrm{~d},{ }^{4} J_{C-P}=1.75 \mathrm{~Hz}, \mathrm{f}\right), 33.24\left(\mathrm{~d},{ }^{1} J_{C-P}=140 \mathrm{~Hz}, \mathrm{c}\right), 27.11$ (j or j'), 25.89 (j or j'), 16.54 (d, $\left.{ }^{3} J_{C-P}=6.50 \mathrm{~Hz}, \mathrm{a}+\mathrm{a}^{\prime}\right) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.35$ ppm; IR (neat) 2981 (aromatic C-H), 2904 (aliphatic C-H), 1474 (aromatic C=C), 1369 (aromatic $\mathrm{C}=\mathrm{C}$), 1252 ($\mathrm{P}=\mathrm{O}$), 1048 (C-O), $1022(\mathrm{C}-\mathrm{O}), 960(\mathrm{P}-\mathrm{O}) \mathrm{cm}^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{P}$ $=408.1702$, found $408.1710 \mathrm{~m} / \mathrm{z}$.

Synthesis of phosphonate functionalized alkene (\boldsymbol{E})-15f: Following GP2, allyl bromide (E)-33f ($311 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00 \mathrm{eq}$) yields the alkene substrate $(E)-\mathbf{1 5 f}(313 \mathrm{mg}, 85 \%)$ as a colorless oil: TLC analysis (ethyl acetate/hexanes 3:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+17.9^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (700 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.24(5 \mathrm{H}, \mathrm{m}$, aryl), $5.75(1 \mathrm{H}, \mathrm{dd}, J=13.3,7 \mathrm{~Hz}, \mathrm{e}), 4.12-4.09(1 \mathrm{H}, \mathrm{m}, \mathrm{g})$, 4.00-3.89 (5H, m, b+b'+h(1H)), 3.49 (1H, t, J = 7.7 Hz, h(1H)), $2.95\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{P-H}=21.7 \mathrm{~Hz}, \mathrm{c}\right)$, 2.20-2.46 ($2 \mathrm{H}, \mathrm{m}, \mathrm{f}$), $1.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{j}\right.$ or j'), $1.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{j}\right.$ or j'), 1.21-1.17 ($\left.6 \mathrm{H}, \mathrm{m}, \mathrm{a}+\mathrm{a}^{\prime}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.05\left(\mathrm{~d},{ }^{2} J_{C-P}=3.5 \mathrm{~Hz}, \mathrm{~d}\right), 133.65\left(\mathrm{~d},{ }^{3} J_{C-P}=10.5 \mathrm{~Hz}, \mathrm{k}\right), 128.77$ (aryl), 128.34 (aryl), 127.28 (d, ${ }^{3} J_{C-P}=10.5 \mathrm{~Hz}$, e), 109.11 (i), 75.67 (d, ${ }^{5} J_{C-P}=5.25 \mathrm{~Hz}, \mathrm{~g}$), 69.15 (h), $61.89\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), $61.85\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), $36.51\left(\mathrm{~d},{ }^{1} J_{C-P}=138.5 \mathrm{~Hz}\right.$, c), $33.60\left(\mathrm{~d},{ }^{4} J_{C-P}=1.75 \mathrm{~Hz}, \mathrm{f}\right), 26.99$ (j or j $\left.\mathrm{j}^{\prime}\right), 25.83$ (j or j'), $16.47\left(\mathrm{~d},{ }^{3} J_{C-P}=7 \mathrm{~Hz}\right.$, a or a'), 16.45 (d, ${ }^{3} J_{C-P}=7 \mathrm{~Hz}$, a or a') ppm; ${ }^{31} \mathrm{P}$ NMR ($283 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.59 \mathrm{ppm}$; Proof of stereochemistry: Strong NOE is observed between vinyl hydrogen $\left(\mathrm{H}_{\mathrm{e}}\right)$ and the methylene hydrogens adjacent to phosphonate functionality $\left(\mathrm{H}_{\mathrm{c}}\right)$. IR (neat) 2982 (aromatic C-H), 2904 (aliphatic C-H), 1600 ($\mathrm{C}=\mathrm{C}$), 1442 (aromatic $\mathrm{C}=\mathrm{C}$), 1368 (aromatic $\mathrm{C}=\mathrm{C}$), 1249 ($\mathrm{P}=\mathrm{O}$), 1048 (C-O), 1023 (C-O), 957 (P-O) cm^{-1}; HRMS (EI) calculated for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{P}=368.1753$, found $368.1767 \mathrm{~m} / \mathrm{z}$.

Synthesis of phosphonate functionalized alkene (Z)-15f: Following GP2, allyl bromide (Z)-33f ($311 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00 \mathrm{eq}$) yields the alkene substrate $(Z) \mathbf{- 1 5 f}(321 \mathrm{mg}, 87 \%)$ as a colorless oil: TLC analysis (ethyl acetate/hexanes 3:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+7.3^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (700 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.25(5 \mathrm{H}, \mathrm{m}$, aryl), $5.94(1 \mathrm{H}, \mathrm{dd}, J=13.3,6.3 \mathrm{~Hz}, \mathrm{e}), 4.28(1 \mathrm{H}, \mathrm{m}, \mathrm{g}), 4.30-$ $4.09(1 \mathrm{H}, \mathrm{m}, \mathrm{h}(1 \mathrm{H})), 4.01-3.95\left(2 \mathrm{H}, \mathrm{m}, \mathrm{b}\right.$ or $\left.\mathrm{b}^{\prime}\right), 3.94-3.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{b}\right.$ or $\left.\mathrm{b}^{\prime}\right), 3.69-3.67(1 \mathrm{H}, \mathrm{m}$,
$\mathrm{h}(1 \mathrm{H})), 3.13\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{P-H}=22.4 \mathrm{~Hz}, \mathrm{c}\right), 2.67-2.60(2 \mathrm{H}, \mathrm{m}, \mathrm{f}), 1.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{j}\right.$ or j $\left.\mathrm{j}^{\prime}\right), 1.38(3 \mathrm{H}, \mathrm{s}, \mathrm{j}$ or $\left.\mathrm{j}^{\prime}\right), 1.18-1.16\left(6 \mathrm{H}, \mathrm{m}, \mathrm{a}+\mathrm{a}^{\prime}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.47\left(\mathrm{~d},{ }^{2} J_{C-P}=1.75 \mathrm{~Hz}, \mathrm{~d}\right)$, 132.74 (d, ${ }^{3} J_{C-P}=12.25 \mathrm{~Hz}, \mathrm{k}$), 128.45 (aryl), 127.84 (d, ${ }^{3} J_{C-P}=12.25 \mathrm{~Hz}, \mathrm{k}$), 127.42 (aryl), 126.80 (aryl), 109.23 (i), 75.57 (d, ${ }^{5} J_{C-P}=1.75 \mathrm{~Hz}, \mathrm{~g}$), 69.16 (h), $62.06\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), 62.02 $\left(\mathrm{d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), $33.52\left(\mathrm{~d},{ }^{4} J_{C-P}=3.50 \mathrm{~Hz}, \mathrm{f}\right), 29.28\left(\mathrm{~d},{ }^{1} J_{C-P}=138.25 \mathrm{~Hz}, \mathrm{c}\right), 27.13(\mathrm{j}$ or j^{\prime}), 25.84 (j or j'), 16.44 (d, ${ }^{3} J_{C-P}=7 \mathrm{~Hz}$, a+a') ppm; ${ }^{31} \mathrm{P}$ NMR ($283 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.42 \mathrm{ppm}$; Proof of stereochemistry: Strong NOE is observed between methylene hydrogens H_{f} and the methylene hydrogens adjacent to phosphonate functionality H. IR (neat) 2983 (aromatic C-H), 2903 (aliphatic C-H), 1599 (C=C), 1444 (aromatic $\mathrm{C}=\mathrm{C}$), 1368 (aromatic $\mathrm{C}=\mathrm{C}$), 1248 ($\mathrm{P}=\mathrm{O}$), 1052 (C-O), 1023 (C-O), 957 (P-O) cm ${ }^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{P}+\mathrm{Na}^{+}$= 391.1650, found $391.1649 \mathrm{~m} / \mathrm{z}$.

Synthesis of phosphonate functionalized alkene (\boldsymbol{E})-15g: Following GP2, allyl bromide (E)$\mathbf{3 3 g}(341 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00 \mathrm{eq})$ yields the alkene substrate $(E) \mathbf{- 1 5 g}(311 \mathrm{mg}, 78 \%)$ as a colorless oil: TLC analysis (ethyl acetate) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+13.8^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(700 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.18(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, 1), 6.88(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{~m}), 5.71(1 \mathrm{H}, \mathrm{dd}, J=13.3,7.0 \mathrm{~Hz}$, e), 4.12-4.09 $(1 \mathrm{H}, \mathrm{m}, \mathrm{g}), 4.03-3.91(5 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b} '+\mathrm{h}(1 \mathrm{H})$), $3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{o}), 3.49(1 \mathrm{H}, \mathrm{dd}, J=7.7,7.0$ $\mathrm{Hz}, \mathrm{h}(1 \mathrm{H})$), 2.97-2.89 (2H, m, c), 2.43-2.27 (2H, m, f), $1.38(3 \mathrm{H}, \mathrm{s}, \mathrm{j}$ or j'), $1.35(3 \mathrm{H}, \mathrm{s}, \mathrm{j}$ or j'), 1.22 $\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a'), $1.21\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $158.82(\mathrm{n}), 133.16\left(\mathrm{~d},{ }^{3} J_{C-P}=10.5 \mathrm{~Hz}, \mathrm{k}\right), 132.36\left(\mathrm{~d},{ }^{2} J_{C-P}=3.5 \mathrm{~Hz}, \mathrm{~d}\right), 129.93$ (1), 126.90 (d, ${ }^{3} J_{C-}$ $\left.{ }_{P}=12.25 \mathrm{~Hz}, \mathrm{e}\right), 113.73(\mathrm{~m}), 109.11$ (i), $75.74\left(\mathrm{~d},{ }^{3} J_{C-P}=3.5 \mathrm{~Hz}, \mathrm{~g}\right), 69.18(\mathrm{~h}), 61.90\left(\mathrm{~d},{ }^{2} J_{C-P}=\right.$ 7.0 Hz , b or b'), 61.87 (d, ${ }^{2} J_{C-P}=5.25 \mathrm{~Hz}$, b or b'), 55.45 (o), $36.61\left(\mathrm{~d},{ }^{1} J_{C-P}=137 \mathrm{~Hz}, \mathrm{c}\right), 33.66$ $\left(\mathrm{d},{ }^{4} J_{C-P}=3.50 \mathrm{~Hz}, \mathrm{f}\right), 27.02\left(\mathrm{j}\right.$ or $\left.\mathrm{j}^{\prime}\right), 25.85\left(\mathrm{j}\right.$ or $\left.\mathrm{j}^{\prime}\right), 16.53\left(\mathrm{~d},{ }^{3} J_{C-P}=7.0 \mathrm{~Hz}\right.$, a or a'), $16.52\left(\mathrm{~d},{ }^{3} J_{C-}\right.$ ${ }_{P}=5.25 \mathrm{~Hz}$, a or a') ppm; ${ }^{31} \mathrm{P}$ NMR ($283 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.82 \mathrm{ppm}$; IR (neat) 2983 (aromatic CH), 2905 (aliphatic C-H), 1608 ($\mathrm{C}=\mathrm{C}$), 1512, 1456 (aromatic $\mathrm{C}=\mathrm{C}$), 1368 (aromatic $\mathrm{C}=\mathrm{C}$), 1244 ($\mathrm{P}=\mathrm{O}$), 1024 (C-O), 958 (P-O) cm ${ }^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{P}=398.1858$, found $398.1874 \mathrm{~m} / \mathrm{z}$.

Synthesis of phosphonate functionalized alkene (\boldsymbol{E})-15h: Following GP2, allyl bromide (E) $\mathbf{3 3 h}(346 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00 \mathrm{eq})$ yields the alkene substrate $(E) \mathbf{- 1 5 h}(326 \mathrm{mg}, 81 \%)$ as a colorless oil: TLC analysis (ethyl acetate) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+21.9^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.32(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{~m}), 7.20(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{l}), 5.76(1 \mathrm{H}, \mathrm{dd}, J=13.0,7.0 \mathrm{~Hz}$, e), 4.11-3.92 ($6 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}^{\prime}+\mathrm{g}+\mathrm{h}(1 \mathrm{H})$), 3.49-3.45 $(1 \mathrm{H}, \mathrm{m}, \mathrm{h}(1 \mathrm{H})), 2.90\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{P-H}=21.6 \mathrm{~Hz}, \mathrm{c}\right)$, 2.34-2.23 ($2 \mathrm{H}, \mathrm{m}, \mathrm{f}$), $1.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{j}\right.$ or $\left.\mathrm{j}^{\prime}\right), 1.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{j}\right.$ or j'), 1.23-1.19 ($\left.6 \mathrm{H}, \mathrm{m}, \mathrm{a}+\mathrm{a}^{\prime}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.49\left(\mathrm{~d},{ }^{2} J_{C-P}=4.0 \mathrm{~Hz}, \mathrm{~d}\right), 133.20(\mathrm{n}), 132.61\left(\mathrm{~d},{ }^{3} J_{C-P}=11 \mathrm{~Hz}, \mathrm{k}\right)$, $130.22\left(\mathrm{~d},{ }^{4} J_{C-P}=1.75 \mathrm{~Hz}, 1\right), 128.54(\mathrm{~m}), 128.08\left(\mathrm{~d},{ }^{3} J_{C-P}=12 \mathrm{~Hz}, \mathrm{e}\right), 109.19$ (i), $75.51\left(\mathrm{~d},{ }^{5} J_{C-P}\right.$ $=3.0 \mathrm{~Hz}, \mathrm{~g}), 69.10(\mathrm{~h}), 61.97\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}\right.$, b or b'), $61.94\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}\right.$, b or b'), 36.44 $\left(\mathrm{d},{ }^{1} J_{C-P}=137 \mathrm{~Hz}, \mathrm{c}\right), 33.65\left(\mathrm{~d},{ }^{4} J_{C-P}=4.0 \mathrm{~Hz}, \mathrm{f}\right), 26.99\left(\mathrm{j}\right.$ or j'), $25.79\left(\mathrm{j}\right.$ or j'), $16.49\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0\right.$ $\mathrm{Hz}, \mathrm{a}+\mathrm{a}$ ') ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.23 \mathrm{ppm}$; IR (neat) 2983 (aromatic C-H), 2904 (aliphatic C-H), 1595 (C=C), 1491 (aromatic C=C), 1369 (aromatic C=C), 1248 ($\mathrm{P}=\mathrm{O}$), 1024 (CO), 958 (P-O) cm^{-1}; HRMS (EI) calculated for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{ClO}_{5} \mathrm{P}=402.1363$, found $402.1349 \mathrm{~m} / \mathrm{z}$.

Synthesis of phosphonate functionalized alkene (\boldsymbol{E})-15i: Following GP2, allyl bromide (E)-33i ($379 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00 \mathrm{eq}$) yields the alkene substrate $(E) \mathbf{- 1 5 i}(319 \mathrm{mg}, 73 \%)$ as a light buff colored oil: TLC analysis (ethyl acetate/hexanes 2:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+19^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{~m}), 7.39(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{~m}), 5.82(1 \mathrm{H}, \mathrm{dd}$, $J=13.0,7.0 \mathrm{~Hz}, \mathrm{e}), 4.16-3.90\left(6 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}^{\prime}+\mathrm{g}+\mathrm{h}(1 \mathrm{H})\right), 3.49(1 \mathrm{H}, \mathrm{dd}, J=7.6,7.2 \mathrm{~Hz}, \mathrm{~h}(1 \mathrm{H})), 2.93$ $\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{P-H}=21.6 \mathrm{~Hz}, \mathrm{c}\right), 2.27-2.20(2 \mathrm{H}, \mathrm{m}, \mathrm{f}), 1.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{j}\right.$ or j '), $1.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{j}\right.$ or j $\left.\mathrm{j}^{\prime}\right), 1.22-1.17$ $(6 \mathrm{H}, \mathrm{m}, \mathrm{a}+\mathrm{a}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.86$ (d), $132.62\left(\mathrm{~d},{ }^{3} J_{C-P}=11 \mathrm{~Hz}, \mathrm{k}\right), 129.53$ $\left(\mathrm{q},{ }^{2} J_{C-F}=32 \mathrm{~Hz}, \mathrm{n}\right), 129.26\left(\mathrm{~d},{ }^{4} J_{C-P}=2.0 \mathrm{~Hz}, \mathrm{l}\right), 128.73\left(\mathrm{~d},{ }^{3} J_{C-P}=12 \mathrm{~Hz}, \mathrm{e}\right), 125.34\left(\mathrm{q},{ }^{3} J_{C-F}=4\right.$ $\mathrm{Hz}, \mathrm{m}), 124.32\left(\mathrm{q},{ }^{1} J_{C-F}=272 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 109.26$ (i), $75.43\left(\mathrm{~d},{ }^{5} J_{C-P}=4.0 \mathrm{~Hz}, \mathrm{~g}\right), 69.08$ (h), 62.01 $\left(\mathrm{d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), $61.98\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), $36.39\left(\mathrm{~d},{ }^{1} J_{C-P}=138 \mathrm{~Hz}, \mathrm{c}\right), 33.68(\mathrm{~d}$, $\left.{ }^{4} J_{C-P}=3.0 \mathrm{~Hz}, \mathrm{f}\right), 26.98\left(\mathrm{j}\right.$ or j'), $25.77\left(\mathrm{j}\right.$ or j'), $16.46\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a'), $16.44\left(\mathrm{~d},{ }^{3} J_{C-P}=\right.$ 6.0 Hz , a or a') ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.93 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 62.59 ppm ; IR (neat) 2984 (aromatic C-H), 2905 (aliphatic C-H), 1616 (C=C), 1369 (aromatic $\mathrm{C}=\mathrm{C}$), 1323 (C-F), 1249 ($\mathrm{P}=\mathrm{O}$), 1024 (C-O), 959 (P-O) cm ${ }^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{P}=436.1626$, found $436.1636 \mathrm{~m} / \mathrm{z}$.

(E)-33j
(E)-15j

Synthesis of phosphonate functionalized alkene $(\boldsymbol{E}) \mathbf{- 1 5 j}$: Following GP2, allyl bromide $(E) \mathbf{- 3 3 j}$ ($273 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00 \mathrm{eq}$) yields the alkene substrate $(E) \mathbf{- 1 5 j}(281 \mathrm{mg}, 85 \%)$ as a light buff oil: TLC analysis (ethyl acetate/hexanes 2:1) $\mathrm{R}_{f}=0.5 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.26$ $\left(5 \mathrm{H}, \mathrm{m}\right.$, aryl), 7.13-7.11 ($3 \mathrm{H}, \mathrm{m}$, aryl), 6.99-6.97 $\left(2 \mathrm{H}, \mathrm{m}\right.$, aryl), $6.70\left(2 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=6.0 \mathrm{~Hz}, \mathrm{e}\right)$, 4.10-3.94 ($4 \mathrm{H}, \mathrm{m}, \mathrm{b}$), $3.09\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{C-P}=22 \mathrm{~Hz}, \mathrm{c}\right), 1.23(6 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.70\left(\mathrm{~d},{ }^{2} J_{C-P}=4.0 \mathrm{~Hz}, \mathrm{~d}\right), 136.96\left(\mathrm{~d},{ }^{4} J_{C-P}=4.0 \mathrm{~Hz}, \mathrm{f}\right), 132.66\left(\mathrm{~d},{ }^{3} J_{C-P}=12\right.$ Hz, j), 131.16 (d, ${ }^{3} J_{C-P}=12 \mathrm{~Hz}, \mathrm{e}$), 129.29 (aryl), 129.26 (aryl), 129.11 (aryl), 129.09 (aryl), 128.64 (aryl), 128.06 (aryl), 127.50 (aryl), 126.86 (aryl), 62.05 (d, ${ }^{2} J_{C-P}=7.0 \mathrm{~Hz}, \mathrm{~b}$), 37.56 (d, ${ }^{1} J_{C-P}=137$ $\mathrm{Hz}, \mathrm{c}), 16.52\left(\mathrm{~d},{ }^{3} J_{C-P}=6.5 \mathrm{~Hz}\right.$, a) ppm; ${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.31 \mathrm{ppm}$; Proof of stereochemistry: Strong NOE is observed between vinyl hydrogen $\left(\mathrm{H}_{\mathrm{e}}\right)$ and the methylene hydrogens adjacent to phosphonate functionality $\left(\mathrm{H}_{\mathrm{c}}\right)$. IR (neat) 2979 (aromatic C-H), 2905 (aliphatic C-H), $1598(\mathrm{C}=\mathrm{C}), 1493$ (aromatic $\mathrm{C}=\mathrm{C}$), 1443 (aromatic $\mathrm{C}=\mathrm{C}$), 1390 (aromatic $\mathrm{C}=\mathrm{C}$), $1248(\mathrm{P}=\mathrm{O}), 1055(\mathrm{C}-\mathrm{O}), 1019(\mathrm{C}-\mathrm{O}), 957(\mathrm{P}-\mathrm{O}) \mathrm{cm}^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{P}=$ 330.1385 , found $330.1384 \mathrm{~m} / \mathrm{z}$.

Synthesis of phosphonate functionalized alkene (Z)-15j: Following GP2, allyl bromide (Z)-33j ($273 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00 \mathrm{eq}$) yields the alkene substrate $(Z) \mathbf{- 1 5 j}(274 \mathrm{mg}, 83 \%)$ as a light buff oil: TLC analysis (ethyl acetate/hexanes 2:1) $\mathrm{R}_{f}=0.5 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(2 \mathrm{H}, \mathrm{d}, J=$ 8.0 Hz , g or k), $7.51(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}$, g or k), $7.41-7.35(4 \mathrm{H}, \mathrm{m}$, aryl), $7.32-7.26(2 \mathrm{H}, \mathrm{m}$, aryl), $6.90\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=5.25 \mathrm{~Hz}, \mathrm{e}\right), 3.97-3.75(4 \mathrm{H}, \mathrm{m}, \mathrm{b}), 3.34(2 \mathrm{H}, \mathrm{d}, J=22.4 \mathrm{~Hz}, \mathrm{c}), 1.09(6 \mathrm{H}, \mathrm{t}, J$ $=7.0 \mathrm{~Hz}$, a) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.41\left(\mathrm{~d},{ }^{4} J_{C-P}=2.0 \mathrm{~Hz}, \mathrm{f}\right), 137.16\left(\mathrm{~d},{ }^{2} J_{C-P}=\right.$ $3.5 \mathrm{~Hz}, \mathrm{~d}), 132.77\left(\mathrm{~d},{ }^{3} J_{C-P}=11 \mathrm{~Hz}, \mathrm{j}\right), 132.33\left(\mathrm{~d},{ }^{3} J_{C-P}=13 \mathrm{~Hz}, \mathrm{e}\right), 128.88$ (aryl), 128.86 (aryl), 128.37 (aryl), 128.24 (aryl), 127.49 (aryl), 127.16 (aryl), 126.81 (aryl), 61.63 (d, ${ }^{2} J_{C-P}=7.0 \mathrm{~Hz}$, b), $29.15\left(\mathrm{~d},{ }^{1} J_{C-P}=140.11 \mathrm{~Hz}, \mathrm{c}\right), 16.09\left(\mathrm{~d},{ }^{3} J_{C-P}=6.4 \mathrm{~Hz}, \mathrm{a}\right) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.33 \mathrm{ppm}$; Proof of stereochemistry: Strong NOE is observed between vinyl hydrogen $\left(\mathrm{H}_{\mathrm{e}}\right)$ and the ortho hydrogens of the aromatic ring (H_{g} and H_{k}). IR (neat) 2979 (aromatic C-H), 2904 (aliphatic C-H), $1599(\mathrm{C}=\mathrm{C}$), 1494 (aromatic $\mathrm{C}=\mathrm{C}$), 1444 (aromatic $\mathrm{C}=\mathrm{C}$), 1391 (aromatic $\mathrm{C}=\mathrm{C}$), 1245 ($\mathrm{P}=\mathrm{O}$), $1053(\mathrm{C}-\mathrm{O}), 1023(\mathrm{C}-\mathrm{O}), 957(\mathrm{P}-\mathrm{O}) \mathrm{cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{P}+\mathrm{Na}^{+}$ $=353.1283$, found $353.1285 \mathrm{~m} / \mathrm{z}$.

Synthesis of phosphonate functionalized alkene (\boldsymbol{E})-15k: Following GP2, allyl bromide (E)$\mathbf{3 3 k}(301 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00 \mathrm{eq})$ yields the alkene substrate $(E) \mathbf{- 1 5 k}(319 \mathrm{mg}, 89 \%)$ as a colorless oil: TLC analysis (ethyl acetate/hexanes 2:1) $\mathrm{R}_{f}=0.5 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.11$ $(10 \mathrm{H}, \mathrm{m}$, aryl $), 5.77(1 \mathrm{H}, \mathrm{dd}, J=12.5,7.0 \mathrm{~Hz}, \mathrm{e}), 4.02-3.58(4 \mathrm{H}, \mathrm{m}, \mathrm{b}), 2.92\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{P-H}=21.5\right.$ $\mathrm{Hz}, \mathrm{c}), 2.68(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{~g}), 2.39-2.32(2 \mathrm{H}, \mathrm{m}, \mathrm{f}), 1.18(6 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{a}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.76$ (h), $140.34\left(\mathrm{~d},{ }^{2} J_{C-P}=4.0 \mathrm{~Hz}, \mathrm{~d}\right), 131.84\left(\mathrm{~d},{ }^{3} J_{C-P}=12 \mathrm{~Hz}, \mathrm{e}\right), 131.47$ (d, ${ }^{3} J_{C-P}=10.5 \mathrm{~Hz}, 1$), 128.70 (aryl), 128.63 (aryl), 128.42 (aryl), 128.18 (aryl), 127.07 (aryl), 125.98 (aryl), $61.79\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}, \mathrm{~b}\right), 36.26\left(\mathrm{~d},{ }^{1} J_{C-P}=137 \mathrm{~Hz}, \mathrm{c}\right), 36.12\left(\mathrm{~d},{ }^{5} J_{C-P}=4.00 \mathrm{~Hz}\right.$, g), $31.24\left(\mathrm{~d},{ }^{4} J_{C-P}=2.0 \mathrm{~Hz}, \mathrm{f}\right), 16.44\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{a}\right) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 26.98 ppm ; IR (neat) 2989 (aromatic C-H), 2904 (aliphatic C-H), 1601 (C=C), 1494 (aromatic $\mathrm{C}=\mathrm{C}$), 1453 (aromatic $\mathrm{C}=\mathrm{C}$), 1442 (aromatic $\mathrm{C}=\mathrm{C}$), 1391 (aromatic $\mathrm{C}=\mathrm{C}$), 1249 ($\mathrm{P}=\mathrm{O}$), 1048 ($\mathrm{C}-$ O), 1023 (C-O), 956 (P-O) cm ${ }^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{P}=358.1698$, found $358.1685 \mathrm{~m} / \mathrm{z}$.

(4) Ligand screening data

The data presented here is for the series of ligands that were tested on methylidene phosphonate substrate 5a. Borane screening demonstrated pinacolborane is optimal for this reaction as it yielded significant amounts of hydroboration products. Usage of tmdBH resulted in very high (ca. 40$50 \%$) amounts of reduction side products and usage of catecholborane (catBH) resulted in uncatalyzed background reactions. The yields for ligand screenings were determined post CAHB via crude ${ }^{31} \mathrm{P}$ NMR analysis. The enantiomer ratios were determined after oxidation to the corresponding alcohols via chiral HPLC analysis. The ligand T2 was chosen empirically from the screening data as the ligand of choice for subsequent development of the chemistry because of its superior performance as compared to the others tested.

Summary of the small-scale screening results. (Note: Yields are estimated by ${ }^{31} \mathbf{P}$ NMR analysis of the crude reaction mixtures.)

Entry	Ligand used	$\mathbf{5 a}$ unreacted $(\%)$	$\mathbf{6 a}$ yield $(\%)$	$\mathbf{6 a}$ er	$\mathbf{6 a}$ yield $(\%)$	$\mathbf{6 a}^{\prime}$ er	$\mathbf{6 a : 6 a}$ ratio	$\mathbf{6 a "}$ yield $(\%)$
1	$\mathbf{T 1}$	0	81	$95: 5$	13	$92: 8$	$6.2: 1$	5

2	T2	0	84	$97: 3$	11	$88: 12$	$7.6: 1$	3
3	T3	0	75	$96: 4$	12	$92: 8$	$6.2: 1$	13
4	T4	0	65	$68: 32$	25	$88: 12$	$2.5: 1$	9
5	T5	0	9	$51: 49$	50	$59: 41$	$1: 5.5$	40
6	T6	0	48	$63: 37$	49	$82: 18$	$1: 1$	3
7	T7	0	75	$92: 8$	13	$64: 36$	$5.6: 1$	12
8	T8	0	77	$91: 9$	10	$70: 30$	$7.7: 1$	13
9	T9	0	69	$94: 6$	12	$63: 37$	$5.3: 1$	19
10	T10	0	70	$91: 9$	20	$89: 11$	$3.5: 1$	10
11	T11	0	75	$92: 8$	11	$88: 12$	$6.8: 1$	12
12	T12	0	3	$70: 30$	36	$62: 38$	$1: 12$	27
13	T13	0	4	$56: 44$	32	$76: 24$	$1: 8$	18
14	T14	0	3	$66: 34$	41	$57: 43$	$1: 14$	27
15	T15	0	14	$52: 48$	45	$53: 47$	$1: 3.1$	28
16	T16	49	0	--	12	$66: 34$	--	35
17	T17	0	73	$90: 10$	14	$65: 35$	$5.3: 1$	13
18	T18	0	4	$65: 35$	35	$63: 37$	$1: 8.8$	36
19	B1	10	0	--	45	$48: 52$	--	42
20	B2	39	17	$68: 32$	25	$56: 44$	--	19
21	BINAP	100	--	--	--	--	--	--

(5) General procedure for catalytic asymmetric hydroboration (CAHB) and stereospecific functionalizations of chiral tertiary benzylic boronic esters.

Representative procedure for Catalytic Asymmetric HydroBoration (CAHB) of conjugated methylidenes and trisubstituted alkenes (GP3): Catalyst Preparation: The active hydroboration catalyst is prepared in the dry nitrogen glovebox as follows: $[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}(2.5 \mathrm{mg}, 5.1 \mu \mathrm{~mol})$ is dissolved in dry dichloromethane (0.5 mL) in an 8 mL glass vial equipped with a small teflon stirbar. To the resultant yellow/orange solution, a 0.05 M solution of AgBF_{4} in THF (0.21 mL , $10.5 \mu \mathrm{~mol})$ is added and the mixture is allowed to stir vigorously for 10 minutes at room temperature. The formed AgCl precipitate is filtered through a Pasteur pipette packed with cotton into a dry 8 mL vial and the cotton pack was further washed with additional 0.5 mL THF. The combined washings were dried in the vacuum chamber over 30 minutes. Following this, 1.02 mL of a stock solution of the ligand (R, R) - $\mathbf{T 2}$ (Prepared by dissolving 8.65 mg of the ligand in 1.21 mL THF) is added to the dry $\mathrm{Rh}(\mathrm{I})$-precursor and the resultant mixture is stirred vigorously for 15 minutes at room temperature to afford the active hydroboration catalyst. Alternative Catalyst Preparation: Alternatively, the catalyst can be prepared from $\mathrm{Rh}(\mathrm{nbd})_{2} \mathrm{BF}_{4}$ as follows: $\mathrm{Rh}(\mathrm{nbd})_{2} \mathrm{BF}_{4}(3.8 \mathrm{mg}, 10 \mu \mathrm{~mol})$ is weighed out in a dry 8 mL glass vial equipped with a small teflon stirbar and to the weighed crystals is added a 1.02 mL of a stock solution of the ligand (R, R) $\mathbf{T 2}$ (Prepared by dissolving 8.65 mg of the ligand in 1.21 mL THF). The resultant mixture is stirred vigorously for 1 hour to afford the active hydroboration catalyst. Note: In both the procedures above, the total volume of the active hydroboration catalyst is 1.02 mL which is about $1 \mathrm{~mol} \%$ catalyst load for five 0.2 mmol CAHB reactions. Catalysts prepared using either methods described above are comparable in their efficiencies for CAHB reactions.

CAHB procedure: Substrate $\mathbf{5 a}(51 \mathrm{mg}, 0.2 \mathrm{mmol})$ is weighed out in a dry 8 mL vial charged with a small teflon stirbar. Dry THF (0.2 mL) is added, followed by neat pinacolborane ($29 \mu \mathrm{~L}, 0.2$ $\mathrm{mmol}, 1.0 \mathrm{eq}$) and the resultant mixture is stirred for 10 minutes. Afterwards, 0.2 mL of the chiral rhodium catalyst is added drop wise (over 10 minutes) and the reaction mixture is capped, taken outside of the glovebox and is stirred at room temperature $\left(18^{\circ} \mathrm{C}\right)$ for $c a .3$ hours. The completion of the reaction is indicated by the disappearance of the starting material peak ($\sim 26 \mathrm{ppm}$) and the appearance of the product peak ($\sim 30 \mathrm{ppm}$) in the crude ${ }^{31} \mathrm{P}$ NMR spectrum of the reaction mixture. Afterwards, the reaction mixture is concentrated under reduced pressure and the crude mixture is purified by flash chromatography on silica gel (ethyl acetate/hexanes 1:1) to afford the chiral tertiary benzylic boronic ester $(R)-6$ as a colorless oil ($62 \mathrm{mg}, 81 \%$). [Note: Typical CAHB reactions were carried out with an overall substrate concentration of 0.5 M in THF and the typical reaction times were 3 hours at r.t. Gram scale reactions, however, were carried out with an overall
substrate concentration of 1.0 M in THF and with a reduced catalyst loading ($0.5 \mathrm{~mol} \%$) and the reactions were run for 12 hours at r.t. Absolute configuration assignment: See section 9. (R, R) - $\mathbf{T} \mathbf{2}$ affords (R)-6a.] Characterization data for $(R)-6 a: T L C$ analysis (ethyl acetate/hexanes 2:3) $\mathrm{R}_{f}=$ $0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=-3.9^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{i}), 7.28$ $(2 \mathrm{H}, \mathrm{dd}, J=7.5,7.0 \mathrm{~Hz}, \mathrm{j}), 7.15(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{k}), 4.06-3.91(4 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}), 2.51-2.12(2 \mathrm{H}, \mathrm{m}$, c), $1.58(3 \mathrm{H}, \mathrm{s}, \mathrm{e}), 1.28-1.20\left(18 \mathrm{H}, \mathrm{a}+\mathrm{a}^{\prime}+\mathrm{g}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.28\left(\mathrm{~d},{ }^{3} J_{C-P}\right.$ $=16.0 \mathrm{~Hz}, \mathrm{~h}), 128.30(\mathrm{j}), 126.67$ (i), $125.68(\mathrm{k}), 83.93$ (f), $61.32\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), 60.95 (d, ${ }^{2} J_{C-P}=6 \mathrm{~Hz}$, b or b'), $35.49\left(\mathrm{~d},{ }^{1} J_{C-P}=138 \mathrm{~Hz}, \mathrm{c}\right), 24.85\left(\mathrm{~g}\right.$ or g'), $24.71\left(\mathrm{~g}\right.$ or g'), $22.27\left(\mathrm{~d},{ }^{3} J_{C-}\right.$ $\left.{ }_{P}=4.0 \mathrm{~Hz}, \mathrm{e}\right), 16.58\left(\mathrm{~d},{ }^{3} J_{C-P}=5.0 \mathrm{~Hz}\right.$, a or a'), $16.53\left(\mathrm{~d},{ }^{3} J_{C-P}=5.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.0$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.58 \mathrm{ppm}$; IR (neat) 2977 (aromatic C-H), 2931 (aliphatic C-H), 1495 (aromatic $\mathrm{C}=\mathrm{C}$), 1469 (aromatic $\mathrm{C}=\mathrm{C}$), 1444 (aromatic $\mathrm{C}=\mathrm{C}$), 1240 ($\mathrm{P}=\mathrm{O}$), 1053 (C-O), 1023 (C-O), 953 (P-O) cm^{-1}; HRMS (EI) calculated for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{BO}_{5} \mathrm{P}=382.2080$, found $382.2087 \mathrm{~m} / \mathrm{z}$. The enantiomer ratio of this boronic ester is determined after oxidation to the chiral tertiary alcohol 18a.

Representative procedure for transformation of chiral tertiary benzylic boronic esters to the corresponding potassium trifluoroborate salts (GP4): This transformation was carried out with a slight modification of the original procedure reported procedure ${ }^{8}$ by Aggarwal as follows: To a solution of the chiral tertiary benzylic boronic ester $(R) \mathbf{- 6 a}(57 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0 \mathrm{eq})$ in methanol $(0.75 \mathrm{~mL})$ was added 4.5 M solution of KHF_{2} in $\mathrm{H}_{2} \mathrm{O}(0.15 \mathrm{~mL}, 0.67 \mathrm{mmol}, 4.5 \mathrm{eq})$ dropwise at room temperature and the resultant mixture was stirred vigorously for 1 hour. Afterwards, the volatiles were removed under reduced pressure and the residue was redissolved in 1:1 Ethanol: Benzene (3 mL) and the mixture was evaporated in rotary evaporator to get rid of the solvents. This process was repeated 4 times to get rid of pinacol diol. To the resultant residue was added dry acetone (3 mL) and the resultant mixture was evaporated. This process was repeated 3 times. Finally, the resultant residue was triturated with dry acetone (3 mLx 4) and the combined organics were dried under reduced pressure to afford the potassium trifluoroborate salt (R) - $\mathbf{1 7}$ as white powder $(47 \mathrm{mg}, 87 \%):[\alpha]_{\mathrm{D}}{ }^{20}=-21^{\circ}\left(c=1.0, \mathrm{CH}_{3} \mathrm{CN}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.42(2 \mathrm{H}$, d, $J=8.0 \mathrm{~Hz}, \mathrm{~g}), 7.23(2 \mathrm{H}, \mathrm{dd}, J=8.0,7.0 \mathrm{~Hz}, \mathrm{~h}), 7.05(2 \mathrm{H}, \mathrm{dd}, J=7.0 \mathrm{~Hz}, \mathrm{~h}), 3.88-3.56(4 \mathrm{H}, \mathrm{m}$, b+b'), $2.62(1 \mathrm{H}, \mathrm{t}, J=16.0 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 2.18(1 \mathrm{H}, \mathrm{t}, J=17.0 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 1.45(3 \mathrm{H}, \mathrm{s}, \mathrm{e}), 1.13(3 \mathrm{H}$, $\mathrm{t}, J=7.0 \mathrm{~Hz}$, a or a'), $1.06\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') ppm ; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 151.29$ (d, $\left.{ }^{3} J_{C-P}=4.0 \mathrm{~Hz}, \mathrm{f}\right), 128.07(\mathrm{~g}+\mathrm{h}), 124.39$ (i), $61.89\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}\right.$, b or b'), $61.87\left(\mathrm{~d},{ }^{2} J_{C-P}=\right.$ 7.0 Hz , b or b'), $34.46\left(\mathrm{~d},{ }^{1} J_{C-P}=133 \mathrm{~Hz}, \mathrm{c}\right), 21.09\left(\mathrm{~d},{ }^{3} J_{C-P}=4.0 \mathrm{~Hz}, \mathrm{e}\right), 16.55\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a'), $16.49\left(\mathrm{~d}^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') $\mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 36.04 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-153.57 \mathrm{ppm} ;{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.87$ (br, s) ppm; IR (neat) 2983 (aromatic C-H), 2909 (aliphatic C-H), 1599, 1442 (aromatic C=C), 1409 (aromatic $\mathrm{C}=\mathrm{C}$), 1280 ($\mathrm{P}=\mathrm{O}$), 1187, 1056 (C-O), 1005 (C-O), 967, 856, 823, 791, $700 \mathrm{~cm}^{-1}$. HRMS (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{BF}_{3} \mathrm{KO}_{3} \mathrm{P}+\mathrm{K}^{+}=401.0469$, found $401.0459 \mathrm{~m} / \mathrm{z}$.

Representative procedure for oxidation of chiral tertiary benzylic boronic esters to the corresponding chiral tertiary benzylic alcohols (GP5): A mixture of the chiral tertiary benzylic boronic ester (R)- $6 \mathbf{a}\left(57 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0 \mathrm{eq}\right.$) and $\mathrm{NaBO}_{3} .4 \mathrm{H}_{2} \mathrm{O}(115 \mathrm{mg}, 0.75 \mathrm{mmol}, 5.0 \mathrm{eq})$ in a $1: 1$ solvent mixture of THF: $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was stirred vigorously at room temperature for 12 hours. Afterwards, 1 mL of brine is added to the reaction mixture and the mixture was extracted with ethyl-acetate ($3 \mathrm{~mL} \times 5$). The combined organics were filtered through a small plug of silica gel and is concentrated in vacuum. The resultant residue is redissolved in 1:1 ethanol:benzene (6 mL) and is evaporated under reduced pressure. The dissolution/evaporation cycle is repeated 4 times to get rid of the pinacol diol to afford the clean chiral tertiary benzylic boronic ester (S) - 18a ($37 \mathrm{mg}, 90 \%$): TLC analysis (ethyl acetate/hexanes 3:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+2.5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{~g}), 7.36(2 \mathrm{H}, \mathrm{dd}, J=8.0,7.5 \mathrm{~Hz}, \mathrm{~h}), 7.25$ $(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{i}), 5.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.14-4.00(2 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or b'), 3.78-3.67(1H, m, b or b'), $3.45-3.35(1 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or b'), 2.53-2.32 ($2 \mathrm{H}, \mathrm{m}, \mathrm{c}$), $1.64(3 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{e}), 1.33(3 \mathrm{H}, \mathrm{t}, J=7.0$ Hz , a or a'), $1.02\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.40\left(\mathrm{~d},{ }^{3} J_{C-P}\right.$ $=7.0 \mathrm{~Hz}, \mathrm{f}), 128.31$ (h), 126.94 (i), 124.98 (g), 72.18 (d, $\left.{ }^{2} J_{C-P}=5.0 \mathrm{~Hz}, \mathrm{~d}\right), 61.95$ (d, ${ }^{2} J_{C-P}=7.0$ Hz, b or $\left.\mathrm{b}^{\prime}\right), 61.63\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}\right.$, b or b'), $39.93\left(\mathrm{~d},{ }^{1} J_{C-P}=136 \mathrm{~Hz}, \mathrm{c}\right), 32.68\left(\mathrm{~d},{ }^{3} J_{C-P}=14.0\right.$ $\mathrm{Hz}, \mathrm{e}), 16.53\left(\mathrm{~d},{ }^{3} J_{C-P}=6.5 \mathrm{~Hz}\right.$, a or a'), $16.28\left(\mathrm{~d},{ }^{3} J_{C-P}=6.3 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{31} \mathrm{P} \mathrm{NMR}(162 \mathrm{MHz}$, CDCl_{3}) $\delta 28.90 \mathrm{ppm}$; IR (neat) $3400(\mathrm{O}-\mathrm{H}), 2979$ (aromatic C-H), 2932 (aliphatic C-H), 1491 (aromatic $\mathrm{C}=\mathrm{C}$), 1446 (aromatic $\mathrm{C}=\mathrm{C}$), $1215(\mathrm{P}=\mathrm{O}), 1048(\mathrm{C}-\mathrm{O}), 1021(\mathrm{C}-\mathrm{O}), 960(\mathrm{P}-\mathrm{O}) \mathrm{cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{P}+\mathrm{Na}^{+}=295.1075$, found $295.1081 \mathrm{~m} / \mathrm{z}$. Enantiomer ratio $=$ 97:3, determined by chiral HPLC analysis: Stationary phase = CHIRALPAK AD; Mobile Phase = 95:5 Hexanes:Isopropanol; Flow rate $=1 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\lambda=210 \mathrm{~nm}$, rt. HPLC traces:
(a) $\mathrm{R}: \mathrm{S}=3: 97$, CAHB of $\mathbf{5 a}$ with $(R, R)-\mathbf{T} \mathbf{2}$, then oxidation

(b) $\mathrm{R}: \mathrm{S}=97: 3$, CAHB of $\mathbf{5 a}$ with (S, S) - $\mathbf{T} \mathbf{2}$, then oxidation

Representative procedure for protodeboronation of chiral tertiary benzylic boronic esters to the corresponding chiral reduced products (GP6): This transformation was carried out according to the procedure reported ${ }^{9}$ by Aggarwal as follows. To a solution of the chiral tertiary benzylic boronic ester $(R) \mathbf{- 6 a}(57 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0 \mathrm{eq})$ in toluene $(0.75 \mathrm{~mL})$ was added tetrabutylammonium fluoride (TBAF, $0.3 \mathrm{~mL} ; 1 \mathrm{M}$ solution in THF) and the resultant mixture was vigorously stirred at $50^{\circ} \mathrm{C}$ for 6 hours. (Note: Commercial TBAF is contaminated with up to 5% $\mathrm{H}_{2} \mathrm{O}$ and hence addition of water separately was not necessary). Afterwards, the reaction mixture was concentrated and purified by flash chromatography on silica gel (ethyl acetate) to afford the chiral reduced product $(R)-\mathbf{1 9}$ as a colorless oil ($33 \mathrm{mg}, 85 \%$): TLC analysis (ethyl acetate) $\mathrm{R}_{f}=$ $0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+15.9^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.19(5 \mathrm{H}, \mathrm{m}$, aryl), 4.08$3.87(4 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}$), 3.29-3.17 ($1 \mathrm{H}, \mathrm{m}, \mathrm{d}$), 2.21-1.96 ($2 \mathrm{H}, \mathrm{m}, \mathrm{c}$), 1.41 ($3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{e}$), 1.26 $\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a'), $1.22\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $140.90\left(\mathrm{~d},{ }^{3} J_{C-P}=12.0 \mathrm{~Hz}, \mathrm{f}\right), 128.68\left(\mathrm{~g}\right.$ or h), $126.85\left(\mathrm{~g}\right.$ or h), 126.56 (i), $61.56\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}\right.$, b or b'), $61.39\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), $34.87\left(\mathrm{~d},{ }^{2} J_{C-P}=3.5 \mathrm{~Hz}, \mathrm{~d}\right), 34.48\left(\mathrm{~d},{ }^{1} J_{C-P}=138.5 \mathrm{~Hz}\right.$, c), $23.71\left(\mathrm{~d},{ }^{3} J_{C-P}=9.0 \mathrm{~Hz}, \mathrm{e}\right), 16.52\left(\mathrm{~d},{ }^{3} J_{C-P}=7.0 \mathrm{~Hz}\right.$, a or a'), $16.51\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.16 \mathrm{ppm}$; IR (neat) 2978 (aromatic C-H), 2905 (aliphatic C-H), 1453 (aromatic $\mathrm{C}=\mathrm{C}$), 1391 (aromatic $\mathrm{C}=\mathrm{C}$), 1246 ($\mathrm{P}=\mathrm{O}$), 1053 (C-O), 1022 (C-O), 953 ($\mathrm{P}-$ O), $699 \mathrm{~cm}^{-1}$, Enantiomer ratio $=96: 4$, determined by chiral HPLC analysis: Stationary phase $=$ CHIRALCEL OJ-H; Mobile Phase $=97: 3$ Hexanes:Isopropanol; Flow rate $=1.25 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\lambda=210 \mathrm{~nm}$, rt. HPLC traces:
(a) $\mathrm{R}: \mathrm{S}=96: 4, \mathrm{CAHB}$ of 5a with $(R, R)-\mathbf{T} \mathbf{2}$, then protodeboronation.

(b) Racemate

Representative procedure for the cross coupling of chiral tertiary benzylic boronic esters with furan (GP7): This transformation was carried out according to our previously reported modified procedure ${ }^{5}$ of the original procedure ${ }^{10}$ reported by Aggarwal: The chiral tertiary benzylic boronic ester $(R) \mathbf{- 6 a}(57 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0 \mathrm{eq})$ affords the coupling product $(R) \mathbf{- 2 0}(44 \mathrm{mg}, 91 \%)$ as a light-yellow oil: TLC analysis (ethyl acetate) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+4.1^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.19(6 \mathrm{H}, \mathrm{m}, \mathrm{g}+\mathrm{h}+\mathrm{i}+\mathrm{m}), 6.33(1 \mathrm{H}, \mathrm{dd}, J=3.0,2.0 \mathrm{~Hz}, \mathrm{l}), 6.20$ $(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}, \mathrm{k}), 3.97-3.72(4 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}), 2.79-2.59(2 \mathrm{H}, \mathrm{m}, \mathrm{c}), 1.93(3 \mathrm{H}, \mathrm{s}, \mathrm{e}), 1.18(3 \mathrm{H}, \mathrm{t}$, $J=7.0 \mathrm{~Hz}$, a or a'), $1.16\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.14$ $\left(\mathrm{d},{ }^{3} J_{C-P}=12.0 \mathrm{~Hz}, \mathrm{j}\right), 146.59\left(\mathrm{~d},{ }^{3} J_{C-P}=12.0 \mathrm{~Hz}, \mathrm{f}\right), 141.56$ (m), 128.36 (g or h), 126.64 (i), 126.26 (g or h), $110.15(\mathrm{l}), 105.83(\mathrm{k}), 61.35\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}, \mathrm{~b}+\mathrm{b}\right.$) $, 41.49\left(\mathrm{~d},{ }^{2} J_{C-P}=2.0 \mathrm{~Hz}, \mathrm{~d}\right), 36.97$ $\left(\mathrm{d},{ }^{1} J_{C-P}=141 \mathrm{~Hz}, \mathrm{c}\right), 26.16\left(\mathrm{~d},{ }^{3} J_{C-P}=2.0 \mathrm{~Hz}, \mathrm{e}\right), 16.42\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{a}+\mathrm{a}\right) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.52 \mathrm{ppm}$; IR (neat) 2920 (aromatic C-H), 2853 (aliphatic C-H), 1715, 1496 (aromatic $\mathrm{C}=\mathrm{C}$), 1445 (aromatic $\mathrm{C}=\mathrm{C}$), $1240(\mathrm{P}=\mathrm{O}), 1054(\mathrm{C}-\mathrm{O}), 1024(\mathrm{C}-\mathrm{O}), 956(\mathrm{P}-\mathrm{O}) \mathrm{cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{P}+\mathrm{Na}^{+}=345.1232$, found $=345.1235 \mathrm{~m} /$ z. Enantiomer ratio = 97.5:3.5, determined by chiral HPLC analysis: Stationary phase $=$ CHIRALPAK IC (3 micron); Mobile Phase $=80: 20$ Hexanes:Isopropanol; Flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\lambda=210$ nm, rt. HPLC traces:
(a) $\mathrm{R}: \mathrm{S}=96: 4, \mathrm{CAHB}$ of $\mathbf{5 a}$ with $(R, R)-\mathbf{T} \mathbf{2}$, then coupling

(b) R:S = 3:97, CAHB of $\mathbf{5 a}$ with (S, S) - $\mathbf{T 2}$, then coupling

(S)-21

Representative procedure for vinylation of chiral tertiary benzylic boronic esters to the corresponding vinylated derivative (GP8): This transformation was carried out according to our
previously reported modified procedure ${ }^{5}$ of the original procedure ${ }^{11}$ reported by Aggarwal: The chiral tertiary benzylic boronic ester $(R)-\mathbf{6 a}(57 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0 \mathrm{eq})$ affords the vinylated product $(S)-\mathbf{2 1}(30 \mathrm{mg}, 71 \%)$ as a colorless oil: TLC analysis (ethyl acetate) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=-$ $7.1^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{~g}), 7.31(2 \mathrm{H}, \mathrm{dd}, J=$ $8.0,7.0 \mathrm{~Hz}, \mathrm{~h}), 7.20(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{i}), 6.16(1 \mathrm{H}, \mathrm{dd}, J=17.0,11.0 \mathrm{~Hz}, \mathrm{j}), 5.13(1 \mathrm{H}, \mathrm{d}, J=11.0$ $\mathrm{Hz}, \mathrm{k}(1 \mathrm{H})), 5.08(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz}, \mathrm{k}(1 \mathrm{H})), 3.98-3.67(4 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}$), 2.43-2.26(2H, m, c), 1.67 $(3 \mathrm{H}, \mathrm{s}, \mathrm{e}), 1.19\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a'), $1.13\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.70\left(\mathrm{~d},{ }^{3} J_{C-P}=12.0 \mathrm{~Hz}, \mathrm{j}\right), 146.25\left(\mathrm{~d},{ }^{3} J_{C-P}=8.5 \mathrm{~Hz}, \mathrm{f}\right), 128.24(\mathrm{~h}), 126.77(\mathrm{~g})$, 126.41 (i), 111.85 (k), 61.25 (d, ${ }^{2} J_{C-P}=6.0 \mathrm{~Hz}$, b or b'), $61.20\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), 42.37 (d, $\left.{ }^{2} J_{C-P}=2.0 \mathrm{~Hz}, \mathrm{~d}\right), 37.94\left(\mathrm{~d},{ }^{1} J_{C-P}=140 \mathrm{~Hz}, \mathrm{c}\right), 25.97\left(\mathrm{~d},{ }^{3} J_{C-P}=5.0 \mathrm{~Hz}, \mathrm{e}\right), 16.45\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0\right.$ Hz , a or a'), $16.39\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') $\mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.47 \mathrm{ppm}$; IR (neat) 2978 ($\left.\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}\right), 2905\left(\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1635(\mathrm{C}=\mathrm{C}), 1600(\mathrm{C}=\mathrm{C}), 1494$ (aromatic $\mathrm{C}=\mathrm{C}$), 1445 (aromatic $\mathrm{C}=\mathrm{C}$), 1391 (aromatic $\mathrm{C}=\mathrm{C}$), 1238 ($\mathrm{P}=\mathrm{O}$), 1054 (C-O), 1024 (C-O), 954 (P-O), $698 \mathrm{~cm}^{-}$ ${ }^{1}$; Enantiomer ratio =97:3, determined from derivatives obtained via oxophosphonate intermediate 25.
(6) Synthesis of phosphonate-functionalized chiral tertiary benzylic boronic esters.

Synthesis of chiral tertiary benzylic boronic ester (\boldsymbol{R})-6b: Following the general procedure for catalytic asymmetric hydroboration (GP3) with $(R, R)-\mathbf{T 2}$, the substrate $\mathbf{5 b}(57 \mathrm{mg}, 0.2 \mathrm{mmol})$ yields the tertiary benzylic boronic ester product $(R)-\mathbf{6 b}(63 \mathrm{mg}, 76 \%)$ as a colorless viscous oil: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=-18^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 1), 7.00(1 \mathrm{H}, \mathrm{s}, \mathrm{i}), 6.97-6.86(1 \mathrm{H}, \mathrm{m}, \mathrm{m}), 6.72(1 \mathrm{H}, \mathrm{dd}, J=$ $6.5,2.0 \mathrm{~Hz}, \mathrm{k}), 4.09-3.95(4 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}$ '), $3.80(3 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{n}), 2.47(1 \mathrm{H}, \mathrm{dd}, J=18.0 ., 15.0$ $\mathrm{Hz}, \mathrm{c}(1 \mathrm{H})), 2.15(1 \mathrm{H}, \mathrm{dd}, J=17.5,15.0 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 1.56(3 \mathrm{H}, \mathrm{s}, \mathrm{e}), 1.31-1.23\left(18 \mathrm{H}, \mathrm{m}, \mathrm{a}+\mathrm{a}^{\prime}+\mathrm{g}+\mathrm{g}\right.$ ') $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.60(\mathrm{j}), 148.20\left(\mathrm{~d},{ }^{3} J_{C-P}=16.0 \mathrm{~Hz}, \mathrm{~h}\right), 129.13$ (1), 119.08 (i), $112.74(\mathrm{~m}), 110.93(\mathrm{k}), 83.90(\mathrm{f}), 41.42\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $61.04\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $55.33(\mathrm{n}), 35.56\left(\mathrm{~d},{ }^{1} J_{C-P}=138 \mathrm{~Hz}, \mathrm{c}\right), 24.94\left(\mathrm{~g}\right.$ or g'), $24.80\left(\mathrm{~g}\right.$ or g '), 22.38 ($\mathrm{d},{ }^{3} J_{C-P}=4.0$ $\mathrm{Hz}, \mathrm{e}), 16.62\left(\mathrm{~d},{ }^{3} J_{C-P}=5.5 \mathrm{~Hz}\right.$, a or a'), $16.57\left(\mathrm{~d},{ }^{3} J_{C-P}=5.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{11} \mathrm{~B}$ NMR (128 MHz , CDCl_{3}) $\delta 33.8$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.55 \mathrm{ppm}$; IR (neat) 2977 (aromatic CH), 2933 (aliphatic C-H), 1599, 1580, 1486 (aromatic $\mathrm{C}=\mathrm{C}$), 1464 (aromatic $\mathrm{C}=\mathrm{C}$), $1240(\mathrm{P}=\mathrm{O})$, 1143, 1024 (C-O), $955(\mathrm{P}-\mathrm{O}) \mathrm{cm}^{-1}$; The enantiomer ratio of this boronic ester is determined after oxidation to the chiral tertiary alcohol $\mathbf{1 8 b}$.

5c

Synthesis of chiral tertiary benzylic boronic ester (\boldsymbol{R})-6c: Following the general procedure for catalytic asymmetric hydroboration (GP3) with (R, R)- $\mathbf{T 2}$, the substrate $\mathbf{5 c}(57 \mathrm{mg}, 0.2 \mathrm{mmol})$ yields the tertiary benzylic boronic ester product (R)- $\mathbf{6 c}(58 \mathrm{mg}, 70 \%$) as a dense waxy liquid: TLC analysis (ethyl acetate/hexanes 2:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+4.5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.31(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{i}), 6.83(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{j}), 4.08-3.90(4 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}$) $), 3.78(3 \mathrm{H}$, $\mathrm{s}, \mathrm{l}), 2.43(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 2.12(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 1.55(3 \mathrm{H}, \mathrm{s}, \mathrm{e}), 1.29-$ $1.21\left(18 \mathrm{H}, \mathrm{m}, \mathrm{a}+\mathrm{a}^{\prime}+\mathrm{g}+\mathrm{g}^{\prime}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.55(\mathrm{k}), 138.32\left(\mathrm{~d},{ }^{3} J_{C-P}=16.0\right.$ $\mathrm{Hz}, \mathrm{h}), 127.71$ (i), 113.71 (j), 83.92 (f), 61.35 (d, ${ }^{2} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{~b}$ or b'), 61.02 (d, ${ }^{2} J_{C-P}=6.0 \mathrm{~Hz}$, b or b'), 55.40 (l), 35.73 (d, $\left.{ }^{1} J_{C-P}=138 \mathrm{~Hz}, \mathrm{c}\right), 24.89(\mathrm{~g}$ or g'), 24.76 (g or g'), 22.50 (e), 16.53 (d, ${ }^{3} J_{C-P}=4.5 \mathrm{~Hz}$, a or a'), $16.58\left(\mathrm{~d},{ }^{3} J_{C-P}=4.5 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{11} \mathrm{~B}$ NMR $\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.0$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.65 \mathrm{ppm}$; IR (neat) 2976 (aromatic C-H), 2906 (aliphatic C-H), 1607, 1510, 1463 (aromatic C=C), 1242 ($\mathrm{P}=\mathrm{O}$), 1142, 1024 (C-O), 954 ($\mathrm{P}-\mathrm{O}$) cm^{-}
${ }^{1}$; The enantiomer ratio of this boronic ester is determined after oxidation to the chiral tertiary alcohol 18c.

Synthesis of chiral tertiary benzylic boronic ester (\boldsymbol{R})-6d: Following the general procedure for catalytic asymmetric hydroboration (GP3) with $(R, R)-\mathbf{T 2}$, the substrate $\mathbf{5 d}(60 \mathrm{mg}, 0.2 \mathrm{mmol})$ yields the tertiary benzylic boronic ester product (R) - $\mathbf{6 d}(66 \mathrm{mg}, 77 \%$) as a colorless liquid (Note: This boronic ester was air sensitive. After purification, this product was stored under nitrogen in the freezer): TLC analysis (ethyl acetate) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=-7.1^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.92(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{i}), 6.83(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, \mathrm{i}), 6.73(1 \mathrm{H}, \mathrm{d}, J=8.0$ $\mathrm{Hz}, \mathrm{j}), 5.90(2 \mathrm{H}, \mathrm{s}, 1), 4.06-3.93(4 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}), 2.38(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 2.09(1 \mathrm{H}, \mathrm{dd}, J$ $=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 1.52(3 \mathrm{H}, \mathrm{s}, \mathrm{e}), 1.29-1.21\left(18 \mathrm{H}, \mathrm{m}, \mathrm{a}+\mathrm{a}^{\prime}+\mathrm{g}+\mathrm{g}{ }^{\prime}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 147.65$ (j or k), 145.45 (j or k), 140.33 (d, ${ }^{3} J_{C-P}=16.0 \mathrm{~Hz}, \mathrm{~h}$), 119.57 (i), 108.00 (j), 107.62 (i), 100.89 (l), 83.95 (f), 61.33 (d, ${ }^{2} J_{C-P}=6.0 \mathrm{~Hz}$, b or b'), 60.98 (d, ${ }^{2} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{~b}$ or b'), $35.38\left(\mathrm{~d},{ }^{1} J_{C-P}=138 \mathrm{~Hz}, \mathrm{c}\right), 24.85\left(\mathrm{~g}\right.$ or g'), $24.70\left(\mathrm{~g}\right.$ or g'), $22.57\left(\mathrm{~d},{ }^{3} J_{C-P}=4.5 \mathrm{~Hz}, \mathrm{e}\right), 16.56(\mathrm{~d}$, ${ }^{3} J_{C-P}=5.0 \mathrm{~Hz}$, a or a'), $16.49\left(\mathrm{~d},{ }^{3} J_{C-P}=5.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{11} \mathrm{~B} \mathrm{NMR}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.1$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.34 \mathrm{ppm}$; IR (neat) 2977 (aromatic C-H), 2906 (aliphatic C-H), 1487 (aromatic C=C), 1321, 1234 ($\mathrm{P}=\mathrm{O}$), 1142, 1024 (C-O), 956 (P-O), 936, 729 cm^{-1}; The enantiomer ratio of this boronic ester is determined after oxidation to the chiral tertiary alcohol 18d.

Synthesis of chiral tertiary benzylic boronic ester (\boldsymbol{R})-6e: Following the general procedure for catalytic asymmetric hydroboration (GP3) with (R, R)-T2, the substrate $\mathbf{5 e}(56 \mathrm{mg}, 0.2 \mathrm{mmol})$ yields the tertiary benzylic boronic ester product $(R)-6 e(62 \mathrm{mg}, 76 \%)$ as a colorless liquid: TLC analysis (ethyl acetate/hexanes 1:2) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=-4.3^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.99(2 \mathrm{H}, \mathrm{s}, \mathrm{i}), 6.80(1 \mathrm{H}, \mathrm{s}, \mathrm{l}), 4.11-3.92(4 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}), 2.46(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}$, c), $2.29(6 \mathrm{H}, \mathrm{s}, \mathrm{k}), 2.12(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 1.56(3 \mathrm{H}, \mathrm{s}, \mathrm{e}), 1.30(3 \mathrm{H}, \mathrm{t}, J=7.0$, a or a'), $1.25\left(3 \mathrm{H}, \mathrm{t}, J=7.0\right.$, a or a'), $1.22\left(12 \mathrm{H}, \mathrm{s}, \mathrm{g}+\mathrm{g}\right.$ ') ppm; ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.32(\mathrm{~d}$, $\left.{ }^{3} J_{C-P}=17 \mathrm{~Hz}, \mathrm{~h}\right), 137.53$ (j), 127.33 (l), 124.41 (i), 83.86 (f), 61.32 (d, ${ }^{2} J_{C-P}=6.0 \mathrm{~Hz}$, b or b'), $60.91\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), 35.39 ($\mathrm{d},{ }^{1} J_{C-P}=137 \mathrm{~Hz}, \mathrm{c}$), 24.86 (g or g'), 24.67 (g or g'), 22.45 $\left(\mathrm{d},{ }^{3} J_{C-P}=3.5 \mathrm{~Hz}, \mathrm{e}\right), 21.63(\mathrm{k}), 16.58\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a'), $16.52\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.30$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.90 \mathrm{ppm} ;$

IR (neat) 2976 (aromatic C-H), 2915 (aliphatic C-H), 1598, 1461 (aromatic C=C), 1321 (aromatic $\mathrm{C}=\mathrm{C}$), 1240 ($\mathrm{P}=\mathrm{O}$), 1164, 1053 (C-O), 1025 (C-O), 954 (P-O), 839, $697 \mathrm{~cm}^{-1}$; The enantiomer ratio of this boronic ester is determined after oxidation to the chiral tertiary alcohol 18e.

Synthesis of chiral tertiary benzylic boronic ester (\boldsymbol{R}) - $\mathbf{6 f}$: Following the general procedure for catalytic asymmetric hydroboration (GP3) using (R, R)-T2, the substrate $\mathbf{5 f}(54 \mathrm{mg}, 0.2 \mathrm{mmol}$) yields the tertiary benzylic boronic ester product $(R)-\mathbf{f f}(64 \mathrm{mg}, 81 \%)$ as a colorless liquid: TLC analysis (ethyl acetate/hexanes 1:2) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=-3.1^{\mathrm{o}}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.27(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{i}), 7.09(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{j}), 4.09-3.90\left(4 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}^{\prime}\right), 2.46(1 \mathrm{H}$, dd, $J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 2.30(3 \mathrm{H}, \mathrm{s}, 1), 2.12(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 1.56(3 \mathrm{H}, \mathrm{s}, \mathrm{e}), 1.28$ $\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a'), $1.24\left(3 \mathrm{H}, \mathrm{t}, J=3.0 \mathrm{~Hz}\right.$, a or a'), $1.20\left(12 \mathrm{H}, \mathrm{s}, \mathrm{g}+\mathrm{g}^{\prime}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.22\left(\mathrm{~d},{ }^{3} J_{C-P}=16.0 \mathrm{~Hz}, \mathrm{~h}\right), 135.01$ (k), 128.99 (j), 126.45 (i), 83.86 (f), 61.32 $\left(\mathrm{d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), $60.96\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), $35.50\left(\mathrm{~d},{ }^{1} J_{C-P}=137 \mathrm{~Hz}, \mathrm{c}\right), 24.83(\mathrm{~g}$ or g'), 24.70 (g or g^{\prime}), $22.34\left(\mathrm{~d},{ }^{3} J_{C-P}=4.0 \mathrm{~Hz}, \mathrm{e}\right.$), 20.98 (l), 16.54 ($\mathrm{d},{ }^{3} J_{C-P}=5.5 \mathrm{~Hz}$, a or a'), 16.49 (d, ${ }^{3} J_{C-P}=6.0 \mathrm{~Hz}$, a or a') ppm; ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.25$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.75 \mathrm{ppm}$; IR (neat) 2977 (aromatic C-H), 2906 (aliphatic C-H), 1511, 1463 (aromatic $\mathrm{C}=\mathrm{C}$), 1345, $1240(\mathrm{P}=\mathrm{O}), 1153,1054,1025(\mathrm{C}-\mathrm{O}), 955(\mathrm{P}-\mathrm{O}), 836,729 \mathrm{~cm}^{-1}$; The enantiomer ratio of this boronic ester is determined after oxidation to the chiral tertiary alcohol $18 f$.

Synthesis of chiral tertiary benzylic boronic ester (\boldsymbol{R})-6g: Following the general procedure for catalytic asymmetric hydroboration (GP3) with $(R, R)-\mathbf{T} 2$, the substrate $\mathbf{5 g}(64 \mathrm{mg}, 0.2 \mathrm{mmol})$ yields the tertiary benzylic boronic ester product $(R)-\mathbf{6 g}(69 \mathrm{mg}, 77 \%)$ as a colorless liquid: TLC analysis (ethyl acetate/hexanes 1:3) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=-5.5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.53(4 \mathrm{H}, \mathrm{dd}, J=12.5,9.0 \mathrm{~Hz}, \mathrm{i}+\mathrm{j}), 4.06-3.86(4 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}), 2.41(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0$ $\mathrm{Hz}, \mathrm{c}), 2.20(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 1.60(3 \mathrm{H}, \mathrm{s}, \mathrm{e}), 1.25-1.18\left(18 \mathrm{H}, \mathrm{m}, \mathrm{a}+\mathrm{a}^{\prime}+\mathrm{g}+\mathrm{g}^{\prime}\right) \mathrm{ppm},{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.46\left(\mathrm{~d},{ }^{3} J_{C-P}=14.0 \mathrm{~Hz}, \mathrm{~h}\right), 127.96\left(\mathrm{q},{ }^{2} J_{C-F}=32.0 \mathrm{~Hz}, \mathrm{k}\right), 127.25$ (i), $125.11\left(\mathrm{q},{ }^{3} J_{C-F}=4.0 \mathrm{~Hz}, \mathrm{j}\right), 124.55\left(\mathrm{q},{ }^{1} J_{C-F}=272 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 84.22(\mathrm{f}), 61.41\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0\right.$ Hz , b or b'), $61.07\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}\right.$, b or b'), $35.49\left(\mathrm{~d},{ }^{1} J_{C-P}=139 \mathrm{~Hz}, \mathrm{c}\right), 22.24\left(\mathrm{~g}\right.$ or $\left.\mathrm{g}^{\prime}\right), 22.19(\mathrm{~g}$ or g'), $22.21\left(\mathrm{~d},{ }^{3} J_{C-P}=5.0 \mathrm{~Hz}, \mathrm{e}\right), 16.49\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a'), $16.43\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{11}$ B NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.28$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.66$ ppm; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.37 \mathrm{ppm}$; IR (neat) 2979 (aromatic C-H), 2932 (aliphatic

C-H), 1616, 1469 (aromatic C=C), 1381 (aromatic C=C), 1324 (C-F), 1240 ($\mathrm{P}=\mathrm{O}$), 1120, 1053 (CO), 1025 (C-O), 955 (P-O), 844, 831, $679 \mathrm{~cm}^{-1}$; The enantiomer ratio of this boronic ester is determined after oxidation to the chiral tertiary alcohol 18g.

Synthesis of chiral tertiary benzylic boronic ester $(\boldsymbol{R})-\mathbf{6 h}$: Following the general procedure for catalytic asymmetric hydroboration (GP3) with $(R, R)-\mathbf{T 2}$, the substrate $\mathbf{5 h}(54 \mathrm{mg}, 0.2 \mathrm{mmol})$ yields the tertiary benzylic boronic ester product $(R)-6 h(51 \mathrm{mg}, 6 \%)$ as a colorless liquid: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=-5.8^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.35(2 \mathrm{H}, \mathrm{dd}, J=8.5,5.5 \mathrm{~Hz}, \mathrm{i}), 6.96(2 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}, \mathrm{j}), 4.06-3.88(4 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}$ '), 2.39 $(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 2.14(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 1.56(3 \mathrm{H}, \mathrm{s}, \mathrm{e}), 1.27-1.20(18 \mathrm{H}$, $\mathrm{m}, \mathrm{a}+\mathrm{a}^{\prime}+\mathrm{g}+\mathrm{g}$ ') ppm; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.15\left(\mathrm{~d},{ }^{1} J_{C-F}=244 \mathrm{~Hz}, \mathrm{k}\right), 141.78\left(\mathrm{dd},{ }^{4} J_{C-}\right.$ $\left.{ }_{F}=3.0 \mathrm{~Hz},{ }^{3} J_{C-P}=15.0 \mathrm{~Hz}, \mathrm{~h}\right), 128.28\left(\mathrm{~d},{ }^{3} J_{C-F}=8.0 \mathrm{~Hz}, \mathrm{i}\right), 114.89\left(\mathrm{~d},{ }^{2} J_{C-F}=21 \mathrm{~Hz}, \mathrm{j}\right), 84.01(\mathrm{f})$, $61.32\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $60.99\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $35.76\left(\mathrm{~d},{ }^{1} J_{C-P}=138 \mathrm{~Hz}, \mathrm{c}\right)$, 24.80 (g or g'), 24.68 (g or g'), $22.46\left(\mathrm{~d},{ }^{3} J_{C-P}=5.0 \mathrm{~Hz}, \mathrm{e}\right.$), $16.55\left(\mathrm{~d},{ }^{3} J_{C-P}=4.5 \mathrm{~Hz}\right.$, a or a'), 16.49 (d, ${ }^{3} J_{C-P}=5.0 \mathrm{~Hz}$, a or a') ppm; ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.00$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.12 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.33 \mathrm{ppm}$; IR (neat) 2977 (aromatic C-H), 2932 (aliphatic C-H), 1603, 1508 (C-F), 1469 (aromatic C=C), 1343 (aromatic C=C), 1323 (aromatic $\mathrm{C}=\mathrm{C}$), 1237 ($\mathrm{P}=\mathrm{O}$), 1143, 1053 (C-O), 1024 (C-O), 955 (P-O), $838 \mathrm{~cm}^{-1}$; The enantiomer ratio of this boronic ester is determined after oxidation to the chiral tertiary alcohol $\mathbf{1 8 h}$.

$5 i$

$(R)-\mathbf{6 i}$

Synthesis of chiral tertiary benzylic boronic ester (\boldsymbol{R})-6i: Following the general procedure for catalytic asymmetric hydroboration (GP3) with (R, R) - $\mathbf{T 2}$, the substrate $\mathbf{5 i}(58 \mathrm{mg}, 0.2 \mathrm{mmol})$ yields the tertiary benzylic boronic ester product $(R)-6 \mathbf{i}(68 \mathrm{mg}, 82 \%)$ as a colorless viscous liquid: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=-8.5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}$, i or j$), 7.24(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{i}$ or j$), 4.06-3.88(4 \mathrm{H}, \mathrm{m}$, b+b'), $2.38(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 2.13(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 1.55(3 \mathrm{H}, \mathrm{s}, \mathrm{e}), 1.27-$ $1.19\left(18 \mathrm{H}, \mathrm{m}, \mathrm{a}+\mathrm{a}+\mathrm{g}+\mathrm{g}\right.$ ') ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.75\left(\mathrm{~d},{ }^{3} J_{C-P}=15 \mathrm{~Hz}, \mathrm{~h}\right), 131.44$ (k), 128.28 (i or j), 128.24 (i or j), 84.06 (f), 61.36 (d, ${ }^{2} J_{C-P}=6.0 \mathrm{~Hz}$, b or b'), 61.02 (d, ${ }^{2} J_{C-P}=7.0$ Hz , b or $\left.\mathrm{b}^{\prime}\right), 35.52\left(\mathrm{~d},{ }^{1} J_{C-P}=139 \mathrm{~Hz}, \mathrm{c}\right), 24.80\left(\mathrm{~g}\right.$ or $\left.\mathrm{g}^{\prime}\right), 24.68\left(\mathrm{~g}\right.$ or $\left.\mathrm{g}^{\prime}\right), 22.24\left(\mathrm{~d},{ }^{3} J_{C-P}=5.0 \mathrm{~Hz}\right.$, e), $16.54\left(\mathrm{~d},{ }^{3} J_{C-P}=5.0 \mathrm{~Hz}\right.$, a or a'), $16.48\left(\mathrm{~d},{ }^{3} J_{C-P}=5.5 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{11}$ B NMR (128 MHz , CDCl_{3}) $\delta 33.13$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.99 \mathrm{ppm}$; IR (neat) 2977 (aromatic C-H), 2931 (aliphatic C-H), 1740, 1492 (aromatic $\mathrm{C}=\mathrm{C}$), 1323 (aromatic $\mathrm{C}=\mathrm{C}$), $1240(\mathrm{P}=\mathrm{O}), 1143$,
$1053(\mathrm{C}-\mathrm{O}), 1024(\mathrm{C}-\mathrm{O}), 954(\mathrm{P}-\mathrm{O}), 830(\mathrm{C}-\mathrm{Cl}) \mathrm{cm}^{-1}$; The enantiomer ratio of this boronic ester is determined after oxidation to the chiral tertiary alcohol $\mathbf{1 8 i}$.

Synthesis of chiral tertiary benzylic boronic ester (\boldsymbol{R})-6j: Following the general procedure for catalytic asymmetric hydroboration (GP3) with (R, R)- \mathbf{T} 2, the substrate $\mathbf{5 j}$ ($58 \mathrm{mg}, 0.2 \mathrm{mmol}$) yields the tertiary benzylic boronic ester product (R) $\mathbf{- 6 j}(53 \mathrm{mg}, 64 \%)$ as a colorless viscous liquid: TLC analysis (ethyl acetate/hexanes 2:5) $\mathrm{R}_{f}=0.5 ;[\alpha] \mathrm{D}^{20}=-12.4^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(1 \mathrm{H}, \mathrm{s}, \mathrm{i}), 7.27(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{~m}$ or k$), 7.20(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{l}), 7.12$ $(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{~m}$ or k), 4.07-3.89 (4H, m, b+b'), $2.39(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 2.13(1 \mathrm{H}$, dd, $J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 1.55(3 \mathrm{H}, \mathrm{s}, \mathrm{e}), 1.27-1.20\left(18 \mathrm{H}, \mathrm{m}, \mathrm{a}+\mathrm{a}^{\prime}+\mathrm{g}+\mathrm{g}{ }^{\prime}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 148.49\left(\mathrm{~d},{ }^{3} J_{C-P}=15 \mathrm{~Hz}, \mathrm{~h}\right), 134.17$ (j), 129.43 (l), 127.06 (i), 125.82 (m or k), 125.06 (m or k), 84.11 (f), 61.39 ($\mathrm{d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}$, b or b'), $61.00\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}\right.$, b or b'), $35.40\left(\mathrm{~d},{ }^{1} J_{C-}\right.$ $\left.{ }_{P}=139 \mathrm{~Hz}, \mathrm{c}\right), 24.79\left(\mathrm{~g}\right.$ or g'), $24.65\left(\mathrm{~g}\right.$ or g'), $22.16\left(\mathrm{~d},{ }^{3} J_{C-P}=4.0 \mathrm{~Hz}, \mathrm{e}\right), 16.53\left(\mathrm{~d},{ }^{3} J_{C-P}=5.0 \mathrm{~Hz}\right.$, a or a'), $16.47\left(\mathrm{~d}^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.19$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.99 \mathrm{ppm}$; IR (neat) 2977 (aromatic C-H), 2931 (aliphatic C-H), 1593, 1567, 1472 (aromatic $\mathrm{C}=\mathrm{C}$), 1323 (aromatic $\mathrm{C}=\mathrm{C}$), $1240(\mathrm{P}=\mathrm{O}), 1143,1053$ (C-O), 1024 (C-O), $955(\mathrm{P}-\mathrm{O}), 833(\mathrm{C}-\mathrm{Cl}) \mathrm{cm}^{-1}$; The enantiomer ratio of this boronic ester is determined after oxidation to the chiral tertiary alcohol $\mathbf{1 8 j}$.

5k
$\xrightarrow[(R, R)-\mathrm{T} 2]{\mathbf{G P 3}}$

Synthesis of chiral tertiary benzylic boronic ester (\boldsymbol{R})-6k: Following the general procedure for catalytic asymmetric hydroboration (GP3) with $(R, R)-\mathbf{T 2}$, the substrate $\mathbf{5 k}(67 \mathrm{mg}, 0.2 \mathrm{mmol})$ yields the tertiary benzylic boronic ester product $(R)-\mathbf{6 k}(63 \mathrm{mg}, 68 \%)$ as a colorless viscous liquid: TLC analysis (ethyl acetate/hexanes 1:2) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=-5.2^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}$, i or j$), 7.27(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{i}$ or j$), 4.07-3.89(4 \mathrm{H}, \mathrm{m}$, b+b'), $2.39(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 2.14(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 1.55(3 \mathrm{H}, \mathrm{s}, \mathrm{e}), 1.28-$ $1.20\left(18 \mathrm{H}, \mathrm{m}, \mathrm{a}+\mathrm{a}+\mathrm{g}+\mathrm{g}{ }^{\prime}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.32\left(\mathrm{~d},{ }^{3} J_{C-P}=15 \mathrm{~Hz}, \mathrm{~h}\right), 131.25$ (i or j), 128.68 (i or j), $119.59(\mathrm{k}), 84.10$ (f), $61.40\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), $61.06\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0\right.$ Hz , b or $\left.\mathrm{b}^{\prime}\right), 35.74\left(\mathrm{~d},{ }^{1} J_{C-P}=138 \mathrm{~Hz}, \mathrm{c}\right), 24.83\left(\mathrm{~g}\right.$ or $\left.\mathrm{g}^{\prime}\right), 24.71\left(\mathrm{~g}\right.$ or $\left.\mathrm{g}^{\prime}\right), 22.19\left(\mathrm{~d},{ }^{3} J_{C-P}=5.0 \mathrm{~Hz}\right.$, e), $16.56\left(\mathrm{~d},{ }^{3} J_{C-P}=5.0 \mathrm{~Hz}\right.$, a or a'), $16.51\left(\mathrm{~d},{ }^{3} J_{C-P}=5.5 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{11}$ B NMR (128 MHz , CDCl_{3}) $\delta 34.05$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.96 \mathrm{ppm}$; IR (neat) 2977 (aromatic C-H), 2930 (aliphatic C-H), 1488 (aromatic $\mathrm{C}=\mathrm{C}$), 1371 (aromatic $\mathrm{C}=\mathrm{C}$), 1240 ($\mathrm{P}=\mathrm{O}$), 1142, 1053
(C-O), 1023 (C-O), 955 (P-O), 830, $686(\mathrm{C}-\mathrm{Br}) \mathrm{cm}^{-1}$; The enantiomer ratio of this boronic ester is determined after oxidation to the chiral tertiary alcohol 18k.

51
(S)-61

Synthesis of chiral tertiary benzylic boronic ester (\boldsymbol{S})-61: Following the general procedure for catalytic asymmetric hydroboration (GP3) with (R, R) - $\mathbf{T 2}$, the substrate $\mathbf{5 1}(52 \mathrm{mg}, 0.2 \mathrm{mmol})$ yields the tertiary benzylic boronic ester product $(S)-61(66 \mathrm{mg}, 85 \%)$ as a colorless viscous liquid: TLC analysis (ethyl acetate/hexanes 1:2) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+6.5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12-7.11(1 \mathrm{H}, \mathrm{m}, \mathrm{k}), 6.92-6.90(2 \mathrm{H}, \mathrm{m}, \mathrm{i}+\mathrm{j}), 4.09-3.98(4 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}), 2.51(1 \mathrm{H}$, dd, $J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 2.15(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 1.62(3 \mathrm{H}, \mathrm{s}, \mathrm{e}), 1.31-1.23(18 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{a}+\mathrm{a}^{\prime}+\mathrm{g}+\mathrm{g}^{\prime}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.35\left(\mathrm{~d},{ }^{3} J_{C-P}=20 \mathrm{~Hz}, \mathrm{~h}\right.$), 126.78 (i or j$), 123.24$ (i or j), 122.97 (k), 84.19 (f), 61.53 (d, ${ }^{2} J_{C-P}=6.0 \mathrm{~Hz}$, b or b'), 61.10 (d, ${ }^{2} J_{C-P}=7.0 \mathrm{~Hz}$, b or b'), $37.03\left(\mathrm{~d},{ }^{1} J_{C-P}=138 \mathrm{~Hz}, \mathrm{c}\right), 24.83\left(\mathrm{~g}\right.$ or $\left.\mathrm{g}^{\prime}\right), 24.76\left(\mathrm{~g}\right.$ or g'), $24.17\left(\mathrm{~d},{ }^{3} J_{C-P}=5.0 \mathrm{~Hz}, \mathrm{e}\right), 16.57(\mathrm{~d}$, ${ }^{3} J_{C-P}=6.5 \mathrm{~Hz}, \mathrm{a}+\mathrm{a}$) ppm; ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.78$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR (162 MHz , CDCl_{3}) $\delta 30.16 \mathrm{ppm}$; IR (neat) 2978 (aromatic C-H), 2931 (aliphatic C-H), 1739, 1463 (aromatic $\mathrm{C}=\mathrm{C}$), 1325 (aromatic $\mathrm{C}=\mathrm{C}$), 1236 ($\mathrm{P}=\mathrm{O}$), 1142, 1052 (C-O), 1023 (C-O/C=S), 955 (P-O), 731, $692 \mathrm{~cm}^{-1}$; The enantiomer ratio of this boronic ester is determined after oxidation to the chiral tertiary alcohol 181.

Synthesis of chiral tertiary benzylic boronic ester (\boldsymbol{R}) - $\mathbf{6 m}$: Following the general procedure for catalytic asymmetric hydroboration (GP3) with (R, R) - $\mathbf{T} 2$, the substrate $\mathbf{5 m}(52 \mathrm{mg}, 0.2 \mathrm{mmol})$ yields the tertiary benzylic boronic ester product $(R)-\mathbf{6 m}(62 \mathrm{mg}, 80 \%)$ as a colorless viscous liquid: TLC analysis (ethyl acetate/hexanes 1:2) $\mathrm{R}_{f}=0.5 ;\left[\alpha \mathrm{D}^{20}=-6.4^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}\right.$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(1 \mathrm{H}, \mathrm{dd}, J=5.0,3.0 \mathrm{~Hz}, \mathrm{j}), 7.10(1 \mathrm{H}, \mathrm{dd}, J=5.0,1.3 \mathrm{~Hz}, \mathrm{i}), 7.03(1 \mathrm{H}$, dd, $J=3.0,1.3 \mathrm{~Hz}, \mathrm{k}), 4.11-3.94(4 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}$ '), $2.45(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 2.10(1 \mathrm{H}, \mathrm{dd}$, $J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 1.55(3 \mathrm{H}, \mathrm{s}, \mathrm{e}), 1.30-1.24(6 \mathrm{H}, \mathrm{m}, \mathrm{a}+\mathrm{a}), 1.20\left(12 \mathrm{H}, \mathrm{s}, \mathrm{g}+\mathrm{g}^{\prime}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.64$ (d, ${ }^{3} J_{C-P}=17.5 \mathrm{~Hz}, \mathrm{~h}$), 127.28 (i), 125.00 (j), 119.11 (k), 83.97 (f), $61.39\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), $61.06\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), $35.64\left(\mathrm{~d},{ }^{1} J_{C-P}=138 \mathrm{~Hz}, \mathrm{c}\right)$, 24.82 (g or g^{\prime}), 24.74 (g or $\left.\mathrm{g}^{\prime}\right), 22.84\left(\mathrm{~d},{ }^{3} J_{C-P}=5.0 \mathrm{~Hz}, \mathrm{e}\right.$), $16.58\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a'), 16.56 (d, ${ }^{3} J_{C-P}=6.0 \mathrm{~Hz}$, a or a') ppm; ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.29$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.08 \mathrm{ppm}$; IR (neat) 2977 (aromatic C-H), 2931 (aliphatic C-H), 1739, 1462 (aromatic $\mathrm{C}=\mathrm{C}$), 1339 (aromatic $\mathrm{C}=\mathrm{C}$), $1320(\mathrm{C}=\mathrm{C}), 1239(\mathrm{P}=\mathrm{O}), 1143,1053$ (C-O), 1024 (C-
$\mathrm{O} / \mathrm{C}=\mathrm{S}$), $954(\mathrm{P}-\mathrm{O}), 776 \mathrm{~cm}^{-1}$; The enantiomer ratio of this boronic ester is determined after oxidation to the chiral tertiary alcohol $\mathbf{1 8 m}$.

Synthesis of chiral tertiary benzylic boronic ester (2S,5S)-16a: Following the general procedure for catalytic asymmetric hydroboration (GP3) using (R, R)-T2, the substrate (Z)- $\mathbf{1 5 a}$ ($56 \mathrm{mg}, 0.15$ mmol) yields the tertiary benzylic boronic ester product $(2 S, 5 S) \mathbf{- 1 6 a}(62 \mathrm{mg}, 82 \%)$ as a colorless viscous liquid. Alternatively, following GP3 using $(R, R)-\mathbf{T} 2$, the diastereomeric substrate (E) - $\mathbf{1 5 a}$ ($56 \mathrm{mg}, 0.15 \mathrm{mmol}$) yields the tertiary benzylic boronic ester product ($2 S, 5 S$)-16a ($61 \mathrm{mg}, 81 \%$) as a colorless viscous liquid. TLC analysis (ethyl acetate/hexanes 1:2) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+2.5^{\circ}(c$ $\left.=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.13(1 \mathrm{H}, \mathrm{dd}, J=5.0,1.3 \mathrm{~Hz}, \mathrm{p}), 6.93-6.90(2 \mathrm{H}, \mathrm{m}$, $\mathrm{n}+\mathrm{o}), 4.06-3.87(6 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}+\mathrm{g}+\mathrm{h}(1 \mathrm{H})), 3.48-3.43(1 \mathrm{H}, \mathrm{m}, \mathrm{h}(1 \mathrm{H})), 2.42(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0$ $\mathrm{Hz}, \mathrm{c}), 2.34(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 2.15(1 \mathrm{H}, \mathrm{ddd}, J=18.0,13.5,4.5 \mathrm{~Hz}, \mathrm{e}(1 \mathrm{H})), 1.96(1 \mathrm{H}$, ddd, $J=18.0,13.5,4.5 \mathrm{~Hz}, \mathrm{e}(1 \mathrm{H})), 1.69-1.61(1 \mathrm{H}, \mathrm{m}, \mathrm{f}(1 \mathrm{H})), 1.39-1.30(1 \mathrm{H}, \mathrm{m}, \mathrm{f}(1 \mathrm{H})), 1.35(3 \mathrm{H}$, s , j or $\left.\mathrm{j}^{\prime}\right), 1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{j}\right.$ or $\left.\mathrm{j}^{\prime}\right), 1.29-1.22\left(18 \mathrm{H}, \mathrm{m}, \mathrm{a}+\mathrm{a}^{\prime}+\mathrm{l}+\mathrm{l}^{\prime}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 149.73 (d, ${ }^{3} J_{C-P}=18 \mathrm{~Hz}, \mathrm{~m}$), 126.76 (n or o), 124.41 (n or o), $123.30(\mathrm{p}), 108.66$ (i), $84.24(\mathrm{k})$, $76.55(\mathrm{~g}), 69.67(\mathrm{~h}), 61.55\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), $61.14\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}\right.$, b or b'), $33.74(\mathrm{~d}$, $\left.{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}, \mathrm{e}\right), 33.20\left(\mathrm{~d},{ }^{1} J_{C-P}=140 \mathrm{~Hz}, \mathrm{c}\right), 28.72$ (f), 27.04 (j or j'), 25.84 (j or j'), 24.93 (1 or l^{\prime}), 24.91 (1 or l'), 16.56 (d, ${ }^{3} J_{C-P}=7.0 \mathrm{~Hz}, \mathrm{a}+\mathrm{a}$ ') ppm; ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.01$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.31 \mathrm{ppm}$; IR (neat) 2979 (aromatic C-H), 2933 (aliphatic C-H), 1369 (aromatic $\mathrm{C}=\mathrm{C}$), 1326 (aromatic $\mathrm{C}=\mathrm{C}$), 1239 ($\mathrm{P}=\mathrm{O}$), 1142, 1052 (C-O), 1024 (C$\mathrm{O} / \mathrm{C}=\mathrm{S}), 956(\mathrm{P}-\mathrm{O}), 833,692 \mathrm{~cm}^{-1}$; The enantiomer ratio of this boronic ester is determined after oxidation to the chiral tertiary alcohol $(2 R, 5 S)$ - $34 a$.

Synthesis of chiral tertiary benzylic boronic ester (2R,5S)-16a: Following the general procedure for catalytic asymmetric hydroboration (GP3) with (S,S)-T2, the substrate (Z)-15a (56 $\mathrm{mg}, 0.15 \mathrm{mmol}$) yields the tertiary benzylic boronic ester product $(2 R, 5 S)-\mathbf{1 6 a}(61 \mathrm{mg}, 81 \%)$ as a colorless viscous liquid. Alternatively, following GP3 with (S, S) - $\mathbf{T 2}$, the diastereomeric substrate $(E) \mathbf{- 1 5 a}(56 \mathrm{mg}, 0.15 \mathrm{mmol})$ yields the tertiary benzylic boronic ester product $(2 R, 5 S) \mathbf{- 1 6 a}(60 \mathrm{mg}$, 79%) as a colorless viscous liquid.: TLC analysis (ethyl acetate/hexanes $1: 2$) $\mathrm{R}_{f}=0.5$; $[\alpha]_{\mathrm{D}}{ }^{20}=$
$+6.0^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.13(1 \mathrm{H}, \mathrm{dd}, J=5.0,1.0 \mathrm{~Hz}, \mathrm{p}), 6.95(1 \mathrm{H}$, $\mathrm{dd}, J=3.5,1.0 \mathrm{~Hz}, \mathrm{o}), 6.91(1 \mathrm{H}, \mathrm{dd}, J=5.0,3.5 \mathrm{~Hz}, \mathrm{n}), 4.07-3.86\left(6 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}^{\prime}+\mathrm{g}+\mathrm{h}(1 \mathrm{H})\right), 3.52-$ $3.43(1 \mathrm{H}, \mathrm{m}, \mathrm{h}(1 \mathrm{H})), 2.42(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 2.34(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 2.16$ $(1 \mathrm{H}, \mathrm{ddd}, J=17.0,13.0,4.0 \mathrm{~Hz}, \mathrm{e}(1 \mathrm{H})), 1.93(1 \mathrm{H}, \mathrm{ddd}, J=18.0,13.5,4.5 \mathrm{~Hz}, \mathrm{e}(1 \mathrm{H})), 1.58-1.41$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{f}), 1.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{j}\right.$ or $\left.\mathrm{j}^{\prime}\right), 1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{j}\right.$ or $\left.\mathrm{j}^{\prime}\right), 1.30-1.22\left(18 \mathrm{H}, \mathrm{m}, \mathrm{a}+\mathrm{a}^{\prime}+\mathrm{l}+\mathrm{l}^{\prime}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.56$ (d, ${ }^{3} J_{C-P}=18 \mathrm{~Hz}, \mathrm{~m}$), 126.78 (n), 124.66 (o), 123.26 (p), 108.67 (i), $84.23(\mathrm{k}), 76.60(\mathrm{~g}), 69.59(\mathrm{~h}), 61.60\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), $61.11\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $33.89\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}, \mathrm{e}\right), 33.44\left(\mathrm{~d},{ }^{1} J_{C-P}=140 \mathrm{~Hz}, \mathrm{c}\right), 28.86$ (f), $27.08(\mathrm{j}$ or j '), 25.87 (j or j'), 24.95 (1 or l'), 24.88 (1 or l'), 16.55 ($\mathrm{d},{ }^{3} J_{C-P}=7.0 \mathrm{~Hz}, \mathrm{a}+\mathrm{a}$) $\mathrm{ppm} ;{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 32.59 (br s) ppm; ${ }^{31} \mathrm{P} \mathrm{NMR} \mathrm{(} 162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.32 \mathrm{ppm}$; IR (neat) 2978 (aromatic C-H), 2933 (aliphatic C-H), 1369 (aromatic C=C), 1326 (aromatic C=C), 1240 ($\mathrm{P}=\mathrm{O}$), 1142, 1051 (C-O), 1024 (C-O/C=S), 959 (P-O), $833,693 \mathrm{~cm}^{-1}$; The enantiomer ratio of this boronic ester is determined after oxidation to the chiral tertiary alcohol ($2 S, 5 S$)-34a.

Synthesis of chiral tertiary benzylic boronic ester (\boldsymbol{S})-16b: Following the general procedure for catalytic asymmetric hydroboration (GP3) with (R, R) - $\mathbf{T} \mathbf{2}$, the substrate (Z) - $\mathbf{1 5 b}(56 \mathrm{mg}, 0.15$ mmol) yields the tertiary benzylic boronic ester product $(S) \mathbf{- 1 6 b}$ ($63 \mathrm{mg}, 85 \%$) as a colorless viscous liquid: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=-8.2^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.23(2 \mathrm{H}, \mathrm{m}$, aryl), 7.18-7.13 (4H, m, aryl), $6.95(1 \mathrm{H}, \mathrm{dd}, J=$ $3.5,1.0 \mathrm{~Hz}, \mathrm{o}), 6.92(1 \mathrm{H}, \mathrm{dd}, J=5.0,3.5 \mathrm{~Hz}, \mathrm{n}), 4.08-3.84(4 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}), 2.66-2.54(2 \mathrm{H}, \mathrm{m}, \mathrm{g})$, $2.42(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 2.37(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}), 2.18-2.07(2 \mathrm{H}, \mathrm{m}, \mathrm{e}), 1.67-$ $1.44(2 \mathrm{H}, \mathrm{m}, \mathrm{f}), 1.30-1.23\left(18 \mathrm{H}, \mathrm{m}, \mathrm{a}+\mathrm{a}^{\prime}+\mathrm{l}+\mathrm{l}^{\prime}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.12\left(\mathrm{~d},{ }^{3} J_{C-}\right.$ $\left.{ }_{P}=17 \mathrm{~Hz}, \mathrm{~m}\right), 142.83(\mathrm{~h}), 128.53(\operatorname{aryl}), 128.35(\operatorname{aryl}), 126.70(\mathrm{n}), 125.73$ (aryl), 124.43 (o), 123.09 (aryl), $84.15(\mathrm{k}), 61.48\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $61.02\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}\right.$, b or b'), $37.87\left(\mathrm{~d},{ }^{3} J_{C-P}\right.$ $=8.0 \mathrm{~Hz}, \mathrm{e}), 36.60(\mathrm{~g}), 33.61\left(\mathrm{~d},{ }^{1} J_{C-P}=140 \mathrm{~Hz}, \mathrm{c}\right), 26.70(\mathrm{f}), 24.94(1$ or l'), $24.90(1$ or l'), 16.63 $\left(\mathrm{d},{ }^{3} J_{C-P}=7.0 \mathrm{~Hz}\right.$, a or a'), $16.56\left(\mathrm{~d},{ }^{3} J_{C-P}=6.5 \mathrm{~Hz}\right.$, a or a' $) \mathrm{ppm} ;{ }^{11} \mathrm{~B} \mathrm{NMR}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 33.83 (br s) ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.58 \mathrm{ppm}$; IR (neat) 2976 (aromatic C-H), 2933 (aliphatic C-H), 1371 (aromatic C=C), 1324 (aromatic C=C), 1241 ($\mathrm{P}=\mathrm{O}$), 1142, 1051 (C-O), 1024 (C-O/C=S), 958 (P-O), $696 \mathrm{~cm}^{-1}$; The enantiomer ratio of this boronic ester is determined after oxidation to the chiral tertiary alcohol $(R) \mathbf{- 3 4 b}$.

Synthesis of chiral tertiary benzylic boronic ester (2S,5S)-16c: Following the general procedure for catalytic asymmetric hydroboration (GP3) with (R, R)-T2 (Note: $2 \mathrm{~mol} \%$ catalyst loading was used), the substrate (Z)-15c ($58 \mathrm{mg}, 0.15 \mathrm{mmol}$) yields the tertiary benzylic boronic ester product $(2 S, 5 S)-16 \mathrm{c}(42 \mathrm{mg}, 55 \%)$ as a colorless viscous liquid (Note: $2 \mathrm{~mol} \%$ catalyst loading used. Even when higher catalyst loading is used, the reactions with this substrate did not proceed to complete consumption of substrate, perhaps due to the presence of three chelating sites leading to catalyst inactivation): TLC analysis (ethyl acetate/hexanes 1:2) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+9.1^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14(1 \mathrm{H}, \mathrm{dd}, J=5.0,1.0 \mathrm{~Hz}, \mathrm{~s}), 7.00(1 \mathrm{H}, \mathrm{dd}, J=3.5,1.0 \mathrm{~Hz}, \mathrm{r})$, $6.92(1 \mathrm{H}, \mathrm{dd}, J=5.0,3.5 \mathrm{~Hz}, \mathrm{q}), 5.09-5.06(1 \mathrm{H}, \mathrm{m}, \mathrm{k}), 4.07-3.78(4 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b})$), 2.45-2.32 ($2 \mathrm{H}, \mathrm{m}$, c), 2.11-1.87 ($4 \mathrm{H}, \mathrm{m}, \mathrm{e}+\mathrm{j})$, $1.68(3 \mathrm{H}, \mathrm{s}, \mathrm{m}$ or m$), 1.58(3 \mathrm{H}, \mathrm{s}, \mathrm{m}$ or m'), $1.44-1.20(21 \mathrm{H}$, $\left.\mathrm{a}+\mathrm{a}^{\prime}+\mathrm{f}+\mathrm{g}+\mathrm{o}+\mathrm{o}^{\prime}\right), 1.14-0.94(2 \mathrm{H}, \mathrm{m}, \mathrm{i}), 0.87(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{~h}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 150.34\left(\mathrm{~d},{ }^{3} J_{C-P}=15 \mathrm{~Hz}, \mathrm{p}\right), 131.07(\mathrm{l}), 126.63(\mathrm{q}), 125.24(\mathrm{k}), 124.70(\mathrm{r}), 123.02(\mathrm{~s})$, $84.12(\mathrm{n}), 61.38\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), $61.03\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}\right.$, b or b'), 37.33, $35.91\left(\mathrm{~d},{ }^{3} J_{C-}\right.$ $\left.{ }_{P}=8.5 \mathrm{~Hz}, \mathrm{e}\right), 34.11\left(\mathrm{~d},{ }^{1} J_{C-P}=140 \mathrm{~Hz}, \mathrm{c}\right), 33.15,31.86,25.90(\mathrm{~m}$ or m'), 25.81, 25.01 (o or o'), 24.94 (o or o'), 19.71 (h), 17.83 (m or m'), 16.58 ($\mathrm{d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}$, a or a'), 16.55 (d, ${ }^{2} J_{C-P}=6.0$ Hz , a or a') ppm; ${ }^{11}$ B NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.81$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 30.71 (92%; major diastereomer), 30.67 (8%; minor diastereomer) ppm; IR (neat) 2977 (aromatic C-H), 2933 (aliphatic C-H), 1373 (aromatic C=C), 1325 (aromatic $\mathrm{C}=\mathrm{C}$), 1239 ($\mathrm{P}=\mathrm{O}$), 1143, 1053 (C-O), 1025 (C-O/C=S), 958 (P-O) cm ${ }^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{BO}_{5} \mathrm{PS}=512.2897$, found $512.2907 \mathrm{~m} / \mathrm{z}$.

Synthesis of chiral tertiary benzylic boronic ester $(\mathbf{2 R}, \mathbf{5 S}) \mathbf{- 1 6 c}$: Following the general procedure for catalytic asymmetric hydroboration (GP3) using (S, S)-T2 (Note: $2 \mathrm{~mol} \%$ catalyst loading was used), the substrate $(Z)-\mathbf{1 5 c}(58 \mathrm{mg}, 0.15 \mathrm{mmol})$ yields the tertiary benzylic boronic ester product $(2 R, 5 S)-16 \mathrm{c}(44 \mathrm{mg}, 58 \%)$ as a colorless viscous liquid: TLC analysis (ethyl acetate/hexanes 1:2) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+6.1^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.13$ $(1 \mathrm{H}, \mathrm{dd}, J=5.0,1.0 \mathrm{~Hz}, \mathrm{~s}), 7.00(1 \mathrm{H}, \mathrm{dd}, J=3.5,1.0 \mathrm{~Hz}, \mathrm{r}), 6.92(1 \mathrm{H}, \mathrm{dd}, J=5.0,3.5 \mathrm{~Hz}, \mathrm{q}), 5.07$ $(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{k}), 4.09-3.75(4 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}$ '), 2.45-2.31 ($2 \mathrm{H}, \mathrm{m}, \mathrm{c}), 2.08-1.82(4 \mathrm{H}, \mathrm{m}, \mathrm{e}+\mathrm{j}), 1.68$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{m}\right.$ or m'), $1.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{m}\right.$ or m'), $1.42-1.04\left(23 \mathrm{H}, \mathrm{a}+\mathrm{a}^{\prime}+\mathrm{f}+\mathrm{g}+\mathrm{i}+\mathrm{o}+\mathrm{o}\right.$ '), $0.87(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}$, h) $\mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.34\left(\mathrm{~d},{ }^{3} J_{C-P}=15 \mathrm{~Hz}, \mathrm{p}\right), 131.07$ (1), 126.63 (q), 125.25
(k), 124.77 (r), $84.12(\mathrm{n}), 61.39\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $61.02\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}\right.$, b or b'), 37.13, $36.10\left(\mathrm{~d},{ }^{3} J_{C-P}=9.0 \mathrm{~Hz}, \mathrm{e}\right), 34.26\left(\mathrm{~d},{ }^{1} J_{C-P}=140 \mathrm{~Hz}, \mathrm{c}\right), 33.23,31.79,25.91,25.74$ (m or m), 25.03 (o or o'), 24.95 (o or o'), 19.85 (h), 17.83 (m or m'), 16.58 ($\mathrm{d}^{2}{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}$, a or a'), 16.55 (d, ${ }^{2} J_{C-P}=6.0 \mathrm{~Hz}$, a or a') ppm; ${ }^{11}$ B NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.41$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.71$ (9%; minor diastereomer), 30.67 (91%; major diastereomer) ppm; IR (neat) 2978 (aromatic C-H), 2933 (aliphatic $\mathrm{C}-\mathrm{H}$), 1373 (aromatic $\mathrm{C}=\mathrm{C}$), 1325 (aromatic $\mathrm{C}=\mathrm{C}$), 1239 ($\mathrm{P}=\mathrm{O}$) , 1143, 1053 (C-O), 1025 (C-O/C=S), 958 (P-O) cm ${ }^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{BO}_{5} \mathrm{PS}=512.2897$, found $512.2900 \mathrm{~m} / \mathrm{z}$.

Synthesis of chiral tertiary benzylic boronic ester (2S,5S)-16d: Following the general procedure for catalytic asymmetric hydroboration (GP3) with (R, R)-T2, the substrate (Z)-15d (64 $\mathrm{mg}, 0.15 \mathrm{mmol}$) yields the tertiary benzylic boronic ester product $(2 S, 5 S)-\mathbf{1 6 d}(56 \mathrm{mg}, 68 \%)$ as a colorless viscous liquid: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+11.5^{\circ}(c=$ $\left.1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.62-7.60(2 \mathrm{H}, \mathrm{m}, \mathrm{p}+\mathrm{s}), 7.26(1 \mathrm{H}, \mathrm{s}, \mathrm{n}), 7.21-7.19(1 \mathrm{H}$, m , q or r), 7.10-7.07 ($1 \mathrm{H}, \mathrm{m}$, q or r), 4.10-3.91 $\left(5 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}^{\prime}+\mathrm{g}\right), 3.84-3.79(1 \mathrm{H}, \mathrm{m}, \mathrm{h}(1 \mathrm{H})), 3.51-$ $3.43(1 \mathrm{H}, \mathrm{m}, \mathrm{h}(1 \mathrm{H})), 2.79-2.68(2 \mathrm{H}, \mathrm{m}, \mathrm{c}(1 \mathrm{H})+\mathrm{e}(1 \mathrm{H})), 2.58-2.54(1 \mathrm{H}, \mathrm{m}, \mathrm{c}(1 \mathrm{H})), 2.49-2.44(1 \mathrm{H}$, $\mathrm{m}, \mathrm{e}(1 \mathrm{H})), 1.96-1.91(1 \mathrm{H}, \mathrm{m}, \mathrm{f}(1 \mathrm{H})), 1.64-1.59(1 \mathrm{H}, \mathrm{m}, \mathrm{f}(1 \mathrm{H})), 1.43(3 \mathrm{H}, \mathrm{s}, \mathrm{j}$ or j'), $1.37(3 \mathrm{H}, \mathrm{s}, \mathrm{j}$ or j'), $1.30(6 \mathrm{H}, \mathrm{s}, 1$ or l'), $1.25(6 \mathrm{H}, \mathrm{s}, \mathrm{l}$ or l'), $1.15(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, a or a'), $1.09(3 \mathrm{H}, \mathrm{t}, J=7.0$ Hz , a or a') ppm; ${ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 152.07\left(\mathrm{~d},{ }^{3} J_{C-P}=20 \mathrm{~Hz}, \mathrm{~m}\right), 141.01$ (o or t), 140.07 (o or t), 124.71 (q or r), 124.25 (q or r), 123.62 (p or s), 122.70 (p or s), 121.79 (n), 109.98 (i), $84.73(\mathrm{k}), 77.20(\mathrm{~g}), 70.05(\mathrm{~h}), 61.70\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), $61.34\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), 34.71 (d, $\left.{ }^{3} J_{C-P}=6.5 \mathrm{~Hz}, \mathrm{e}\right), 33.40\left(\mathrm{~d},{ }^{1} J_{C-P}=141 \mathrm{~Hz}, \mathrm{c}\right), 28.95$ (f), 27.55 (j or j'), 26.25 (j or j'), 25.49 (l or l'), 25.38 (l or l'), $16.82\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a'), 16.79 ($\mathrm{d},{ }^{3} J_{C-P}=5.0 \mathrm{~Hz}$, a or a') ppm; ${ }^{11}$ B NMR ($128 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 34.00$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR ($283 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 30.55$ (92%; major diastereomer), 30.51 (8%; minor diastereomer) ppm; IR (neat) 2980 (aromatic C-H), 2933 (aliphatic C-H), 1370 (aromatic $\mathrm{C}=\mathrm{C}$), 1329 (aromatic $\mathrm{C}=\mathrm{C}$), 1239 ($\mathrm{P}=\mathrm{O}$), 1141, 1052 (C-O), 1024 (C-O/C=S), 960 (P-O), $734 \mathrm{~cm}^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{BO}_{7} \mathrm{PS}=552.2482$, found $552.2499 \mathrm{~m} / \mathrm{z}$.

Synthesis of chiral tertiary benzylic boronic ester (2R,5S)-16d: Following the general procedure for catalytic asymmetric hydroboration (GP3) with (S, S)-T2, the substrate (Z)-15d (64 $\mathrm{mg}, 0.15 \mathrm{mmol}$) yields the tertiary benzylic boronic ester product $(2 R, 5 S) \mathbf{- 1 6 d}(57 \mathrm{mg}, 69 \%)$ as a colorless viscous liquid: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+5.5^{\circ}(c=1.0$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.63-7.60(2 \mathrm{H}, \mathrm{m}, \mathrm{p}+\mathrm{s}), 7.43(1 \mathrm{H}, \mathrm{s}, \mathrm{n}), 7.20-7.18(1 \mathrm{H}, \mathrm{m}, \mathrm{q}$ or r), 7.11-7.08 ($1 \mathrm{H}, \mathrm{m}$, q or r), 4.08-3.94 $(4 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}$) , 3.89-3.80 $(2 \mathrm{H}, \mathrm{m}, \mathrm{g}+\mathrm{h}(1 \mathrm{H})$), 3.51-3.47 $(1 \mathrm{H}, \mathrm{m}, \mathrm{h}(1 \mathrm{H})), 2.74-2.67(2 \mathrm{H}, \mathrm{m}, \mathrm{c}(1 \mathrm{H})+\mathrm{e}(1 \mathrm{H})), 2.58-2.52(1 \mathrm{H}, \mathrm{m}, \mathrm{c}(1 \mathrm{H})), 2.39-2.35(1 \mathrm{H}, \mathrm{m}$, $\mathrm{e}(1 \mathrm{H})$), 1.81-1.72 (2H, m, f), $1.46(3 \mathrm{H}, \mathrm{s}, \mathrm{j}$ or j'), $1.38(3 \mathrm{H}, \mathrm{s}, \mathrm{j}$ or j'), $1.32(6 \mathrm{H}, \mathrm{s}, 1$ or l'), $1.26(6 \mathrm{H}$, $\mathrm{s}, 1$ or $\left.\mathrm{l}^{\prime}\right), 1.11\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a'), $1.02\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (175 MHz , $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 151.79\left(\mathrm{~d},{ }^{3} J_{C-P}=18 \mathrm{~Hz}, \mathrm{~m}\right.$), 141.05 (o or t), 140.07 (o or t), 124.65 (q or r), 124.22 (q or r), 123.67 (p or s), $122.69(\mathrm{p}$ or s), $122.42(\mathrm{n}), 109.05(\mathrm{i}), 84.71(\mathrm{k}), 77.08(\mathrm{~g}), 69.90(\mathrm{~h}), 61.74(\mathrm{~d}$, ${ }^{2} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{~b}$ or b'), $61.20\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), $35.23\left(\mathrm{~d},{ }^{3} J_{C-P}=9.0 \mathrm{~Hz}, \mathrm{e}\right), 34.36\left(\mathrm{~d},{ }^{1} J_{C-}\right.$ $\left.{ }_{P}=140 \mathrm{~Hz}, \mathrm{c}\right), 29.52(\mathrm{f}), 27.65\left(\mathrm{j}\right.$ or j'), $26.32\left(\mathrm{j}\right.$ or j'), $25.49\left(1\right.$ or l'), $25.46\left(1\right.$ or l'), 16.78 ($\mathrm{d},{ }^{3} J_{C-P}$ $=6.0 \mathrm{~Hz}$, a or a'), $16.72\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') $\mathrm{ppm} ;{ }^{11} \mathrm{~B} \mathrm{NMR}\left(128 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 33.96$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR ($283 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 30.55$ (8%; minor diastereomer), 30.51 (92%; major diastereomer) ppm; IR (neat) 2980 (aromatic C-H), 2933 (aliphatic C-H), 1372 (aromatic C=C), 1333 (aromatic $\mathrm{C}=\mathrm{C}$), 1239 ($\mathrm{P}=\mathrm{O}$), 1141, $1050(\mathrm{C}-\mathrm{O}), 1023(\mathrm{C}-\mathrm{O} / \mathrm{C}=\mathrm{S}), 958(\mathrm{P}-\mathrm{O}), 735 \mathrm{~cm}^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{BO}_{7} \mathrm{PS}=552.2482$, found $552.2496 \mathrm{~m} / \mathrm{z}$.

Synthesis of chiral tertiary benzylic boronic ester ($\mathbf{2 R , 5 S}$)-16e: Following the general procedure for catalytic asymmetric hydroboration (GP3) with (R, R) - $\mathbf{T 2}$, the substrate (E) - $\mathbf{1 5 e}$ (61 $\mathrm{mg}, 0.15 \mathrm{mmol})$ yields the tertiary benzylic boronic ester product $(2 R, 5 S) \mathbf{- 1 6 e}(61 \mathrm{mg}, 76 \%)$ as a colorless viscous liquid: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+5.5^{\circ}(c=1.0$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.40-7.36(2 \mathrm{H}, \mathrm{m}, \mathrm{p}+\mathrm{s}), 7.07-7.01(2 \mathrm{H}, \mathrm{m}, \mathrm{q}+\mathrm{r}), 6.85(1 \mathrm{H}$, $\mathrm{s}, \mathrm{n}), 3.93-3.60(6 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}+\mathrm{g}+\mathrm{h}(1 \mathrm{H})), 3.41-3.38(1 \mathrm{H}, \mathrm{m}, \mathrm{h}(1 \mathrm{H})), 2.63(1 \mathrm{H}, \mathrm{dd}, J=15.0,17.5$
$\mathrm{Hz}, \mathrm{c}(1 \mathrm{H})), 2.51(1 \mathrm{H}, \mathrm{dd}, J=15.0,17.5 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 2.48-2.43(1 \mathrm{H}, \mathrm{m}, \mathrm{e}(1 \mathrm{H})), 2.30-2.19(1 \mathrm{H}, \mathrm{m}$, $\mathrm{e}(1 \mathrm{H}))$, 1.75-1.68 (1H, m, f(1H)), 1.61-1.56 ($1 \mathrm{H}, \mathrm{m}, \mathrm{f}(1 \mathrm{H})$), $1.35(3 \mathrm{H}, \mathrm{s}, \mathrm{j}$ or j'), $1.26(3 \mathrm{H}, \mathrm{s}, \mathrm{j}$ or $\left.\mathrm{j}^{\prime}\right), 1.23\left(6 \mathrm{H}, \mathrm{s}, 1\right.$ or $\left.\mathrm{l}^{\prime}\right), 1.20\left(6 \mathrm{H}, \mathrm{s}, 1\right.$ or $\left.\mathrm{l}^{\prime}\right), 0.99(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, a or a'), $0.80(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, a or a') ppm; ${ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 161.81$ (d, ${ }^{3} J_{C-P}=14 \mathrm{~Hz}, \mathrm{~m}$), 155.58 (t), 129.87 (o), 123.95 (q or r), 123.14 (q or r), 121.19 (p or s), 111.28 (p or s), $109.00(\mathrm{i}), 104.90(\mathrm{n}), 84.70(\mathrm{k})$, $76.81(\mathrm{~g}), 69.83(\mathrm{~h}), 61.42\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), $61.32\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $32.68(\mathrm{~d}$, $\left.{ }^{3} J_{C-P}=11 \mathrm{~Hz}, \mathrm{e}\right), 32.40\left(\mathrm{~d},{ }^{1} J_{C-P}=140 \mathrm{~Hz}, \mathrm{c}\right), 30.28$ (f), 27.58 (j or j'), 26.23 (j or j'), 25.53 (1 or l^{\prime}), 25.46 (l or l^{\prime}), 16.75 ($\mathrm{d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}$, a or a'), $16.52\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{11}$ B NMR ($128 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 34.01$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR ($283 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 30.00$ (7\%; minor diastereomer), 29.95 (93\%; major diastereomer) ppm; IR (neat) 2980 (aromatic C-H), 2932 (aliphatic C-H), 1455 (aromatic $\mathrm{C}=\mathrm{C}$), 1370 (aromatic $\mathrm{C}=\mathrm{C}$), 1242 ($\mathrm{P}=\mathrm{O}$), 1141, 1051 (C-O), 1024 (C-O), 960 (P-O) cm^{-1}; HRMS (EI) calculated for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{BO}_{8} \mathrm{P}=536.2710$, found $536.2733 \mathrm{~m} / \mathrm{z}$.

Synthesis of chiral tertiary benzylic boronic ester (2S,5S)-16e: Following the general procedure for catalytic asymmetric hydroboration (GP3) with (S, S)-T2, the substrate $(E) \mathbf{- 1 5 e}(61 \mathrm{mg}, 0.15$ mmol) yields the tertiary benzylic boronic ester product ($2 S, 5 R$)-16e ($59 \mathrm{mg}, 73 \%$) as a colorless viscous liquid: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+1.5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.41-7.36(2 \mathrm{H}, \mathrm{m}, \mathrm{p}+\mathrm{s}), 7.07-7.01(3 \mathrm{H}, \mathrm{m}, \mathrm{n}+\mathrm{q}+\mathrm{r}), 3.92-3.56(6 \mathrm{H}, \mathrm{m}$, $\mathrm{b}+\mathrm{b}+\mathrm{g}+\mathrm{h}(1 \mathrm{H})), 3.31-3.29(1 \mathrm{H}, \mathrm{m}, \mathrm{h}(1 \mathrm{H})), 2.64(1 \mathrm{H}, \mathrm{dd}, J=15.0,17.5 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 2.53-2.43(2 \mathrm{H}$, $\mathrm{m}, \mathrm{c}(1 \mathrm{H})+\mathrm{e}(1 \mathrm{H})), 2.23-2.19(1 \mathrm{H}, \mathrm{m}, \mathrm{e}(1 \mathrm{H})), 1.74-1.66(1 \mathrm{H}, \mathrm{m}, \mathrm{f}(1 \mathrm{H})), 1.51-1.66(1 \mathrm{H}, \mathrm{m}, \mathrm{f}(1 \mathrm{H}))$, $1.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{j}\right.$ or $\left.\mathrm{j}^{\prime}\right), 1.27\left(9 \mathrm{H}, \mathrm{s}, \mathrm{j}\right.$ or j' and 1 or l'), $1.23\left(6 \mathrm{H}, \mathrm{s}, \mathrm{l}\right.$ or $\left.\mathrm{l}^{\prime}\right), 1.00(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, a or $\left.\mathrm{a}^{\prime}\right), 0.72\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(175 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 161.32\left(\mathrm{~d},{ }^{3} J_{C-P}=12 \mathrm{~Hz}\right.$, m), 155.58 (t), $129.92(\mathrm{o}), 123.95$ (q or r), 123.13 (q or r), 121.23 (p or s), 111.28 (p or s), 109.03 (i), $105.61(\mathrm{n}), 84.70(\mathrm{k}), 76.78(\mathrm{~g}), 69.93(\mathrm{~h}), 61.40\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), $61.30\left(\mathrm{~d},{ }^{2} J_{C-P}=\right.$ $6.0 \mathrm{~Hz}, \mathrm{~b}$ or $\left.\mathrm{b}^{\prime}\right), 33.78\left(\mathrm{~d},{ }^{3} J_{C-P}=14 \mathrm{~Hz}, \mathrm{e}\right), 33.29\left(\mathrm{~d},{ }^{1} J_{C-P}=141 \mathrm{~Hz}, \mathrm{c}\right), 30.80(\mathrm{f}), 27.61\left(\mathrm{j}\right.$ or j$\left.{ }^{\prime}\right)$, 26.28 (j or j'), 25.68 (1 or l'), $25.46\left(1\right.$ or $\left.\mathrm{l}^{\prime}\right), 16.76\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a'), $16.41\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0\right.$ Hz , a or a') ppm; ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 33.90$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR ($283 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ 30.00 (80%; major diastereomer), 29.95 (20%; minor diastereomer) ppm; IR (neat) 2979 (aromatic C-H), 2933 (aliphatic C-H), 1454 (aromatic C=C), 1370 (aromatic $\mathrm{C}=\mathrm{C}$), 1242 ($\mathrm{P}=\mathrm{O}$), 1141, 1052 (C-O), 1024 (C-O), 961 (P-O) cm ${ }^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{BO}_{8} \mathrm{P}=536.2710$, found $536.2696 \mathrm{~m} / \mathrm{z}$.

Synthesis of chiral tertiary benzylic boronic ester ($\mathbf{2 R , 5 S}$)-16f: Following the general procedure for catalytic asymmetric hydroboration (GP3) with (R, R) - $\mathbf{T 2}$, the substrate (E) - $\mathbf{1 5 f}(55 \mathrm{mg}, 0.15$ mmol) yields the tertiary benzylic boronic ester product ($2 R, 5 S$) - $\mathbf{1 6 f}(60 \mathrm{mg}, 80 \% ; 91: 9 \mathrm{dr}$, determined via ${ }^{31} \mathrm{P}$ NMR analysis) as a colorless viscous liquid. Alternatively, following GP3 with $(R, R)-\mathbf{T 2}$, the diastereomeric substrate $(Z) \mathbf{- 1 5 f}(55 \mathrm{mg}, 0.15 \mathrm{mmol})$ yields the tertiary benzylic boronic ester product ($2 R, 5 S$)-16f ($62 \mathrm{mg}, 83 \%$; $96: 4 \mathrm{dr}$, determined via ${ }^{31} \mathrm{P}$ NMR analysis) as a colorless viscous liquid. Characterization data for $(2 R, 5 S)-\mathbf{1 6 f}$ obtained from $(Z) \mathbf{- 1 5 f}$ is as follows: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+10.8^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (700 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.42(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{n}), 7.17(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{o}), 7.02(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{p})$, $3.97-3.83(5 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}+\mathrm{g}), 3.68(1 \mathrm{H}, \mathrm{dd}, J=7.5,6.0 \mathrm{~Hz}, \mathrm{~h}(1 \mathrm{H})), 3.30(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{~h}(1 \mathrm{H}))$, 2.62-2.26 (4H, m, c+e), 1.75-1.70 ($1 \mathrm{H}, \mathrm{m}, \mathrm{f}$), $1.33(\mathrm{j}$ or j'), 1.33-1.28 ($1 \mathrm{H}, \mathrm{m}, \mathrm{f}(1 \mathrm{H})$), $1.27(3 \mathrm{H}, \mathrm{s}$, j or $\left.\mathrm{j}^{\prime}\right), 1.16\left(6 \mathrm{H}, \mathrm{s}, \mathrm{l}\right.$ or l'), $1.13\left(6 \mathrm{H}, \mathrm{s}, 1\right.$ or l'), $1.08-1.06\left(6 \mathrm{H}, \mathrm{m}, \mathrm{a}+\mathrm{a}^{\prime}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (175 MHz , $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 145.37$ (d, ${ }^{3} J_{C-P}=18 \mathrm{~Hz}, \mathrm{~m}$), 128.87 (o), 127.79 (n), 126.19 (p), 108.86 (i), 84.23 (k), $77.34(\mathrm{~g}), 70.13(\mathrm{~h}), 61.47\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), $61.10\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), $32.80(\mathrm{~d}$, $\left.{ }^{3} J_{C-P}=5.0 \mathrm{~Hz}, \mathrm{e}\right), 31.45\left(\mathrm{~d},{ }^{1} J_{C-P}=140 \mathrm{~Hz}, \mathrm{c}\right), 28.79(\mathrm{f}), 27.55(\mathrm{j}$ or j '), 26.31 (j or j'), 25.46 (l or l^{\prime}), 25.27 (1 or l'), 16.91 ($\mathrm{d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}$, a or a'), 16.85 ($\mathrm{d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}$, a or a') ppm; ${ }^{11}$ B NMR ($128 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 33.02$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR ($283 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 32.30$ (4%; minor diastereomer), 32.18 (96%; major diastereomer) ppm; IR (neat) 2979 (aromatic C-H), 2934 (aliphatic C-H), 1369 (aromatic $\mathrm{C}=\mathrm{C}$), 1320 (aromatic $\mathrm{C}=\mathrm{C}$), 1241 ($\mathrm{P}=\mathrm{O}$), 1143, 1052 (C-O), 1025 (C-O), 954 (P-O) cm ${ }^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{BO}_{7} \mathrm{P}=496.2761$, found $496.2780 \mathrm{~m} / \mathrm{z}$.

Synthesis of chiral tertiary benzylic boronic ester ($\mathbf{2 S , 5 S}$)-16f: Following the general procedure for catalytic asymmetric hydroboration (GP3) using (S, S)-T2, the substrate (E)-15f(55 mg, 0.15 mmol) yields the tertiary benzylic boronic ester product ($2 S, 5 S$)-16f ($58 \mathrm{mg}, 78 \% ; 85: 15 \mathrm{dr}$, determined via ${ }^{31} \mathrm{P}$ NMR analysis) as a colorless viscous liquid. Alternatively, following GP3 with (S, S)-T2, the diastereomeric substrate (Z) $\mathbf{- 1 5 f}(55 \mathrm{mg}, 0.15 \mathrm{mmol}$) yields the tertiary benzylic boronic ester product ($2 S, 5 S$) $\mathbf{- 1 6 f}\left(63 \mathrm{mg}, 84 \%\right.$; $97: 3 \mathrm{dr}$, determined via ${ }^{31} \mathrm{P}$ NMR analysis) as a
colorless viscous liquid. Characterization data for $(2 S, 5 S)$ - $\mathbf{1 6 f}$ obtained from $(Z)-\mathbf{1 5 f}$ is as follows: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+6.5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (700 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.45(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{n}), 7.17(2 \mathrm{H}, \mathrm{dd}, J=8.0,7.5 \mathrm{~Hz}, \mathrm{o}), 7.02(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}$, p), 3.96-3.82 (5H, m, b+b'+g), $3.75(1 \mathrm{H}, \mathrm{dd}, J=7.5,6.0 \mathrm{~Hz}, \mathrm{~h}(1 \mathrm{H})), 3.40(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{~h}(1 \mathrm{H}))$, 2.62-2.25 ($4 \mathrm{H}, \mathrm{m}, \mathrm{c}+\mathrm{e}$), 1.55-1.44 ($2 \mathrm{H}, \mathrm{m}, \mathrm{f}$), 1.35 (j or j'), $1.28(3 \mathrm{H}, \mathrm{s}, \mathrm{j}$ or j'), 1.16 ($6 \mathrm{H}, \mathrm{s}, \mathrm{l}$ or l'), $1.12\left(6 \mathrm{H}, \mathrm{s}, 1\right.$ or l'), 1.07-1.02 ($\left.6 \mathrm{H}, \mathrm{m}, \mathrm{a}+\mathrm{a}^{\prime}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(175 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 145.09\left(\mathrm{~d},{ }^{3} J_{C-P}=\right.$ $17 \mathrm{~Hz}, \mathrm{~m}), 128.83$ (o), 127.91 (n), 126.18 (p), 108.86 (i), 84.22 (k), 77.22 (g), 69.94 (h), 61.61 (d, ${ }^{2} J_{C-P}=6.0 \mathrm{~Hz}$, b or b'), $61.00\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), $32.68\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{e}\right), 31.70\left(\mathrm{~d},{ }^{1} J_{C-}\right.$ ${ }_{P}=140 \mathrm{~Hz}, \mathrm{c}$), 29.03 (f), 27.66 (j or j'), 26.36 (j or j'), 25.39 (1 or l'), 25.30 (1 or l'), 16.90 (d, ${ }^{3} J_{C-P}$ $=6.0 \mathrm{~Hz}$, a or a'), $16.80\left(\mathrm{~d}^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{11} \mathrm{~B} \mathrm{NMR}\left(128 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 32.71(\mathrm{br} \mathrm{s})$ ppm; ${ }^{31} \mathrm{P}$ NMR ($283 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 32.30$ (97%; major diastereomer), 32.18 (3%; major diastereomer) ppm; IR (neat) 2979 (aromatic C-H), 2933 (aliphatic C-H), 1369 (aromatic $\mathrm{C}=\mathrm{C}$), 1320 (aromatic $\mathrm{C}=\mathrm{C}$), $1240(\mathrm{P}=\mathrm{O}), 1143,1051(\mathrm{C}-\mathrm{O}), 1024(\mathrm{C}-\mathrm{O}), 954$ (P-O) cm ${ }^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{BO}_{7} \mathrm{P}=496.2761$, found $496.2781 \mathrm{~m} / \mathrm{z}$.

Synthesis of chiral tertiary benzylic boronic ester ($\mathbf{2 R}, \mathbf{5 S}$)-16g: Following the general procedure for catalytic asymmetric hydroboration (GP3) using (R, R)-T2, the substrate (E)-15g (60 $\mathrm{mg}, 0.15 \mathrm{mmol})$ yields the tertiary benzylic boronic ester product $(2 R, 5 S) \mathbf{- 1 6 g}(59 \mathrm{mg}, 75 \%)$ as a colorless viscous liquid: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+22^{\circ}(c=1.0$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.35(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{n}), 6.81(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{o}), 4.00-$ $3.87(5 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}+\mathrm{g}), 3.73(1 \mathrm{H}, \mathrm{dd}, J=7.5,6.5 \mathrm{~Hz}, \mathrm{~h}(1 \mathrm{H})), 3.36(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{~h}(1 \mathrm{H})), 3.31$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{q}), 2.58-2.29(4 \mathrm{H}, \mathrm{m}, \mathrm{c}+\mathrm{e}), 1.79-1.73(1 \mathrm{H}, \mathrm{m}, \mathrm{f}(1 \mathrm{H})), 1.38-1.32(1 \mathrm{H}, \mathrm{m}, \mathrm{f}(1 \mathrm{H})), 1.35(3 \mathrm{H}$, s , j or j'), $1.29\left(3 \mathrm{H}, \mathrm{s}\right.$, j or j'), $1.19\left(6 \mathrm{H}, \mathrm{s}, \mathrm{l}\right.$ or l'), $1.15\left(6 \mathrm{H}, \mathrm{s}, \mathrm{l}\right.$ or $\left.\mathrm{l}^{\prime}\right), 1.08\left(6 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{a}+\mathrm{a}^{\prime}\right)$ ppm; ${ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 158.52$ (p), 137.02 (d, ${ }^{3} J_{C-P}=18 \mathrm{~Hz}, \mathrm{~m}$), 128.74 (n), 114.38 (o), 108.89 (i), $84.19(\mathrm{k}), 77.40(\mathrm{~g}), 70.17(\mathrm{~h}), 61.49\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), $61.13\left(\mathrm{~d},{ }^{2} J_{C-P}=\right.$ 6.5 Hz , b or b'), 55.04 (q), $32.90\left(\mathrm{~d},{ }^{3} J_{C-P}=5.0 \mathrm{~Hz}, \mathrm{e}\right), 31.75\left(\mathrm{~d},{ }^{1} J_{C-P}=140 \mathrm{~Hz}, \mathrm{c}\right), 28.81$ (f), 27.58 (j or j'), 28.30 (j or j'), 25.49 (1 or l^{\prime}), 25.31 (1 or l^{\prime}), 16.92 ($\mathrm{d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}$, a or a'), $16.86\left(\mathrm{~d},{ }^{3} J_{C-}\right.$ ${ }_{P}=6.0 \mathrm{~Hz}$, a or a') ppm; ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 34.66$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR (283 MHz , $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 32.40$ (10%; minor diastereomer), 32.29 (90%; major diastereomer) ppm; IR (neat) 2980 (aromatic C-H), 2934 (aliphatic C-H), 1608, 1510, 1378 (aromatic $\mathrm{C}=\mathrm{C}$), 1245 ($\mathrm{P}=\mathrm{O}$), 1142, 1052 (C-O), 1026 (C-O), 955 (P-O), 835, $733 \mathrm{~cm}^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{BO}_{8} \mathrm{P}=526.2867$, found $526.2868 \mathrm{~m} / \mathrm{z}$.

(E) $\mathbf{- 1 5 g}$

(2S,5S)-16g

Synthesis of chiral tertiary benzylic boronic ester (2S,5S)-16g: Following the general procedure for catalytic asymmetric hydroboration (GP3) with (S, S) - $\mathbf{T 2}$, the substrate $(E) \mathbf{- 1 5 g}$ ($60 \mathrm{mg}, 0.15$ mmol) yields the tertiary benzylic boronic ester product ($2 S, 5 S$) $\mathbf{- 1 6 g}(59 \mathrm{mg}, 75 \%)$ as a colorless viscous liquid: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+13.5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.38(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{n}), 6.82(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{o}), 4.00-3.85$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}+\mathrm{g}), 3.78(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{~h}(1 \mathrm{H})), 3.43(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{~h}(1 \mathrm{H})), 3.31(3 \mathrm{H}, \mathrm{s}, \mathrm{q})$, $2.61-2.25(4 \mathrm{H}, \mathrm{m}, \mathrm{c}+\mathrm{e}), 1.59-1.51(1 \mathrm{H}, \mathrm{m}, \mathrm{f}(1 \mathrm{H})), 1.38(3 \mathrm{H}, \mathrm{s}, \mathrm{j}$ or j'), $1.30(3 \mathrm{H}, \mathrm{s}, \mathrm{j}$ or j'), $1.18(6 \mathrm{H}$, $\mathrm{s}, 1$ or l'), $1.14(6 \mathrm{H}, \mathrm{s}, \mathrm{l}$ or l'), $1.07(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, a or a'), $1.05(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, a or a') ppm; ${ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 158.51$ (p), 136.78 (d, ${ }^{3} J_{C-P}=17.5 \mathrm{~Hz}, \mathrm{~m}$), 128.88 (n), 114.35 (o), 108.94 (i), $84.17(\mathrm{k}), 77.31(\mathrm{~g}), 70.00(\mathrm{~h}), 61.61\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), $61.00\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5\right.$ Hz , b or b'), 55.04 (q), 32.82 (d, ${ }^{3} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{e}$), 31.94 (d, $\left.{ }^{1} J_{C-P}=140 \mathrm{~Hz}, \mathrm{c}\right), 28.97$ (f), 27.69 (j or j'), 26.37 (j or j'), 25.43 (1 or l'), 25.35 (1 or l'), 16.92 ($d,{ }^{3} J_{C-P}=5.0 \mathrm{~Hz}$, a or a'), $16.86\left(\mathrm{~d},{ }^{3} J_{C-P}=\right.$ 6.0 Hz , a or a') ppm; ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 34.52$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR ($283 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 32.40$ (90%; major diastereomer), 32.29 (10%; minor diastereomer) ppm; IR (neat) 2982 (aromatic C-H), 2937 (aliphatic C-H), 1608, 1510, 1379 (aromatic C=C), 1246 ($\mathrm{P}=\mathrm{O}$), 1142, 1051 (C-O), 1027 (C-O), 958 (P-O), 835, $732 \mathrm{~cm}^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{BO}_{8} \mathrm{P}=526.2867$, found $526.2881 \mathrm{~m} / \mathrm{z}$.

Synthesis of chiral tertiary benzylic boronic ester (2R,5S)-16h: Following the general procedure for catalytic asymmetric hydroboration (GP3) using (R, R) - $\mathbf{T 2}$, the substrate (E) - $\mathbf{1 5 h}$ (60 $\mathrm{mg}, 0.15 \mathrm{mmol}$) yields the tertiary benzylic boronic ester product $(2 R, 5 S)-\mathbf{1 6 h}(50 \mathrm{mg}, 63 \%)$ as a colorless viscous liquid: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+3.1^{\circ}(c=1.0$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{n}$ or o $), 7.27(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{n}$ or o), 4.03-3.88 ($6 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}+\mathrm{g}+\mathrm{h}(1 \mathrm{H})$), 3.42-3.40 $(1 \mathrm{H}, \mathrm{m}, \mathrm{h}(1 \mathrm{H})$), 2.37-2.28 ($2 \mathrm{H}, \mathrm{m}, \mathrm{c}$), 2.22$2.15(1 \mathrm{H}, \mathrm{m}, \mathrm{e}(1 \mathrm{H})), 2.01-1.94(1 \mathrm{H}, \mathrm{m}, \mathrm{e}(1 \mathrm{H})), 1.58-1.53(1 \mathrm{H}, \mathrm{m}, \mathrm{f}(1 \mathrm{H})), 1.38-1.32(7 \mathrm{H}, \mathrm{m}$, $\mathrm{f}(1 \mathrm{H})+\mathrm{j}+\mathrm{j}$ '), $1.28-1.20\left(18 \mathrm{H}, \mathrm{m}, \mathrm{a}+\mathrm{a}^{\prime}+\mathrm{l}+\mathrm{l}^{\prime}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.70\left(\mathrm{~d},{ }^{3} J_{C-P}=\right.$
$14.0 \mathrm{~Hz}, \mathrm{~m}$), 131.62 (p), 128.77 (n or o), 128.46 (n or o), 108.74 (i), $84.19(\mathrm{k}), 76.56(\mathrm{~g}), 69.71$ (h), $61.48\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $61.12\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), $31.55\left(\mathrm{~d},{ }^{3} J_{C-P}=6.5 \mathrm{~Hz}, \mathrm{e}\right)$, $31.36\left(\mathrm{~d},{ }^{1} J_{C-P}=140 \mathrm{~Hz}, \mathrm{c}\right), 28.91$ (f), 27.07 (j or j'), 25.86 (j or j'), $24.94\left(\mathrm{l}+\mathrm{l}^{\prime}\right), 16.55\left(\mathrm{~d},{ }^{3} J_{C-P}=\right.$ 6.0 Hz , a or a'), $16.54\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') $\mathrm{ppm} ;{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.02(\mathrm{br} \mathrm{s})$ ppm; ${ }^{31} \mathrm{P}$ NMR ($283 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.35$ (17%; minor diastereomer), 31.16 (83%; major diastereomer) ppm; IR (neat) 2979 (aromatic C-H), 2935 (aliphatic C-H), 1492, 1510, 1369 (aromatic $\mathrm{C}=\mathrm{C}$), 1325 (aromatic $\mathrm{C}=\mathrm{C}$), $1240(\mathrm{P}=\mathrm{O}), 1142,1052$ (C-O), 1026 (C-O), 958 (P-O), 836, $729(\mathrm{C}-\mathrm{Cl}) \mathrm{cm}^{-1} ;$ HRMS (EI) calculated for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{BClO}_{7} \mathrm{P}=530.2372$, found $530.2391 \mathrm{~m} / \mathrm{z}$.

Synthesis of chiral tertiary benzylic boronic ester (2S,5S)-16h: Following the general procedure for catalytic asymmetric hydroboration (GP3) with (S, S)-T2, the substrate (E)-15h (60 $\mathrm{mg}, 0.15 \mathrm{mmol}$) yields the tertiary benzylic boronic ester product $(2 S, 5 S)-\mathbf{1 6 h}(48 \mathrm{mg}, 60 \%)$ as a colorless viscous liquid: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+2.0^{\circ}(c=1.0$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{n}$ or o), $7.27(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{n}$ or o), 4.08-3.89 (6H, m, b+b'+g+h(1H)), 3.50-3.48 (1H, m, h(1H)), 2.44-2.28 (2H, m, c), 2.22$2.15(1 \mathrm{H}, \mathrm{m}, \mathrm{e}(1 \mathrm{H})), 2.02-1.95(1 \mathrm{H}, \mathrm{m}, \mathrm{e}(1 \mathrm{H})), 1.39-1.31\left(8 \mathrm{H}, \mathrm{m}, \mathrm{f}+\mathrm{j}+\mathrm{j} \mathrm{J}^{\prime}\right), 1.28-1.20(18 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{a}+\mathrm{a}^{\prime}+\mathrm{l}+\mathrm{l}^{\prime}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.55\left(\mathrm{~d},{ }^{3} J_{C-P}=15.0 \mathrm{~Hz}, \mathrm{~m}\right), 131.63(\mathrm{p}), 128.77$ (n or o), $128.46\left(\mathrm{n}\right.$ or o), $108.73(\mathrm{i}), 84.18(\mathrm{k}), 76.59(\mathrm{~g}), 69.61(\mathrm{~h}), 61.61\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or $\left.\mathrm{b}^{\prime}\right), 61.10\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}\right.$, b or b'), $31.47\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{e}\right), 31.17\left(\mathrm{~d},{ }^{1} J_{C-P}=140 \mathrm{~Hz}, \mathrm{c}\right), 28.78$ (f), 27.11 (j or j'), 25.88 (j or j'), 24.94 (1 or l'), 24.92 (1 or l'), 16.59 ($\mathrm{d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}$, a or a'), 16.56 (d, ${ }^{3} J_{C-P}=5.0 \mathrm{~Hz}$, a or a') ppm; ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.56$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR (283 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.35$ (83%; major diastereomer), 31.16 (17%; minor diastereomer) ppm; IR (neat) 2979 (aromatic C-H), 2934 (aliphatic C-H), 1491, 1511, 1369 (aromatic C=C), 1324 (aromatic $\mathrm{C}=\mathrm{C}$), 1242 ($\mathrm{P}=\mathrm{O}$), 1141, 1052 (C-O), 1028 (C-O), 959 (P-O), 836, $732(\mathrm{C}-\mathrm{Cl}) \mathrm{cm}^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{BClO}_{7} \mathrm{P}=530.2372$, found $530.2393 \mathrm{~m} / \mathrm{z}$.

Synthesis of chiral tertiary benzylic boronic ester (2R,5S)-16i: Following the general procedure for catalytic asymmetric hydroboration (GP3) with (R, R) - $\mathbf{T 2}$, the substrate $(E) \mathbf{- 1 5 i}(65 \mathrm{mg}, 0.15$ $\mathrm{mmol})$ yields the tertiary benzylic boronic ester product $(2 R, 5 S) \mathbf{- 1 6 i}(57 \mathrm{mg}, 56 \%)$ as a colorless viscous liquid: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+4.9^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{o}), 7.50(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{n}), 4.06-3.83$ $(6 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}+\mathrm{g}+\mathrm{h}(1 \mathrm{H})), 3.46-3.41(1 \mathrm{H}, \mathrm{m}, \mathrm{h}(1 \mathrm{H})), 2.43-2.30(2 \mathrm{H}, \mathrm{m}, \mathrm{c}), 2.26-2.18(1 \mathrm{H}, \mathrm{m}, \mathrm{e}(1 \mathrm{H}))$, 2.09-1.98 ($1 \mathrm{H}, \mathrm{m}, \mathrm{e}(1 \mathrm{H})$), 1.59-1.49 ($1 \mathrm{H}, \mathrm{m}, \mathrm{f}(1 \mathrm{H})$), 1.40-1.30 ($7 \mathrm{H}, \mathrm{m}, \mathrm{h}(1 \mathrm{H})+\mathrm{j}+\mathrm{j} \mathrm{j}), 1.29-1.19$ $\left(18 \mathrm{H}, \mathrm{m}, \mathrm{a}+\mathrm{a}^{\prime}+\mathrm{l}+\mathrm{l}^{\prime}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.52\left(\mathrm{~d},{ }^{3} J_{C-P}=12.0 \mathrm{~Hz}, \mathrm{~m}\right), 129.13$ $\left(\mathrm{q},{ }^{2} J_{C-F}=32.0 \mathrm{~Hz}, \mathrm{p}\right), 127.82(\mathrm{n}), 125.23\left(\mathrm{q},{ }^{3} J_{C-F}=3.75 \mathrm{~Hz}, \mathrm{o}\right), 124.54\left(\mathrm{q},{ }^{1} J_{C-F}=272 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, 108.79 (i), $84.33(\mathrm{k}), 76.49(\mathrm{~g}), 69.68(\mathrm{~h}), 61.46\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), $61.15\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0\right.$ Hz , b or b'), $31.68\left(\mathrm{~d},{ }^{1} J_{C-P}=140 \mathrm{~Hz}, \mathrm{c}\right), 31.68\left(\mathrm{~d},{ }^{3} J_{C-P}=7.0 \mathrm{~Hz}, \mathrm{e}\right), 29.11(\mathrm{f}), 27.06$ (j or j'), 25.85 (j or j'), 24.96 (l or l'), 24.95 (l or l'), $16.48\left(\mathrm{~d}^{3} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{a}+\mathrm{a}^{\prime}\right) \mathrm{ppm} ;{ }^{11} \mathrm{~B}$ NMR (128 MHz , CDCl_{3}) $\delta 34.71$ (br s) ppm; ${ }^{31} \mathrm{P} \mathrm{NMR} \mathrm{(} 162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.00$ (13%; minor diastereomer), 30.75 (87%; major diastereomer) ppm; ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ - 62.37 (85%; major diastereomer), -62.39 (15\%; minor diastereomer) ppm; IR (neat) 2982 (aromatic C-H), 2932 (aliphatic C-H), 1617, 1370 (aromatic $\mathrm{C}=\mathrm{C}$), 1326 (aromatic C=C/C-F), 1240 ($\mathrm{P}=\mathrm{O}$), 1120, 1051 (C-O), 1025 (CO), 959 (P-O), 844, 735, $678 \mathrm{~cm}^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{BF}_{3} \mathrm{O}_{7} \mathrm{P}=564.2635$, found $564.2654 \mathrm{~m} / \mathrm{z}$.

Synthesis of chiral tertiary benzylic boronic ester ($\mathbf{2 S}, \mathbf{5 S}$)-16i: Following the general procedure for catalytic asymmetric hydroboration (GP3) using (S, S)-T2, the substrate (E) - $\mathbf{1 5 i}$ ($65 \mathrm{mg}, 0.15$ mmol) yields the tertiary benzylic boronic ester product $(2 S, 5 S) \mathbf{- 1 6 i}(58 \mathrm{mg}, 57 \%)$ as a colorless viscous liquid: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+2.9^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{o}), 7.50(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{n}), 4.06-3.85$ $(6 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}+\mathrm{g}+\mathrm{h}(1 \mathrm{H})), 3.52-3.45(1 \mathrm{H}, \mathrm{m}, \mathrm{h}(1 \mathrm{H})), 2.43-2.35(2 \mathrm{H}, \mathrm{m}, \mathrm{c}), 2.31-2.19(1 \mathrm{H}, \mathrm{m}, \mathrm{e}(1 \mathrm{H}))$, 2.09-1.98 ($1 \mathrm{H}, \mathrm{m}, \mathrm{e}(1 \mathrm{H})$), 1.43-1.32 ($8 \mathrm{H}, \mathrm{m}, \mathrm{h}+\mathrm{j}+\mathrm{j}$ '), 1.26-1.15 ($\left.18 \mathrm{H}, \mathrm{m}, \mathrm{a}+\mathrm{a}^{\prime}+\mathrm{l}+\mathrm{l}^{\prime}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.38\left(\mathrm{~d},{ }^{3} J_{C-P}=15.0 \mathrm{~Hz}, \mathrm{~m}\right), 129.12\left(\mathrm{q},{ }^{2} J_{C-F}=32.0 \mathrm{~Hz}, \mathrm{p}\right), 127.77(\mathrm{n})$, $125.24\left(\mathrm{q},{ }^{3} J_{C-F}=3.75 \mathrm{~Hz}, \mathrm{o}\right), 124.88\left(\mathrm{q},{ }^{1} J_{C-F}=272 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 108.78$ (i), $84.31(\mathrm{k}), 76.49(\mathrm{~g})$, $69.55(\mathrm{~h}), 61.60\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), $61.14\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}\right.$, b or b'), $31.61\left(\mathrm{~d},{ }^{1} J_{C-P}=140\right.$ $\mathrm{Hz}, \mathrm{c}), 31.38\left(\mathrm{~d},{ }^{3} J_{C-P}=7.0 \mathrm{~Hz}, \mathrm{e}\right), 28.92(\mathrm{f}), 27.08$ (j or j'), 25.84 (j or j'), 24.95 (1 or l'), 24.91 (or l'), $16.41\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{a}+\mathrm{a}\right.$ ') ppm; ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.73$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.00$ (85%; major diastereomer), 30.75 (15%; minor diastereomer) ppm; ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.37$ (17%; minor diastereomer), -62.39 (83\%; major diastereomer) ppm; IR (neat) 2983 (aromatic C-H), 2932 (aliphatic C-H), 1618, 1369 (aromatic
$\mathrm{C}=\mathrm{C}$), 1325 (aromatic $\mathrm{C}=\mathrm{C} / \mathrm{C}-\mathrm{F}), 1241$ ($\mathrm{P}=\mathrm{O}$), 1122, 1053 (C-O), 1025 (C-O), 958 (P-O), 845, $736,681 \mathrm{~cm}^{-1}$; HRMS (EI) calculated for $\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{BF}_{3} \mathrm{O}_{7} \mathrm{P}=564.2635$, found $564.2648 \mathrm{~m} / \mathrm{z}$.

(E)-15j

(R)-16 \mathbf{j}

Synthesis of chiral tertiary benzylic boronic ester $(\boldsymbol{R}) \mathbf{- 1 6 j}$: Following the general procedure for catalytic asymmetric hydroboration (GP3) using (R, R)- $\mathbf{T 2}$, the substrate $(E) \mathbf{- 1 5 j}(50 \mathrm{mg}, 0.15$ $\mathrm{mmol})$ yields the tertiary benzylic boronic ester product $(R) \mathbf{- 1 6 j}(41 \mathrm{mg}, 60 \%)$ as a colorless liquid. Alternatively, following GP3 with (R, R) - $\mathbf{T 2}$, the diastereomeric substrate $(Z) \mathbf{- 1 5 j}(50 \mathrm{mg}, 0.15$ mmol) yields the tertiary benzylic boronic ester product $(R) \mathbf{- 1 6 j}$ ($49 \mathrm{mg}, 71 \%$). Characterization data of $(R) \mathbf{- 1 6 j}$ derived using $(R, R)-\mathbf{T} \mathbf{2}$ is as follows: TLC analysis (ethyl acetate/hexanes 1:2) R_{f} $=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+55^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.26(4 \mathrm{H}, \mathrm{m}$, aryl), 7.19$7.10(6 \mathrm{H}, \mathrm{m}$, aryl), 7.08-3.71 (4H, m, b+b'), $3.48(1 \mathrm{H}, \mathrm{dd}, J=71,14 \mathrm{~Hz}, \mathrm{e}), 2.43-2.20(2 \mathrm{H}, \mathrm{m}, \mathrm{c})$, 1.29-1.16 ($18 \mathrm{H}, \mathrm{m}, \mathrm{a}+\mathrm{a}$ ') ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.00\left(\mathrm{~d},{ }^{3} J_{C-P}=13.0 \mathrm{~Hz}, \mathrm{l}\right), 139.06$ (f), 130.95 (aryl), 128.20 (aryl), 127.64 (aryl), 127.59 (aryl), 126.02 (aryl), 125.84 (aryl), 84.12 (j), $61.23\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), $60.95\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}, \mathrm{~b}\right.$ or b), $40.52\left(\mathrm{~d},{ }^{3} J_{C-P}=3.75 \mathrm{~Hz}, \mathrm{e}\right)$, $30.12\left(\mathrm{~d},{ }^{1} J_{C-P}=140 \mathrm{~Hz}, \mathrm{c}\right), 25.05\left(\mathrm{k}\right.$ or k'), $24.99\left(\mathrm{k}\right.$ or k'), $16.57\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a'), 16.42 (d, ${ }^{3} J_{C-P}=6.5 \mathrm{~Hz}$, a or a') ppm; ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.54 \mathrm{ppm} ;{ }^{31}$ P NMR (162 MHz , CDCl_{3}) $\delta 31.81$; IR (neat) 2978 (aromatic C-H), 2930 (aliphatic C-H), 1497 (aromatic C=C), 1379 (aromatic $\mathrm{C}=\mathrm{C}$), 1371 (aromatic $\mathrm{C}=\mathrm{C}$), 1321 (aromatic $\mathrm{C}=\mathrm{C}$), 1241 ($\mathrm{P}=\mathrm{O}$), 1051 (C-O), 1027 (CO), 956 (P-O), $701 \mathrm{~cm}^{-1}$; The enantiomer ratio of this boronic ester is determined after oxidation to the chiral tertiary alcohol $\mathbf{3 4} \mathbf{j}$.

Synthesis of chiral tertiary benzylic boronic ester (\boldsymbol{R})-16k: Following the general procedure for catalytic asymmetric hydroboration (GP3) with (R, R) - $\mathbf{T 2}$, the substrate (E) - $\mathbf{1 5 k}(54 \mathrm{mg}, 0.15$ $\mathrm{mmol})$ yields the tertiary benzylic boronic ester product $(R)-\mathbf{1 6 k}(60 \mathrm{mg}, 82 \%)$ as a colorless liquid: TLC analysis (ethyl acetate/hexanes 1:2) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+6.0^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.11(10 \mathrm{H}, \mathrm{m}$, aryl), 4.05-3.84(4H, m, b+b'), 2.65-2.53(2H, m, g), $2.40(2 \mathrm{H}$, d, $J=18.0 \mathrm{~Hz}, \mathrm{c}), 2.27-2.12(2 \mathrm{H}, \mathrm{m}, \mathrm{e}), 1.56-1.49(1 \mathrm{H}, \mathrm{m}, \mathrm{f}(1 \mathrm{H})), 1.45-1.34(1 \mathrm{H}, \mathrm{m}, \mathrm{f}(1 \mathrm{H}))$, 1.27$1.21\left(18 \mathrm{H}, \mathrm{m}, \mathrm{a}+\mathrm{a}^{\prime}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.33\left(\mathrm{~d},{ }^{3} J_{C-P}=15 \mathrm{~Hz}, \mathrm{n}\right), 142.91$ (h), 128.48 (aryl), 128.29 (aryl), 128.25 (aryl), 127.16 (aryl), 125.65 (aryl), 125.57 (aryl), 83.86 (l),
$61.32\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), $60.81\left(\mathrm{~d},{ }^{2} J_{C-P}=7.0 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $36.70(\mathrm{~g}), 35.14\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0\right.$ $\mathrm{Hz}, \mathrm{e}), 31.11\left(\mathrm{~d},{ }^{1} J_{C-P}=139 \mathrm{~Hz}, \mathrm{c}\right), 26.58(\mathrm{f}), 24.87\left(\mathrm{~m}\right.$ or m'), $24.84\left(\mathrm{~m}\right.$ or m'), $16.58\left(\mathrm{~d},{ }^{3} J_{C-P}=\right.$ 6.0 Hz , a or a' $), 16.54\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{11} \mathrm{~B} \mathrm{NMR}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 32.54$ (br s) ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 32.13$; IR (neat) 2983 (aromatic C-H), 2932 (aliphatic C-H), 1618, 1373 (aromatic $\mathrm{C}=\mathrm{C}$), 1327 (aromatic $\mathrm{C}=\mathrm{C}$), 1239 ($\mathrm{P}=\mathrm{O}$), 1055 (C-O), 1024 (C-O), 957 ($\mathrm{P}-$ $\mathrm{O}) \mathrm{cm}^{-1}$; The enantiomer ratio of this boronic ester is determined after oxidation to the chiral tertiary alcohol $\mathbf{3 4 k}$.

(7) Synthesis of phosphonate-functionalized chiral tertiary benzylic alcohols

Synthesis of chiral tertiary benzyl alcohol (S)-18b: Following the general procedure for oxidation of chiral tertiary benzylic boronic esters (GP5), the chiral boronic ester (R)-6b (41 mg , $0.10 \mathrm{mmol})$ yields the chiral tertiary benzylic alcohol $(S) \mathbf{- 1 8 b}(26 \mathrm{mg}, 85 \%)$ as a colorless viscous oil: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+3.0^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{j}), 7.09(1 \mathrm{H}, \mathrm{t}, J=2.0 \mathrm{~Hz}, \mathrm{~g}), 7.02(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}$, k), $6.78(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, \mathrm{i}), 5.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.11-4.05(2 \mathrm{H}, \mathrm{m}$, b or b'), $3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{l})$, 3.79-3.70 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{b}\right.$ or $\left.\mathrm{b}^{\prime}\right), 3.52-3.42\left(1 \mathrm{H}, \mathrm{m}, \mathrm{b}\right.$ or b '), $2.50-2.29(2 \mathrm{H}, \mathrm{m}, \mathrm{c}), 1.61\left(3 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=2.0\right.$ $\mathrm{Hz}, \mathrm{e}), 1.32\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a'), $1.04\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.71(\mathrm{~h}), 149.23\left(\mathrm{~d},{ }^{3} J_{C-P}=7.5 \mathrm{~Hz}, \mathrm{f}\right), 129.26(\mathrm{j}), 117.36(\mathrm{k}), 112.36$ (g), 110.73 (i), $72.09\left(\mathrm{~d},{ }^{2} J_{C-P}=5.0 \mathrm{~Hz}, \mathrm{~d}\right), 61.97\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), $61.59\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), 55.39 (l), $39.76\left(\mathrm{~d},{ }^{1} J_{C-P}=136 \mathrm{~Hz}, \mathrm{c}\right), 32.54\left(\mathrm{~d},{ }^{3} J_{C-P}=14.0 \mathrm{~Hz}, \mathrm{e}\right), 16.48\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a'), $16.24\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.84 \mathrm{ppm}$; IR (neat) 3403 (O-H), 2979 (aromatic C-H), 2933 (aliphatic C-H), 1600, 1583, 1455 (aromatic C=C), 1390 (aromatic $\mathrm{C}=\mathrm{C}$), $1215(\mathrm{P}=\mathrm{O}), 1020(\mathrm{C}-\mathrm{O}), 961(\mathrm{P}-\mathrm{O}), 781 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{P}+\mathrm{Na}^{+}=325.1181$, found $325.1186 \mathrm{~m} / \mathrm{z}$. Enantiomer ratio $=97: 3$, determined by chiral HPLC analysis: Stationary phase $=$ CHIRALPAK AD; Mobile phase $=95: 5$ Hexanes: Isopropanol; Flow rate $=1 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\lambda=210 \mathrm{~nm}$, rt. HPLC traces:
(a) R:S = 3:97, CAHB of $\mathbf{5 b}$ with $(R, R)-\mathbf{T} \mathbf{2}$, then oxidation to yield $\mathbf{1 8 b}$.

(b) R:S = 97:3, CAHB of $\mathbf{5 b}$ with (S, S)-T2, then oxidation to yield $\mathbf{1 8 b}$.

Synthesis of chiral tertiary benzyl alcohol (S)-18c: Following the general procedure for oxidation of chiral tertiary benzylic boronic esters (GP5), the chiral boronic ester (R)-6c (41 mg , 0.10 mmol) yields the chiral tertiary benzyl alcohol (S) $\mathbf{- 1 8 c}$ ($24 \mathrm{mg}, 78 \%$) as a colorless viscous
oil: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+2.5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(2 \mathrm{H}, \mathrm{d}, J=8.75 \mathrm{~Hz}, \mathrm{~g}), 6.89(2 \mathrm{H}, \mathrm{d}, J=8.75 \mathrm{~Hz}, \mathrm{~h}), 4.95(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH})$, 4.14-3.99 ($2 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or b'), $3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{j}), 3.81-3.71(1 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or b'), 3.53-3.43 ($1 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or $\left.\mathrm{b}^{\prime}\right), 2.49-2.29(2 \mathrm{H}, \mathrm{m}, \mathrm{c}), 1.61\left(3 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=2.0 \mathrm{~Hz}, \mathrm{e}\right), 1.32(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, a or a'), $1.06(3 \mathrm{H}$, $\mathrm{t}, J=7.0 \mathrm{~Hz}$, a or a') ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.59$ (i), $139.69\left(\mathrm{~d},{ }^{3} J_{C-P}=7.5 \mathrm{~Hz}, \mathrm{f}\right)$, $126.12(\mathrm{~g}), 113.59(\mathrm{~h}), 71.92\left(\mathrm{~d},{ }^{2} J_{C-P}=5.0 \mathrm{~Hz}, \mathrm{~d}\right), 61.96\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $61.60\left(\mathrm{~d},{ }^{2} J_{C-}\right.$ ${ }_{P}=6.5 \mathrm{~Hz}, \mathrm{~b}$ or b'), $55.49(\mathrm{j}), 39.98\left(\mathrm{~d},{ }^{1} J_{C-P}=135 \mathrm{~Hz}, \mathrm{c}\right), 32.71\left(\mathrm{~d},{ }^{3} J_{C-P}=14.0 \mathrm{~Hz}, \mathrm{e}\right), 16.52(\mathrm{~d}$, ${ }^{3} J_{C-P}=6.0 \mathrm{~Hz}$, a or a'), $16.32\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.00$ ppm; IR (neat) 3400 (O-H), 2980 (aromatic C-H), 2931 (aliphatic C-H), 1610, 1510, 1443 (aromatic $\mathrm{C}=\mathrm{C}$), 1391 (aromatic $\mathrm{C}=\mathrm{C}$), 1245 ($\mathrm{P}=\mathrm{O}$), 1021 (C-O), 961 (P-O), $832 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{P}+\mathrm{Na}^{+}=325.1181$, found $325.1184 \mathrm{~m} / \mathrm{z}$. Enantiomer ratio $=94: 6$, determined by chiral HPLC analysis: Stationary phase $=$ CHIRALPAK AD; Mobile phase $=90: 10$ Hexanes: Isopropanol; Flow rate $=1 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\lambda=210 \mathrm{~nm}$, rt. HPLC traces:
(a) $\mathrm{R}: \mathrm{S}=6: 94, \mathrm{CAHB}$ of $\mathbf{5 c}$ with $(R, R)-\mathbf{T} \mathbf{2}$, then oxidation to yield 18c.

(b) $\mathrm{R}: \mathrm{S}=94: 6, \mathrm{CAHB}$ of $\mathbf{5 c}$ with (S, S) - $\mathbf{T} \mathbf{2}$, then oxidation to yield $\mathbf{1 8 c}$.

Synthesis of chiral tertiary benzyl alcohol (S)-18d: Following the general procedure for oxidation of chiral tertiary benzylic boronic esters (GP5), the chiral boronic ester (R)-6d (43 mg , 0.10 mmol) yields the chiral tertiary benzyl alcohol (S) - $\mathbf{1 8 d}$ ($24 \mathrm{mg}, 75 \%$) as a colorless viscous oil: TLC analysis (ethyl acetate/hexanes 3:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+6.4^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.98(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{~g}), 6.95(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, \mathrm{k}), 6.77(1 \mathrm{H}, \mathrm{d}, J$ $=8.0 \mathrm{~Hz}, \mathrm{j}), 5.93(2 \mathrm{H}, \mathrm{s}, \mathrm{l}), 4.95(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.14-4.00(2 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or b'), 3.86-3.76 $(1 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or $\left.\mathrm{b}^{\prime}\right), 3.65-3.55\left(1 \mathrm{H}, \mathrm{m}, \mathrm{b}\right.$ or b'), $2.45-2.25(2 \mathrm{H}, \mathrm{m}, \mathrm{c}), 1.59\left(3 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=2.0 \mathrm{~Hz}, \mathrm{e}\right), 1.32(3 \mathrm{H}, \mathrm{t}, J$ $=7.0 \mathrm{~Hz}$, a or a'), $1.10\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') $\mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.147 .64(\mathrm{~h}$ or i), 146.38 (h or i), 141.78 (d, $\left.{ }^{3} J_{C-P}=8.0 \mathrm{~Hz}, \mathrm{f}\right), 118.02(\mathrm{k}), 107.89$ (j), 106.09 (g), 101.10 (l), $72.05\left(\mathrm{~d},{ }^{2} J_{C-P}=5.0 \mathrm{~Hz}, \mathrm{~d}\right), 61.98\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), $61.66\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), $39.89\left(\mathrm{~d},{ }^{1} J_{C-P}=135 \mathrm{~Hz}, \mathrm{c}\right), 32.65\left(\mathrm{~d},{ }^{3} J_{C-P}=14.0 \mathrm{~Hz}, \mathrm{e}\right), 16.49\left(\mathrm{~d},{ }^{3} J_{C-P}=6.5 \mathrm{~Hz}\right.$, a or a'), 16.29 (d, ${ }^{3} J_{C-P}=6.0 \mathrm{~Hz}$, a or a') ppm; ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.79 \mathrm{ppm}$; IR (neat) 3397 (O-H),

2980 (aromatic C-H), 2908 (aliphatic $\mathrm{C}-\mathrm{H}$), 1488 (aromatic $\mathrm{C}=\mathrm{C}$), 1434 (aromatic $\mathrm{C}=\mathrm{C}$), 1231 ($\mathrm{P}=\mathrm{O}$), $1021(\mathrm{C}-\mathrm{O}), 938(\mathrm{P}-\mathrm{O}), 813,730 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{6} \mathrm{P}+\mathrm{Na}^{+}=$ 339.0973, found $339.0979 \mathrm{~m} / \mathrm{z}$. Enantiomer ratio $=94: 6$, determined by chiral HPLC analysis: Stationary phase $=$ CHIRALPAK AD; Mobile phase $=60: 40$ Hexanes: Isopropanol; Flow rate $=$ $1 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\lambda=210 \mathrm{~nm}, \mathrm{rt}$. HPLC traces:
(a) $\mathrm{R}: \mathrm{S}=6: 94, \mathrm{CAHB}$ of $\mathbf{5 d}$ with $(R, R)-\mathbf{T} \mathbf{2}$, then oxidation to yield 18d.

(R)-6e

(b) R:S = 94:6, CAHB of 5d with $(S, S)-\mathbf{T} \mathbf{2}$, then oxidation to yield $\mathbf{1 8 d}$.

(S)-18e

,

Synthesis of chiral tertiary benzyl alcohol (S)-18e: Following the general procedure for oxidation of chiral tertiary benzylic boronic esters (GP5), the chiral boronic ester (R)-6e (41 mg , $0.1 \mathrm{mmol})$ yields the chiral tertiary benzyl alcohol $(S) \mathbf{- 1 8 e}(25 \mathrm{mg}, 83 \%)$ as a colorless viscous oil: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+7^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.10(2 \mathrm{H}, \mathrm{s}, \mathrm{g}), 6.88(1 \mathrm{H}, \mathrm{s}, \mathrm{i}), 4.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.14-4.00(2 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or b'), 3.80-3.70 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{b}\right.$ or $\left.\mathrm{b}^{\prime}\right), 3.51-3.41\left(1 \mathrm{H}, \mathrm{m}, \mathrm{b}\right.$ or $\left.\mathrm{b}^{\prime}\right), 2.49-2.29(8 \mathrm{H}, \mathrm{m}, \mathrm{c}+\mathrm{j}), 1.61\left(3 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=\right.$ $2.0 \mathrm{~Hz}, \mathrm{e}), 1.33\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a'), $1.05\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.37\left(\mathrm{~d},{ }^{3} J_{C-P}=8.0 \mathrm{~Hz}, \mathrm{f}\right), 137.70(\mathrm{~h}), 128.45(\mathrm{i}), 122.67(\mathrm{~g}), 72.06\left(\mathrm{~d},{ }^{2} J_{C-P}=\right.$ $5.0 \mathrm{~Hz}, \mathrm{~d}), 61.93\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), $61.51\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $39.89\left(\mathrm{~d},{ }^{1} J_{C-P}=135\right.$ $\mathrm{Hz}, \mathrm{c}), 32.52\left(\mathrm{~d},{ }^{3} J_{C-P}=13.5 \mathrm{~Hz}, \mathrm{e}\right), 21.61(\mathrm{j}), 16.48\left(\mathrm{~d},{ }^{3} J_{C-P}=6.5 \mathrm{~Hz}\right.$, a or a'), $16.22\left(\mathrm{~d},{ }^{3} J_{C-P}=\right.$ 6.5 Hz , a or a') ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.05 \mathrm{ppm}$; IR (neat) $3407(\mathrm{O}-\mathrm{H}), 2980\left(\mathrm{sp}^{2}\right.$ $\mathrm{C}-\mathrm{H}), 2915\left(\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1443$ (aromatic $\mathrm{C}=\mathrm{C}$), 1392 (aromatic $\mathrm{C}=\mathrm{C}$), 1217 ($\mathrm{P}=\mathrm{O}$), 1051 (C-O), 1021 (C-O), 960 (P-O), $849 \mathrm{~cm}^{-1}$. HRMS (ESI) calculated for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{P}+\mathrm{Na}^{+}=323.1388$ found $323.1392 \mathrm{~m} / \mathrm{z}$. Enantiomer ratio $=96: 4$, determined by chiral HPLC analysis: Stationary phase $=$ CHIRALPAK IC; Mobile phase $=90: 10$ Hexanes: Isopropanol; Flow rate $=1.5 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\lambda=220 \mathrm{~nm}$, rt. HPLC traces:
(a) $\mathrm{R}: \mathrm{S}=4: 96, \mathrm{CAHB}$ of $\mathbf{5 e}$ with $(R, R)-\mathbf{T} \mathbf{2}$, then oxidation to yield 18e.
(b) R:S = 96:4, CAHB of $\mathbf{5 e}$ with (S, S) - $\mathbf{T 2}$, then oxidation to yield $\mathbf{1 8 e}$.

Synthesis of chiral tertiary benzyl alcohol (S)-18f: Following the general procedure for oxidation of chiral tertiary benzylic boronic esters (GP5), the chiral boronic ester (R)-6f (40 mg , $0.10 \mathrm{mmol})$ yields the chiral tertiary benzyl alcohol (S) - $\mathbf{1 8 f}(28 \mathrm{mg}, 91 \%)$ as a colorless viscous oil: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=-8.5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{~g}), 7.16(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{~h}), 4.94(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, 4.14-4.00 $(2 \mathrm{H}, \mathrm{m}$, b or b'), 3.79-3.69 ($1 \mathrm{H}, \mathrm{m}$, b or b'), 3.49-3.40 $(1 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or b'), 2.49-2.29 (5H, $\mathrm{m}, \mathrm{c}+\mathrm{j}), 1.62\left(3 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=2.0 \mathrm{~Hz}, \mathrm{e}\right), 1.32(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, a or a'), $1.03(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{a}$ or a') ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.49$ (d, ${ }^{3} J_{C-P}=7.5 \mathrm{~Hz}, \mathrm{f}$), 136.43 (i), 128.91 (h), $124.82(\mathrm{~g}), 72.04\left(\mathrm{~d},{ }^{2} J_{C-P}=5.0 \mathrm{~Hz}, \mathrm{~d}\right), 61.93\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $61.56\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), $39.95\left(\mathrm{~d},{ }^{1} J_{C-P}=135 \mathrm{~Hz}, \mathrm{c}\right), 32.58\left(\mathrm{~d},{ }^{3} J_{C-P}=14.0 \mathrm{~Hz}, \mathrm{e}\right), 21.07(\mathrm{j}), 16.49\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0\right.$ Hz , a or a'), $16.22\left(\mathrm{~d}^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.98 \mathrm{ppm}$; IR (neat) $3397(\mathrm{O}-\mathrm{H}), 2979$ (aromatic $\mathrm{C}-\mathrm{H}$), 2923 (aliphatic $\mathrm{C}-\mathrm{H}$), 1513 (aromatic $\mathrm{C}=\mathrm{C}$), 1392 (aromatic $\mathrm{C}=\mathrm{C}$), 1214 ($\mathrm{P}=\mathrm{O}$), 1019 (C-O), $960(\mathrm{P}-\mathrm{O}), 819 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{P}+\mathrm{Na}^{+}=309.1232$, found $309.1238 \mathrm{~m} / z$. Enantiomer ratio $=96: 4$, determined by chiral HPLC analysis: Stationary phase $=$ CHIRALPAK AS-H; Mobile phase $=95: 5$ Hexanes:Isopropanol; Flow rate $=1 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\lambda=210 \mathrm{~nm}, \mathrm{rt}$. HPLC traces:
(a) $\mathrm{R}: \mathrm{S}=4: 96$, CAHB of $\mathbf{5 f}$ with $(R, R)-\mathbf{T} \mathbf{2}$, then oxidation to yield $\mathbf{1 8 f}$.

(b) R:S = 96:4, CAHB of $\mathbf{5 f}$ with (S, S) - $\mathbf{T 2}$, then oxidation to yield $\mathbf{1 8 f}$.

Synthesis of chiral tertiary benzyl alcohol (S)-18g: Following the general procedure for oxidation of chiral tertiary benzylic boronic esters (GP5), the chiral boronic ester (R)- $\mathbf{6 g}$ (45 mg , 0.10 mmol) yields the chiral tertiary benzyl alcohol (S) $\mathbf{- 1 8 g}$ ($28 \mathrm{mg}, 83 \%$) as a colorless viscous oil: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+10.2^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(4 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{g}+\mathrm{h}), 5.17(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.16-4.02(2 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or b'), 3.79$3.69(1 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or b'), $3.55-3.45(1 \mathrm{H}, \mathrm{m}$, b or b'), $2.47(1 \mathrm{H}, \mathrm{dd}, J=17.0,15.0 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 2.36(1 \mathrm{H}$, dd, $J=17.0,15.0 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 1.64(3 \mathrm{H}, \mathrm{s}, \mathrm{e}), 1.34(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, a or a'), $0.99(3 \mathrm{H}, \mathrm{t}, J=7.0$ Hz , a or a') ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.45\left(\mathrm{~d},{ }^{3} J_{C-P}=7.5 \mathrm{~Hz}, \mathrm{f}\right), 129.31\left(\mathrm{q},{ }^{2} J_{C-F}=\right.$ $32.0 \mathrm{~Hz}, \mathrm{i}), 125.55(\mathrm{~g}), 125.40\left(\mathrm{~d},{ }^{1} J_{C-F}=272 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 125.25\left(\mathrm{q},{ }^{3} J_{C-F}=4.0 \mathrm{~Hz}, \mathrm{~h}\right), 72.12\left(\mathrm{~d},{ }^{2} J_{C-}\right.$ $\left.{ }_{P}=5.0 \mathrm{~Hz}, \mathrm{~d}\right), 61.99\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), $61.96\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $39.58\left(\mathrm{~d},{ }^{1} J_{C-P}=\right.$ $136.0 \mathrm{~Hz}, \mathrm{c}), 32.52\left(\mathrm{~d},{ }^{3} J_{C-P}=14.5 \mathrm{~Hz}, \mathrm{e}\right), 16.53\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a'), $16.09\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0\right.$ Hz , a or a') ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.30 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.48$ ppm; IR (neat) $3385(\mathrm{O}-\mathrm{H}), 2982\left(\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}\right), 2933\left(\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1618,1444$ (aromatic C=C), 1409 (aromatic C=C), 1325 (C-F), 1218 (P=O), 1049 (C-O), 1015 (C-O), 961 (P-O), $840 \mathrm{~cm}^{-1}$. HRMS (ESI) calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{P}+\mathrm{Na}^{+}=363.0949$, found $363.0955 \mathrm{~m} / \mathrm{z}$. Enantiomer ratio $=96: 4$, determined by chiral HPLC analysis: Stationary phase $=$ CHIRALPAK AD; Mobile phase $=95: 5$ Hexanes: Isopropanol; Flow rate $=1.25 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\lambda=210 \mathrm{~nm}$, rt. HPLC traces:
(a) $\mathrm{R}: \mathrm{S}=4: 96, \mathrm{CAHB}$ of $\mathbf{5 g}$ with $(R, R) \mathbf{- T} \mathbf{2}$, then oxidation to yield $\mathbf{1 8 g}$.
(b) $\mathrm{R}: \mathrm{S}=96: 4, \mathrm{CAHB}$ of $\mathbf{5 g}$ with (S, S) - $\mathbf{T} \mathbf{2}$, then oxidation to yield $\mathbf{1 8 g}$.

Synthesis of chiral tertiary benzyl alcohol (S)-18h: Following the general procedure for oxidation of chiral tertiary benzylic boronic esters (GP5), the chiral boronic ester (R)- $\mathbf{6 h}(40 \mathrm{mg}$, 0.10 mmol) yields the chiral tertiary benzyl alcohol (S) $\mathbf{- 1 8 h}(23 \mathrm{mg}, 80 \%$) as a colorless viscous oil: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+4.5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.43(2 \mathrm{H}, \mathrm{m}, \mathrm{g}), 7.05-6.99(2 \mathrm{H}, \mathrm{m}, \mathrm{h}), 5.05(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.14-4.00$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{b}\right.$ or $\left.\mathrm{b}^{\prime}\right), 3.80-3.81\left(1 \mathrm{H}, \mathrm{m}\right.$ b or $\left.\mathrm{b}^{\prime}\right), 3.56-3.46\left(1 \mathrm{H}, \mathrm{m}, \mathrm{b}\right.$ or $\left.\mathrm{b}^{\prime}\right), 2.44(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0$ $\mathrm{Hz}, \mathrm{c}(1 \mathrm{H})), 2.32(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 1.61\left(3 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=2.5 \mathrm{~Hz}, \mathrm{e}\right), 1.32(3 \mathrm{H}, \mathrm{t}, J$ $=7.0 \mathrm{~Hz}$, a or a'), $1.05\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.90(\mathrm{~d}$, $\left.{ }^{1} J_{C-F}=245 \mathrm{~Hz}, \mathrm{i}\right), 143.24\left(\mathrm{dd},{ }^{3} J_{C-P}=7.5 \mathrm{~Hz},{ }^{4} J_{C-F}=3.0 \mathrm{~Hz}, \mathrm{f}\right), 126.74\left(\mathrm{~d},{ }^{3} J_{C-F}=8.0 \mathrm{~Hz}, \mathrm{~g}\right)$, $114.93\left(\mathrm{~d},{ }^{2} J_{C-F}=21 \mathrm{~Hz}, \mathrm{~h}\right), 71.91\left(\mathrm{~d},{ }^{2} J_{C-P}=5.0 \mathrm{~Hz}, \mathrm{~d}\right), 61.94\left(\mathrm{~d},{ }^{3} J_{C-P}=6.5 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), 61.77 $\left(\mathrm{d},{ }^{3} J_{C-P}=6.5 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $39.83\left(\mathrm{~d},{ }^{1} J_{C-P}=136 \mathrm{~Hz}, \mathrm{c}\right), 32.73\left(\mathrm{~d},{ }^{3} J_{C-P}=14.0 \mathrm{~Hz}, \mathrm{e}\right), 16.50\left(\mathrm{~d},{ }^{3} J_{C-}\right.$ ${ }_{P}=6.0 \mathrm{~Hz}$, a or a'), $16.26\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.65$ ppm; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-116.79 \mathrm{ppm}$; IR (neat) $3395(\mathrm{O}-\mathrm{H}), 2981\left(\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}\right), 2932$ ($\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 1602, 1508 (C-F), 1444 (aromatic $\mathrm{C}=\mathrm{C}$), 1392 (aromatic $\mathrm{C}=\mathrm{C}$), 1219 ($\mathrm{P}=\mathrm{O}$), 1021 (CO), 960 (P-O), $836 \mathrm{~cm}^{-1}$. HRMS (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{FO}_{4} \mathrm{P}+\mathrm{Na}^{+}=313.0981$, found $313.0992 \mathrm{~m} / \mathrm{z}$. Enantiomer ratio $=96: 4$, determined by chiral HPLC analysis: Stationary phase $=$ CHIRALPAK IC; Mobile phase $=$ Isopropanol; Flow rate $=1 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\lambda=$ 210 nm , rt. HPLC traces:
(a) 18h Racemate

(b) $\mathrm{R}: \mathrm{S}=\mathbf{9 6}: 4, \mathrm{CAHB}$ of $\mathbf{5 h}$ with (S, S) - $\mathbf{T} \mathbf{2}$, then oxidation to yield $\mathbf{1 8 h}$.

Synthesis of chiral tertiary benzyl alcohol (S)-18i: Following the general procedure for oxidation of chiral tertiary benzylic boronic esters (GP5), the chiral boronic ester (R)-6i(42 mg, $0.10 \mathrm{mmol})$ yields the chiral tertiary benzyl alcohol (S) $\mathbf{- 1 8 i}(29 \mathrm{mg}, 95 \%)$ as a colorless viscous oil: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=-5.7^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{~h}), 7.31(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{~g}), 5.06(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, 4.14-4.00 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{b}\right.$ or $\left.\mathrm{b}^{\prime}\right), 3.81-3.72\left(1 \mathrm{H}, \mathrm{m}, \mathrm{b}\right.$ or $\left.\mathrm{b}^{\prime}\right), 3.58-3.48(1 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or b'), $2.42(1 \mathrm{H}, \mathrm{dd}, J=$ $18.0,15.0 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 2.32(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 1.60\left(3 \mathrm{H}, \mathrm{d},{ }^{4} J_{C-P}=2.5 \mathrm{~Hz}, \mathrm{e}\right), 1.32$ ($3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, a or a'), $1.05\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 145.01 (d, $\left.{ }^{3} J_{C-P}=7.5 \mathrm{~Hz}, \mathrm{f}\right), 131.74$ (i), 127.32 (g), 125.56 (h), $70.91\left(\mathrm{~d},{ }^{2} J_{C-P}=5.0 \mathrm{~Hz}, \mathrm{~d}\right), 60.99$ $\left(\mathrm{d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), $60.82\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), $38.66\left(\mathrm{~d},{ }^{1} J_{C-P}=136 \mathrm{~Hz}, \mathrm{c}\right), 31.55(\mathrm{~d}$, ${ }^{3} J_{C-P}=14.0 \mathrm{~Hz}$, e), $15.51\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a'), $15.23\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{31} \mathrm{P}$

NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.52 \mathrm{ppm}$; IR (neat) 3382 ($\mathrm{O}-\mathrm{H}$), 2979 ($\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 2929 ($\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 1489 (aromatic $\mathrm{C}=\mathrm{C}$), 1391 (aromatic $\mathrm{C}=\mathrm{C}$), $1215(\mathrm{P}=\mathrm{O}), 1022(\mathrm{C}-\mathrm{O}), 961(\mathrm{P}-\mathrm{O}), 831(\mathrm{C}-\mathrm{Cl}) \mathrm{cm}^{-}$ ${ }^{1}$. HRMS (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{ClO}_{4} \mathrm{P}+\mathrm{Na}^{+}=329.0685$, found $329.0693 \mathrm{~m} / \mathrm{z}$. Enantiomer ratio $=96: 4$, determined by chiral HPLC analysis: Stationary phase $=$ CHIRALPAK IA; Mobile phase $=$ 95:5 Hexanes: Isopropanol; Flow rate $=1 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\lambda=210 \mathrm{~nm}$, rt. HPLC traces:
(a) 18i Racemate

(b) R:S = 96:4, CAHB of $\mathbf{5 i}$ with $(S, S)-\mathbf{T 2}$, then oxidation to yield $\mathbf{1 8 i}$.

Synthesis of chiral tertiary benzyl alcohol (S)-18j: Following the general procedure for oxidation of chiral tertiary benzylic boronic esters (GP5), the chiral boronic ester (R)- $\mathbf{6 j}$ (42 mg , $0.10 \mathrm{mmol})$ yields the chiral tertiary alcohol $(S) \mathbf{- 1 8 j}(27 \mathrm{mg}, 88 \%)$ as a colorless viscous oil: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=-5.7^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.48(1 \mathrm{H}, \mathrm{t}, J=2.0 \mathrm{~Hz}$, aryl), $7.37(1 \mathrm{H}, \mathrm{dt}, J=7.5,1.5 \mathrm{~Hz}$, aryl), $7.27(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}$, aryl), $7.22(1 \mathrm{H}, \mathrm{dt}, J=7.5,1.5 \mathrm{~Hz}$, aryl), $5.07(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.14-3.99(2 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or b'), 3.82-3.71 $(1 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or $\mathrm{b} '), 3.59-3.49(1 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or b'), $2.43(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 2.31(1 \mathrm{H}, \mathrm{dd}$, $J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 1.60\left(3 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=2.5 \mathrm{~Hz}, \mathrm{e}\right), 1.32(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{a}$ or a'), $1.05(3 \mathrm{H}$, $\mathrm{t}, J=7.0 \mathrm{~Hz}$, a or a') ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.63\left(\mathrm{~d},{ }^{3} J_{C-P}=7.5 \mathrm{~Hz}, \mathrm{f}\right), 134.25$ (h), 129.59 (aryl), 127.03 (aryl), 125.47 (aryl), 123.23 (aryl), 71.90 (d, ${ }^{2} J_{C-P}=5.0 \mathrm{~Hz}, \mathrm{~d}$), 61.99 (d, ${ }^{2} J_{C}$ ${ }_{P}=6.5 \mathrm{~Hz}, \mathrm{~b}$ or b'), $61.82\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $39.51\left(\mathrm{~d},{ }^{1} J_{C-P}=136 \mathrm{~Hz}, \mathrm{c}\right), 32.51\left(\mathrm{~d},{ }^{3} J_{C-P}=\right.$ $14.0 \mathrm{~Hz}, \mathrm{e}), 16.49\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.36 \mathrm{ppm}$; IR (neat) $3370(\mathrm{O}-\mathrm{H}), 2980\left(\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}\right), 2931\left(\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1596,1571,1475$ (aromatic $\mathrm{C}=\mathrm{C}$), 1392 (aromatic $\mathrm{C}=\mathrm{C}$), $1215(\mathrm{P}=\mathrm{O}), 1020(\mathrm{C}-\mathrm{O}), 960(\mathrm{P}-\mathrm{O}), 738(\mathrm{C}-\mathrm{Cl}) \mathrm{cm}^{-1}$. HRMS (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{ClO}_{4} \mathrm{P}+\mathrm{Na}^{+}=329.0685$, found $329.0688 \mathrm{~m} / \mathrm{z}$. Enantiomer ratio $=97: 3$, determined by chiral HPLC analysis: Stationary phase $=$ CHIRALPAK AS-H; Mobile phase $=90: 10$ Hexanes:Isopropanol; Flow rate $=1.25 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\lambda=220 \mathrm{~nm}$, rt. HPLC traces:
(a) $\mathrm{R}: \mathrm{S}=4: 96, \mathrm{CAHB}$ of $\mathbf{5 j}$ with $(R, R)-\mathbf{T} \mathbf{2}$, then oxidation to yield $\mathbf{1 8 j}$.
(b) R:S = 98:2, CAHB of $\mathbf{5 j}$ with $(S, S)-\mathbf{T 2}$, then oxidation to yield $\mathbf{1 8 j}$.

Synthesis of chiral tertiary benzyl alcohol (S)-18k: Following the general procedure for oxidation of chiral tertiary benzylic boronic esters (GP5), the chiral boronic ester (R)-6k (46 mg , 0.1 mmol) yields the chiral tertiary benzyl alcohol (S) $\mathbf{- 1 8 k}(28 \mathrm{mg}, 81 \%)$ as a colorless viscous oil: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=-1.3^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{~h}), 7.37(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{~g}), 5.05(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.14-$ $4.00(2 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or b'), $3.82-3.72(1 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or b'), $3.59-3.49(1 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or b'), $2.42(1 \mathrm{H}, \mathrm{dd}, J=18.0$, $15.0 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 2.31(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 1.60\left(3 \mathrm{H}, \mathrm{d},{ }^{4} J_{C-P}=2.0 \mathrm{~Hz}, \mathrm{e}\right), 1.33(3 \mathrm{H}$, $\mathrm{t}, J=7.0 \mathrm{~Hz}$, a or a'), $1.05\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.55$ (d, $\left.{ }^{3} J_{C-P}=7.5 \mathrm{~Hz}, \mathrm{f}\right), 131.29$ (h), 126.95 (g), 120.86 (i), 71.96 (d, $\left.{ }^{2} J_{C-P}=5.0 \mathrm{~Hz}, \mathrm{~d}\right), 62.01\left(\mathrm{~d},{ }^{2} J_{C-}\right.$ ${ }_{P}=6.5 \mathrm{~Hz}, \mathrm{~b}$ or b'), $61.84\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $39.62\left(\mathrm{~d},{ }^{1} J_{C-P}=136 \mathrm{~Hz}, \mathrm{c}\right), 32.51\left(\mathrm{~d},{ }^{3} J_{C-P}=\right.$ $14.0 \mathrm{~Hz}, \mathrm{e}), 16.52\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a'), $16.23\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{31}$ P NMR (162 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.49 \mathrm{ppm}$; IR (neat) 3391 (O-H), 2980 ($\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 2931 ($\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 1590, 1486 (aromatic $\mathrm{C}=\mathrm{C}$), 1393 (aromatic $\mathrm{C}=\mathrm{C}$), $1214(\mathrm{P}=\mathrm{O}), 1021(\mathrm{C}-\mathrm{O}), 960(\mathrm{P}-\mathrm{O}), 828,731(\mathrm{C}-\mathrm{Br}) \mathrm{cm}^{-}$ ${ }^{1}$. HRMS (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{BrO}_{4} \mathrm{P}+\mathrm{Na}^{+}=375.0160$, found $375.0173 \mathrm{~m} / \mathrm{z}$. Enantiomer ratio $=94: 6$, determined by chiral HPLC analysis: Stationary phase $=$ CHIRALPAK AS-H; Mobile phase $=90: 10$ Hexanes:Isopropanol; Flow rate $=1.25 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\lambda=220 \mathrm{~nm}$, rt. HPLC traces:
(a) $\mathrm{R}: \mathrm{S}=6: 94, \mathrm{CAHB}$ of $\mathbf{5 k}$ with $(R, R)-\mathbf{T} \mathbf{2}$, then oxidation to yield $\mathbf{1 8 k}$.

(b) $\mathrm{R}: \mathrm{S}=93: 7, \mathrm{CAHB}$ of $\mathbf{5 k}$ with $(S, S)-\mathbf{T} \mathbf{2}$, then oxidation to yield $\mathbf{1 8 k}$.

Synthesis of chiral tertiary benzyl alcohol (R)-181: Following the general procedure for oxidation of chiral tertiary benzylic boronic esters (GP5), the chiral boronic ester (S)-6l (39 mg , $0.1 \mathrm{mmol})$ yields the chiral tertiary benzyl alcohol $(R) \mathbf{- 1 8 1}(23 \mathrm{mg}, 83 \%)$ as a colorless viscous oil: TLC analysis (ethyl acetate/hexanes 2:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+16^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20(1 \mathrm{H}, \mathrm{dd}, J=4.0,2.0 \mathrm{~Hz}, \mathrm{i}), 6.96-6.94(2 \mathrm{H}, \mathrm{m}, \mathrm{g}+\mathrm{h}), 5.29(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, 4.15-4.05 ($2 \mathrm{H}, \mathrm{m}$ b or b'), 3.94-3.84 ($1 \mathrm{H}, \mathrm{m}$, b or b'), $3.73-3.63(1 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or b'), $2.50(1 \mathrm{H}, \mathrm{dd}, J=$ $18.0,15.0 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 2.39(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 1.73\left(3 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=2.0 \mathrm{~Hz}, \mathrm{e}\right), 1.34$ $\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a'), $1.16\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $153.07\left(\mathrm{~d},{ }^{3} J_{C-P}=10.0 \mathrm{~Hz}, \mathrm{f}\right), 126.84$ (g or h), 124.12 (i), 122.54 (g or h), $71.45\left(\mathrm{~d},{ }^{2} J_{C-P}=5.0 \mathrm{~Hz}\right.$, d), $62.22\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $61.77\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), $40.73\left(\mathrm{~d},{ }^{1} J_{C-P}=136 \mathrm{~Hz}, \mathrm{c}\right)$, $33.36\left(\mathrm{~d},{ }^{3} J_{C-P}=12.5 \mathrm{~Hz}, \mathrm{e}\right), 16.52\left(\mathrm{~d},{ }^{3} J_{C-P}=6.5 \mathrm{~Hz}\right.$, a or a'), $16.40\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.09 \mathrm{ppm}$; IR (neat) 3367 (O-H), $2980\left(\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}\right), 2930\left(\mathrm{sp}^{3}\right.$ C-H), 1442 (aromatic $\mathrm{C}=\mathrm{C}$), 1391 (aromatic $\mathrm{C}=\mathrm{C}$), 1214 ($\mathrm{P}=\mathrm{O}$), 1018 (C-O), 959 (P-O), 836, 695 cm^{-1}. HRMS (ESI) calculated for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{PS}+\mathrm{Na}^{+}=301.0639$, found $301.0644 \mathrm{~m} / \mathrm{z}$. Enantiomer ratio $=97: 3$, determined by chiral HPLC analysis: Stationary phase $=$ CHIRALPAK AS-H; Mobile phase $=90: 10$ Hexanes:Isopropanol; Flow rate $=1.25 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\lambda=220 \mathrm{~nm}$, rt. HPLC traces:
(a) 181 Racemate

(b) R:S = 7:93, CAHB of $\mathbf{5 1}$ with $(S, S)-\mathbf{T 2}$, then oxidation to yield 181.

(S)-18m
(R)-6m

Synthesis of chiral tertiary benzyl alcohol (\boldsymbol{S})-18m: Following the general procedure for oxidation of chiral tertiary benzylic boronic esters (GP5), the chiral boronic ester (R)- $\mathbf{6 m}(39 \mathrm{mg}$, $0.1 \mathrm{mmol})$ yields the chiral tertiary benzyl alcohol $(S) \mathbf{- 1 8 m}(24 \mathrm{mg}, 87 \%)$ as a colorless viscous oil: TLC analysis (ethyl acetate/hexanes 2:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=-11.5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.03(1 \mathrm{H}, \mathrm{dd}, J=4.0,2.0 \mathrm{~Hz}, \mathrm{~h}), 7.28-7.26(2 \mathrm{H}, \mathrm{m}, \mathrm{g}+\mathrm{i}), 5.04(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, 4.14-4.00 $\left(2 \mathrm{H}, \mathrm{m}\right.$ b or b'), 3.87-3.77 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{b}\right.$ or $\left.\mathrm{b}^{\prime}\right), 3.62-3.52(1 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or b'), $2.42(1 \mathrm{H}, \mathrm{dd}, J=$ $18.0,15.0 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 2.32(1 \mathrm{H}, \mathrm{dd}, J=18.0,15.0 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 1.62\left(3 \mathrm{H}, \mathrm{d},{ }^{4} J_{P-H}=2.0 \mathrm{~Hz}, \mathrm{e}\right), 1.32$ $\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a'), $1.11\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') $\mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $149.48\left(\mathrm{~d},{ }^{3} J_{C-P}=8.0 \mathrm{~Hz}, \mathrm{f}\right), 125.91$ (g or i), $125.68\left(\mathrm{~g}\right.$ or i), $120.04(\mathrm{~h}), 71.17\left(\mathrm{~d},{ }^{2} J_{C-P}=5.0 \mathrm{~Hz}\right.$, d), $61.98\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $61.66\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), $39.89\left(\mathrm{~d},{ }^{1} J_{C-P}=136 \mathrm{~Hz}, \mathrm{c}\right)$, $32.27\left(\mathrm{~d},{ }^{3} J_{C-P}=14.0 \mathrm{~Hz}\right.$, e $), 16.51\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a'), $16.38\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.66 \mathrm{ppm}$; IR (neat) $3391(\mathrm{O}-\mathrm{H}), 2978\left(\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}\right), 2922\left(\mathrm{sp}^{3}\right.$ C-H), 1443 (aromatic $\mathrm{C}=\mathrm{C}$), 1392 (aromatic $\mathrm{C}=\mathrm{C}$), 1221 ($\mathrm{P}=\mathrm{O}$), 1020 (C-O), 960 ($\mathrm{P}-\mathrm{O}$), $790 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (ESI) calculated for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{PS}+\mathrm{Na}^{+}=301.0639$, found $301.0646 \mathrm{~m} / z$. Enantiomer ratio $=88: 12$, determined by chiral HPLC analysis: Stationary phase $=$ CHIRALPAK IC; Mobile phase $=90: 10$ Hexanes: Isopropanol; Flow rate $=1.5 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\lambda=220 \mathrm{~nm}, \mathrm{rt}$. HPLC traces:

Synthesis of chiral primary alcohol (S)-18n: See sec. 9.2 (Absolute configuration assignments).

Synthesis of chiral primary alcohol (S)-180: Following the general procedure for CAHB (GP3), the substrate $\mathbf{5 0}$ ($57 \mathrm{mg}, 0.2 \mathrm{mmol}$) yields a mixture of boronic esters and reduced products that were not separable via silica gel chromatography. The crude CAHB mixture was chromatographed (ethyl acetate/hexanes 3:1) over silica gel to get rid of the non-polar colored complex and the polar metal residues. The crude mixture obtained after this partial purification was subjected to oxidation following GP5 to obtain the chiral primary alcohol (S) - $\mathbf{1 8 0}(48 \mathrm{mg}, 80 \%)$ as a colorless oil: TLC analysis (ethyl acetate/methanol 19:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+4.0^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.19(2 \mathrm{H}, \mathrm{m}$, aryl $), 7.94(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}$, aryl), $6.88(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{j})$, 4.10-4.01 ($4 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}$) , 3.87-3.84 ($5 \mathrm{H}, \mathrm{m}, \mathrm{e}+\mathrm{l}$), $3.67-3.58(1 \mathrm{H}, \mathrm{m}, \mathrm{d}), 3.27(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.32$ $(1 \mathrm{H}$, ddd, $J=18.0,15.0,8.5 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 2.19(1 \mathrm{H}, \mathrm{ddd}, J=19.0,18.0,5.5 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 1.30(3 \mathrm{H}$,
$\mathrm{t}, J=7.0 \mathrm{~Hz}$, a or a'), $1.28\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') $\mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.07$ (k), 130.48 (d, $\left.{ }^{3} J_{C-P}=12.5 \mathrm{~Hz}, \mathrm{f}\right), 128.61$ (aryl), 128.08 (aryl), 120.82 (aryl), 110.85 (j), 66.40 (d, $\left.{ }^{3} J_{C-P}=8.0 \mathrm{~Hz}, \mathrm{e}\right), 61.97\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $61.75\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), 55.45 (1), $37.47\left(\mathrm{~d},{ }^{2} J_{C-P}=2.0 \mathrm{~Hz}, \mathrm{~d}\right), 28.24\left(\mathrm{~d},{ }^{1} J_{C-P}=139 \mathrm{~Hz}, \mathrm{c}\right), 16.48\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a'), $16.46(\mathrm{~d}$, ${ }^{3} J_{C-P}=6.0 \mathrm{~Hz}$, a or a') ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 32.39 \mathrm{ppm}$; IR (neat) 3369 (O-H), $2980\left(\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}\right), 2907\left(\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1493$ (aromatic $\mathrm{C}=\mathrm{C}$), 1391 (aromatic $\mathrm{C}=\mathrm{C}$), 1239 ($\mathrm{P}=\mathrm{O}$), 1020 (C-O), 958 (P-O), $752 \mathrm{~cm}^{-1}$. HRMS (ESI) calculated for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{P}+\mathrm{Na}^{+}=325.1181$, found $325.1184 \mathrm{~m} / \mathrm{z}$. Enantiomer ratio $=74: 26$, determined by chiral HPLC analysis: Stationary phase $=$ CHIRALPAK IC; Mobile phase $=90: 10$ Hexanes: Isopropanol; Flow rate $=1.5 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\lambda=220 \mathrm{~nm}, \mathrm{rt}$. HPLC traces:
(a) $\mathrm{R}: \mathrm{S}=26: 74, \mathrm{CAHB}$ of $\mathbf{5 0}$ with $(R, R)-\mathbf{T 2}$, then oxidation to yield $\mathbf{1 8 0}$.

(b) R:S = 74:26, CAHB of $\mathbf{5 0}$ with (S, S)-T2, then oxidation to yield $\mathbf{1 8 0}$.

36

Synthesis of chiral alcohols $\mathbf{3 5 \& 3 6}$: Following the general procedure for CAHB (GP3; 12 h total reaction time), the substrate $10(54 \mathrm{mg}, 0.2 \mathrm{mmol})$ yields about a $1: 1$ mixture of regioisomers that were not separable at the boronate stage. The crude CAHB mixture was chromatographed (ethyl acetate/hexanes 1:1) over silica gel to get rid of the non-polar colored complex and the polar metal residues. The crude mixture obtained after this partial purification is subjected to oxidation following GP5 to obtain the corresponding alcohols that were separated and purified by silica gel chromatography.

The tertiary alcohol 35 is obtained as a colorless oil ($23 \mathrm{mg}, 40 \%$): TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+1.0^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44$ $(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{~h}), 7.36(2 \mathrm{H}, \mathrm{dd}, J=8.0,7.5 \mathrm{~Hz}, \mathrm{i}), 7.26(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{j}), 4.12-4.02(4 \mathrm{H}$, $\mathrm{m}, \mathrm{b}+\mathrm{b}$) , $2.80(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.18-2.08(2 \mathrm{H}, \mathrm{m}, \mathrm{d}), 1.79-1.72(1 \mathrm{H}, \mathrm{m}, \mathrm{c}(1 \mathrm{H})), 1.62-1.55(4 \mathrm{H}, \mathrm{m}$, $\mathrm{c}(1 \mathrm{H})+\mathrm{f}), 1.32\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a'), $1.29\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (175 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.92$ (g), 128.52 (i), 126.94 (j), 125.04 (h), 74.21 (d, $\left.{ }^{3} J_{C-P}=13.5 \mathrm{~Hz}, \mathrm{e}\right), 61.87$ (d, ${ }^{2} J_{C-P}=6.5 \mathrm{~Hz}, \mathrm{~b}+\mathrm{b}$ '), $36.65\left(\mathrm{~d},{ }^{2} J_{C-P}=4.0 \mathrm{~Hz}, \mathrm{~d}\right), 30.97(\mathrm{f}), 20.76\left(\mathrm{~d},{ }^{l} J_{C-P}=142 \mathrm{~Hz}, \mathrm{c}\right), 16.64$ (d, ${ }^{3} J_{C-P}=6.5 \mathrm{~Hz}$, a or a'), $16.60\left(\mathrm{~d},{ }^{3} J_{C-P}=6.5 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{31} \mathrm{P}$ NMR ($283 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 33.68 ppm ; IR (neat) 3361 (O-H), 3025 (aromatic C-H), 2931 (aliphatic C-H), 1446 (aromatic $\mathrm{C}=\mathrm{C}$), 1392 (aromatic $\mathrm{C}=\mathrm{C}$), 1219 ($\mathrm{P}=\mathrm{O}$), 1052 (C-O), 1021 (C-O), 960 (P-O) $700 \mathrm{~cm}^{-1}$; Enantiomer ratio $=86: 14$, determined by chiral HPLC analysis: Stationary phase $=$ CHIRALPAK AS-H; Mobile Phase $=40: 60$ Hexanes:Isopropanol. Flow rate $=1 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector λ $=210 \mathrm{~nm}$, rt. HPLC traces:

The primary alcohol 36 is obtained as a colorless oil ($24 \mathrm{mg}, 41 \%$): TLC analysis (ethyl acetate) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=-1.6^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.21(5 \mathrm{H}, \mathrm{m}$, aryl $)$, 4.13-4.00 ($4 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}$) , $3.78(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=5.0 \mathrm{~Hz}, \mathrm{f}), 2.88-2.81(1 \mathrm{H}, \mathrm{m}, \mathrm{e}), 2.16-2.05(1 \mathrm{H}, \mathrm{m}$, $\mathrm{d}(1 \mathrm{H})), 1.95-1.84(1 \mathrm{H}, \mathrm{m}, \mathrm{d}(1 \mathrm{H})), 1.76(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.70-1.56(2 \mathrm{H}, \mathrm{m}, \mathrm{c}), 1.31(3 \mathrm{H}, \mathrm{t}, J=7.0$ Hz , a or a'), $1.30\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.18(\mathrm{~g}), 129.04$ (h or i), 128.25 (h or i), 127.31 (j), 67.27 (f), 61.71 (d, ${ }^{2} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{~b}+\mathrm{b}$), 49.34 (d, ${ }^{3} J_{C-P}=16$ $\mathrm{Hz}, \mathrm{e}), 24.98\left(\mathrm{~d},{ }^{2} J_{C-P}=4.5 \mathrm{~Hz}, \mathrm{~d}\right), 23.75\left(\mathrm{~d},{ }^{1} J_{C-P}=141 \mathrm{~Hz}, \mathrm{c}\right), 16.65\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{a}+\mathrm{a}\right)$ ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 32.17 \mathrm{ppm}$; IR (neat) 3363 (O-H), 2989 (aromatic C-H), 2930 (aliphatic C-H), 1447 (aromatic C=C), 1389 (aromatic C=C), 1220 ($\mathrm{P}=\mathrm{O}$), 1052 (C-O), 1021 (CO), $963(\mathrm{P}-\mathrm{O}) 702 \mathrm{~cm}^{-1}$; Enantiomer ratio $=46: 54$, determined by chiral HPLC analysis: Stationary phase $=$ CHIRALPAK IC; Mobile Phase $=30: 70$ Hexanes:Isopropanol. Flow rate $=1 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\lambda=210 \mathrm{~nm}$, rt. HPLC traces:
(a) $\mathrm{Er}=54: 46, \mathrm{CAHB}$ of $\mathbf{1 0}$ with $(R, R)-\mathbf{T} \mathbf{2}$ then oxidation to yield 36.
(b) $\mathrm{Er}=53: 47$, CAHB of $\mathbf{1 0}$ with $(S, S)-\mathbf{T} \mathbf{2}$, then oxidation to yield 36.

(2R,5S)-34a

Synthesis of chiral tertiary benzyl alcohol ($\mathbf{2 R}, \mathbf{5 S}$)-34a: Following the general procedure for oxidation of chiral tertiary benzylic boronic esters (GP5), the chiral boronic ester ($2 S, 5 S$)-16a (38 $\mathrm{mg}, 75 \mu \mathrm{~mol}$; obtained via CAHB of (Z) - $\mathbf{- 1 5 a}$ using (R, R)-T2) yields the chiral tertiary benzyl alcohol product ($2 R, 5 S$)-34a ($24 \mathrm{mg}, 82 \%$; 95:5 dr, determined via ${ }^{31} \mathrm{P}$ NMR analysis) as a light buff colored viscous oil. Alternatively, the chiral boronic ester ($2 S, 5 S$) - $\mathbf{1 6 a}$ ($38 \mathrm{mg}, 75 \mu \mathrm{~mol}$; obtained via CAHB of (E)-15a using $(R, R)-\mathbf{T 2}$) yields the chiral tertiary benzyl alcohol product ($2 R, 5 S$)-34a ($23 \mathrm{mg}, 80 \%$; 95:5 dr, determined via ${ }^{31} \mathrm{P}$ NMR analysis) as a buff colored viscous oil: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+10.0^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 6.83(1 \mathrm{H}, \mathrm{dd}, J=5.0,1.0 \mathrm{~Hz}$, aryl), $6.81(1 \mathrm{H}, \mathrm{dd}, J=3.5,1.0 \mathrm{~Hz}$, aryl), 6.71 (1 H , dd, $J=5.0,3.5 \mathrm{~Hz}$, aryl), $6.21(1 \mathrm{H}$, br s, OH$), 3.88-3.56(5 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}($ total 3 H$)+\mathrm{g}+\mathrm{h}(1 \mathrm{H})$), $3.37-3.23\left(2 \mathrm{H}, \mathrm{m}, \mathrm{b}\right.$ or $\left.\mathrm{b}^{\prime}(1 \mathrm{H})+\mathrm{h}(1 \mathrm{H})\right), 2.28(1 \mathrm{H}, \mathrm{dd}, J=19.0,15.0 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 2.24(1 \mathrm{H}, \mathrm{dd}, J=$ $19.0,15.0 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})$), $2.09(1 \mathrm{H}, \mathrm{ddd}, J=18.0,13.0,5.0 \mathrm{~Hz}, \mathrm{e}(1 \mathrm{H})), 1.97(1 \mathrm{H}, \mathrm{dd}, J=18.0,13.0$, $4.5 \mathrm{~Hz}, \mathrm{e}(1 \mathrm{H})$), 1.82-1.73 ($1 \mathrm{H}, \mathrm{m}, \mathrm{f}(1 \mathrm{H})$), 1.53-1.43 ($1 \mathrm{H}, \mathrm{m}, \mathrm{f}(1 \mathrm{H})$), $1.34(3 \mathrm{H}, \mathrm{s}, \mathrm{j}$ or j'), $1.29(3 \mathrm{H}$, s, j or $\left.\mathrm{j}^{\prime}\right), 0.98\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a'), $0.80\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 152.45\left(\mathrm{~d},{ }^{3} J_{C-P}=7.5 \mathrm{~Hz}, \mathrm{~m}\right.$), 127.19 (aryl), 124.63 (aryl), 123.77 (aryl), 109.05 (i), 76.70 (g), $73.94\left(\mathrm{~d},{ }^{2} J_{C-P}=5.0 \mathrm{~Hz}, \mathrm{~d}\right), 69.94(\mathrm{~h}), 62.15\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $61.59\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0\right.$ Hz, b or $\left.\mathrm{b}^{\prime}\right), 43.09\left(\mathrm{~d},{ }^{3} J_{C-P}=14.0 \mathrm{~Hz}, \mathrm{e}\right), 40.50\left(\mathrm{~d},{ }^{1} J_{C-P}=135 \mathrm{~Hz}, \mathrm{c}\right), 28.66\left(\mathrm{~d},{ }^{4} J_{C-P}=2.0 \mathrm{~Hz}, \mathrm{f}\right)$, 27.64 (j or j'), 26.36 (j or j'), 16.66 ($\mathrm{d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}$, a or a'), 16.56 ($\mathrm{d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}$, a or a') ppm; ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 28.85$ (5%, minor diastereomer), 28.77 (95%, major diastereomer) ppm; IR (neat) 3377 (O-H), 2983 (aromatic C-H), 2933 (aliphatic C-H), 1443 (aromatic $\mathrm{C}=\mathrm{C}$), 1368 (aromatic $\mathrm{C}=\mathrm{C}), 1214(\mathrm{P}=\mathrm{O}), 1158,1021$ (C-O/C=S), 962 (P-O) cm^{-1}; HRMS (ESI) calculated for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{PS}+\mathrm{Na}^{+}=415.1320$, found $415.1327 \mathrm{~m} / \mathrm{z}$.

Synthesis of chiral tertiary benzyl alcohol (2S,5S)-34a: Following the general procedure for oxidation of chiral tertiary benzylic boronic esters (GP5), the chiral boronic ester ($2 R, 5 S$)-16a (38 $\mathrm{mg}, 75 \mu \mathrm{~mol}$; obtained via CAHB of (Z)-15a using (S, S)-T2) yields the chiral tertiary benzyl alcohol product ($2 S, 5 S$)-34a ($25 \mathrm{mg}, 85 \%$; 94:6 dr, determined via ${ }^{31} \mathrm{P}$ NMR analysis) as a light buff colored viscous oil. Alternatively, the chiral boronic ester ($2 R, 5 S$)-16a ($38 \mathrm{mg}, 75 \mu \mathrm{~mol}$; obtained via CAHB of (E) - $\mathbf{1 5 a}$ using (S, S)-T2) yields the chiral tertiary benzyl alcohol product ($2 S, 5 S$)-34a ($24 \mathrm{mg}, 82 \%$; 95:5 dr, determined via ${ }^{31} \mathrm{P}$ NMR analysis) as a buff colored viscous oil: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+3.5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 6.84(1 \mathrm{H}, \mathrm{dd}, J=5.0,1.0 \mathrm{~Hz}$, aryl), $6.80(1 \mathrm{H}, \mathrm{dd}, J=3.5,1.0 \mathrm{~Hz}$, aryl), 6.72 $(1 \mathrm{H}, \mathrm{dd}, J=5.0,3.5 \mathrm{~Hz}$, aryl), $6.21(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.85-3.57(5 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b} '($ total 3 H$)+\mathrm{g}+\mathrm{h}(1 \mathrm{H}))$, 3.37-3.23 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{b}\right.$ or $\left.\mathrm{b}^{\prime}(1 \mathrm{H})+\mathrm{h}(1 \mathrm{H})\right)$, 2.31-2.16 $(3 \mathrm{H}, \mathrm{m}, \mathrm{c}+\mathrm{e}(1 \mathrm{H})$), 1.93-1.76 $(2 \mathrm{H}, \mathrm{m}$, $\mathrm{e}(1 \mathrm{H})+\mathrm{f}(1 \mathrm{H})), 1.51-1.43(1 \mathrm{H}, \mathrm{m}, \mathrm{f}(1 \mathrm{H})), 1.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{j}\right.$ or $\left.\mathrm{j}^{\prime}\right), 1.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{j}\right.$ or j $\left.\mathrm{j}^{\prime}\right), 0.99(3 \mathrm{H}, \mathrm{t}, J=$ 7.0 Hz , a or a'), $0.80\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 152.85\left(\mathrm{~d},{ }^{3} J_{C-}\right.$ $\left.{ }_{P}=7.0 \mathrm{~Hz}, \mathrm{~m}\right), 127.22(\operatorname{aryl}), 124.58(\operatorname{aryl}), 123.77(\operatorname{aryl}), 109.09$ (i), $76.54(\mathrm{~g}), 73.77\left(\mathrm{~d},{ }^{2} J_{C-P}=\right.$ $5.0 \mathrm{~Hz}, \mathrm{~d}), 69.88(\mathrm{~h}), 62.14\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{~b}\right.$ or b'), $61.60\left(\mathrm{~d},{ }^{2} J_{C-P}=6.0 \mathrm{~Hz}\right.$, b or b'), $43.08(\mathrm{~d}$, $\left.{ }^{3} J_{C-P}=14.0 \mathrm{~Hz}, \mathrm{e}\right), 40.06\left(\mathrm{~d},{ }^{1} J_{C-P}=136 \mathrm{~Hz}, \mathrm{c}\right), 28.49\left(\mathrm{~d},{ }^{4} J_{C-P}=2.0 \mathrm{~Hz}, \mathrm{f}\right), 27.60(\mathrm{j}$ or j$), 26.32(\mathrm{j}$ or j'), $16.66\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a'), $16.56\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{31} \mathrm{P}$ NMR (162 MHz , $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 28.85$ (94%, minor diastereomer), 28.77 (6%, major diastereomer) ppm; IR (neat) 3378 (O-H), 2981 (aromatic C-H), 2933 (aliphatic C-H), 1445 (aromatic $\mathrm{C}=\mathrm{C}$), 1363 (aromatic $\mathrm{C}=\mathrm{C}$), 1213 ($\mathrm{P}=\mathrm{O}$), 1158, 1021 (C-O/C=S), 963 (P-O) cm ${ }^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{PS}+\mathrm{Na}^{+}=415.1320$, found $415.1329 \mathrm{~m} / \mathrm{z}$.

(S)-16b

(R)-34b

Synthesis of chiral tertiary benzyl alcohol (R)-34b: Following the general procedure for oxidation of chiral tertiary benzylic boronic esters (GP5), the chiral boronic ester (S) - $\mathbf{1 6 b}$ (37 mg , $75 \mu \mathrm{~mol})$ yields the chiral tertiary benzyl alcohol $(R) \mathbf{- 3 4 b}(25 \mathrm{mg}, 87 \%)$ as a colorless viscous oil: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=-3.0^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.12(6 \mathrm{H}, \mathrm{m}$, aryl), $3.96(1 \mathrm{H}, \mathrm{dd}, J=4.5,4.0 \mathrm{~Hz}$, aryl $), 6.90(1 \mathrm{H}, \mathrm{d}, J=3.5$ Hz , aryl), $5.42(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.09-3.99(2 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or b'), 3.86-3.76 $(1 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or b'), 3.59-3.49
$(1 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or b'), 2.64-2.52 $(2 \mathrm{H}, \mathrm{m}, \mathrm{g}), 2.43(1 \mathrm{H}, \mathrm{dd}, J=22.0,15.0 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 2.38(1 \mathrm{H}, \mathrm{dd}, J=$ $22.0,15.0 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 2.00-1.73(3 \mathrm{H}, \mathrm{m}, \mathrm{e}+\mathrm{f}(1 \mathrm{H})), 1.57-1.47(1 \mathrm{H}, \mathrm{m}, \mathrm{e}(1 \mathrm{H})), 1.32(3 \mathrm{H}, \mathrm{t}, J=7.0$ Hz , a or a'), $1.10\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.39\left(\mathrm{~d},{ }^{3} J_{C-P}\right.$ $=7.5 \mathrm{~Hz}, \mathrm{~m}$), 142.33 (h), 128.57 (aryl), 128.40 (aryl), 126.85 (aryl), 125.86 (aryl), 124.23 (aryl), 123.22 (aryl), $73.68\left(\mathrm{~d},{ }^{2} J_{C-P}=5.0 \mathrm{~Hz}, \mathrm{~d}\right), 62.14\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), $61.67\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5\right.$ Hz , b or b'), $45.65\left(\mathrm{~d},{ }^{3} J_{C-P}=14.0 \mathrm{~Hz}, \mathrm{e}\right), 39.49\left(\mathrm{~d},{ }^{1} J_{C-P}=136 \mathrm{~Hz}, \mathrm{c}\right), 35.94(\mathrm{~g}), 25.39\left(\mathrm{~d},{ }^{4} J_{C-P}=\right.$ $2.0 \mathrm{~Hz}, \mathrm{f}), 16.50\left(\mathrm{~d},{ }^{3} J_{C-P}=6.5 \mathrm{~Hz}\right.$, a or a'), $16.35\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{13} \mathrm{C}$ NMR (162 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.57 \mathrm{ppm}$; IR (neat) $3380(\mathrm{O}-\mathrm{H}), 2982\left(\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}\right), 2908\left(\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1453$ (aromatic $\mathrm{C}=\mathrm{C}$), 1391 (aromatic $\mathrm{C}=\mathrm{C}$), 1217 ($\mathrm{P}=\mathrm{O}$), 1049 (C-O), 1020 (C-O/C=S), 962 (P-O), 728, $697 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{PS}+\mathrm{Na}^{+}=405.1265$, found $405.1265 \mathrm{~m} / \mathrm{z}$. Enantiomer ratio = 93:7, determined by chiral HPLC analysis: Stationary phase $=$ CHIRALPAK AS-H; Mobile phase $=95: 5$ Hexanes: Isopropanol; Flow rate $=1 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\lambda=210 \mathrm{~nm}, \mathrm{rt}$. HPLC traces:
(a) $\mathrm{R}: \mathrm{S}=93: 7, \mathrm{CAHB}$ of $\mathbf{1 5 b}$ with $(R, R)-\mathbf{T 2}$, then oxidation to yield $\mathbf{3 4 b}$.

(b) $\mathrm{R}: \mathrm{S}=7: 93, \mathrm{CAHB}$ of $\mathbf{1 5 b}$ with $(S, S)-\mathbf{T} \mathbf{2}$, then oxidation to yield 34b.

(R)-16 \mathbf{j}

(S)-34j

Synthesis of chiral tertiary alcohol (S)-34j: Following the general procedure for oxidation of chiral tertiary benzylic boronic esters (GP5), the chiral boronic ester (R) - $\mathbf{1 6 j}$ ($34 \mathrm{mg}, 75 \mu \mathrm{~mol}$; obtained via CAHB of (E) - $\mathbf{1 5} \mathbf{j}$ using (R, R)-T2) yields the chiral tertiary benzyl alcohol product (S)-34j ($21 \mathrm{mg}, 80 \%$; 97:3 er, determined via chiral HPLC analysis) as a light buff colored viscous oil. Alternatively, the chiral boronic ester $(R) \mathbf{- 1 6 j}$ ($34 \mathrm{mg}, 75 \mu \mathrm{~mol}$; obtained via CAHB of $(Z) \mathbf{- 1 5 j}$ using (R, R)-T2) yielded the chiral tertiary benzyl alcohol product (S) $\mathbf{- 3 4 j}$ ($20 \mathrm{mg}, 76 \%$; 70:30 er, determined via chiral HPLC analysis) as a buff colored viscous oil. Characterization data for enantioenriched (S)-34j: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=-19.3^{\circ}(c=$ $1.0, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.42-7.20(8 \mathrm{H}, \mathrm{m}$, aryl), $7.06-7.05(2 \mathrm{H}, \mathrm{m}$, aryl), 5.05 $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.04-3.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{b}\right.$ or $\left.\mathrm{b}^{\prime}\right), 3.66-3.57\left(1 \mathrm{H}, \mathrm{m}, \mathrm{b}\right.$ or $\left.\mathrm{b}^{\prime}\right), 3.25-3.04\left(3 \mathrm{H}, \mathrm{m}, \mathrm{b}\right.$ or b^{\prime}
$(1 \mathrm{H})+\mathrm{e}), 2.55(1 \mathrm{H}, \mathrm{dd}, J=19.0,15.0 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 2.34(1 \mathrm{H}$, dd appearing as $\mathrm{t}, J=16.0 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H}))$, $1.28\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a'), $0.95\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.54\left(\mathrm{~d},{ }^{3} J_{C-P}=4.5 \mathrm{~Hz}, \mathrm{j}\right), 136.64$ (f), 131.10 (aryl), 128.00 (aryl), 127.85 (aryl), 127.00 (aryl), 126.61 (aryl), 125.99 (aryl), 74.63 (d, ${ }^{2} J_{C-P}=4.5 \mathrm{~Hz}, \mathrm{~d}$), 61.93 (d, ${ }^{2} J_{C-P}=6.5 \mathrm{~Hz}, \mathrm{~b}$ or b'), 61.50 $\left(\mathrm{d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), $51.62\left(\mathrm{~d},{ }^{3} J_{C-P}=17.0 \mathrm{~Hz}, \mathrm{e}\right), 37.26\left(\mathrm{~d},{ }^{1} J_{C-P}=137 \mathrm{~Hz}, \mathrm{c}\right), 16.43\left(\mathrm{~d},{ }^{3} J_{C-}\right.$ ${ }_{P}=6.5 \mathrm{~Hz}$, a or a'), $16.22\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.49$ ppm; IR (neat) $3398\left(\mathrm{O}-\mathrm{H}\right.$), 2981 ($\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 2917 ($\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 1495 (aromatic $\mathrm{C}=\mathrm{C}$), 1392 (aromatic $\mathrm{C}=\mathrm{C}$), 1222 ($\mathrm{P}=\mathrm{O}$), 1022 (C-O), 967 ($\mathrm{P}-\mathrm{O}$), 728, $698 \mathrm{~cm}^{-1}$. HRMS (ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{P}+\mathrm{Na}^{+}=371.1388$, found $371.1393 \mathrm{~m} / \mathrm{z}$. Enantiomer ratio determined by chiral HPLC analysis: Stationary phase $=$ CHIRALPAK AS-H; Mobile phase $=90: 10$ Hexanes: Isopropanol; Flow rate $=1 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\lambda=210 \mathrm{~nm}, \mathrm{rt}$. HPLC traces:
(a) $\mathrm{R}: \mathrm{S}=4: 96$, CAHB of $(E)-\mathbf{1 5} \mathbf{j}$ with $(R, R)-\mathbf{T 2}$, then oxidation to yield $\mathbf{3 4} \mathbf{j}$.

(c) $\mathrm{R}: \mathrm{S}=30: 70$, CAHB of $(Z) \mathbf{- 1 5 j}$ with $(R, R)-\mathbf{T} \mathbf{2}$, then oxidation to yield $\mathbf{3 4} \mathbf{j}$.

(b) $\mathrm{R}: \mathrm{S}=96: 4$, CAHB of $(E)-\mathbf{1 5 j}$ with $(S, S)-\mathbf{T} \mathbf{2}$, then oxidation to yield $\mathbf{3 4} \mathbf{j}$.

(d) $\mathrm{R}: \mathrm{S}=70: 30, \mathrm{CAHB}$ of $(Z) \mathbf{- 1 5 j}$ with
(S, S) - $\mathbf{T} \mathbf{2}$, then oxidation to yield $\mathbf{3 4} \mathbf{j}$.

Synthesis of chiral tertiary benzyl alcohol (S)-34k: Following the general procedure for oxidation of chiral tertiary benzylic boronic esters (GP5), the chiral boronic ester (R) - $\mathbf{1 6 k}$ (36 mg , $75 \mu \mathrm{~mol}$) yields the chiral tertiary alcohol (S)-34k ($25 \mathrm{mg}, 88 \%$) as a colorless viscous oil: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+0.8^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.44-7.09 (10H, m, aryl), $5.04(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.10-3.97(2 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or b'), 3.68-3.59 $(1 \mathrm{H}$, m , b or $\left.\mathrm{b}^{\prime}\right), 3.31-3.21\left(1 \mathrm{H}, \mathrm{m}, \mathrm{b}\right.$ or $\left.\mathrm{b}^{\prime}\right), 2.61-2.32(4 \mathrm{H}, \mathrm{m}, \mathrm{c}+\mathrm{g}), 1.97-1.69(3 \mathrm{H}, \mathrm{m}, \mathrm{e}+\mathrm{f}(1 \mathrm{H}))$, 1.41$1.29\left(4 \mathrm{H}, \mathrm{m}\right.$, a or $\mathrm{a}^{\prime}+\mathrm{f}(1 \mathrm{H}), 0.97\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{a}\right.$ or $\left.\mathrm{a}^{\prime}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 145.57 (d, ${ }^{3} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{l}$), 142.40 (h), 128.52 (aryl), 128.34 (aryl), 128.17 (aryl), 128.79 (aryl), 125.77 (aryl), 125.60 (aryl), 74.16 (d, $\left.{ }^{2} J_{C-P}=5.0 \mathrm{~Hz}, \mathrm{~d}\right), 61.81$ (d, ${ }^{2} J_{C-P}=6.5 \mathrm{~Hz}, \mathrm{~b}$ or b'), 61.49 $\left(\mathrm{d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), $44.61\left(\mathrm{~d},{ }^{3} J_{C-P}=15.5 \mathrm{~Hz}, \mathrm{e}\right), 38.87\left(\mathrm{~d},{ }^{1} J_{C-P}=136 \mathrm{~Hz}, \mathrm{c}\right), 36.00(\mathrm{~g})$, $25.13\left(\mathrm{~d},{ }^{4} J_{C-P}=2.5 \mathrm{~Hz}, \mathrm{f}\right), 16.45\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a'), $16.20\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.28 \mathrm{ppm}$; IR (neat) 3376 (O-H), 2985 ($\left.\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}\right), 2908$ ($\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 1451 (aromatic $\mathrm{C}=\mathrm{C}$), 1396 (aromatic $\mathrm{C}=\mathrm{C}$), $1220(\mathrm{P}=\mathrm{O}), 1049(\mathrm{C}-\mathrm{O}), 1021$ (C-O/C=S), 965 ($\mathrm{P}-$ O), $729,699 \mathrm{~cm}^{-1}$. HRMS (ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{P}+\mathrm{Na}^{+}=399.1701$, found $399.1706 \mathrm{~m} / \mathrm{z}$. Enantiomer ratio $=93: 7$, determined by chiral HPLC analysis: Stationary phase $=$ CHIRALPAK AS-H; Mobile phase $=95: 5$ Hexanes:Isopropanol; Flow rate $=1 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\lambda=$ 210 nm , rt. HPLC traces:
(a) $\mathrm{R}: \mathrm{S}=12: 88$, CAHB of $\mathbf{1 5 k}$ with $(R, R)-\mathbf{T} \mathbf{2}$, then oxidation to yield $\mathbf{3 4 k}$.

(b) R:S = 88:12, CAHB of $\mathbf{1 5 k}$ with $(S, S)-\mathbf{T} \mathbf{2}$, then oxidation to yield $\mathbf{3 4 k}$.

(8) Oxidations leading to α-hydroxy and oxophosphonates and their synthetic utility

Synthesis of phosphonate (\boldsymbol{S})-22 via hydrogenation of vinylated derivative (\boldsymbol{S})-21: A mixture of vinylated derivative $(S)-\mathbf{2 1}(282 \mathrm{mg}, 1.00 \mathrm{mmol})$ and $10 \% \mathrm{Pd}$ on activated carbon ($20 \mathrm{mg}, 2.0$ $\mathrm{mol} \% \mathrm{Pd}$ loading) in ethanol (10 mL) is stirred under a hydrogen atmosphere (balloon pressure) for 6 hours. Afterwards, the mixture is concentrated under reduced pressure and the concentrate is dissolved in ethyl acetate (20 mL) and is filtered over a bed of celite to get rid of insoluble materials. The celite bed is washed with ethyl acetate ($2 \times 20 \mathrm{~mL}$) and the combined filtrates were concentrated under reduced pressure to yield the reduced product (S) $\mathbf{2 2}$ ($270 \mathrm{mg}, 95 \%$): TLC analysis (ethyl acetate/hexanes 3:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=-5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.36-7.19 ($5 \mathrm{H}, \mathrm{m}$, aryl), 3.92-3.66 ($\left.4 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}^{\prime}\right), 2.29-2.10(2 \mathrm{H}, \mathrm{m}, \mathrm{c}), 1.92-1.76(2 \mathrm{H}$, $\mathrm{m}, \mathrm{f}), 1.56(3 \mathrm{H}, \mathrm{s}, \mathrm{e}), 1.18(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, a or a' $), 1.12(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, a or a'), $0.66(3 \mathrm{H}, \mathrm{t}$, $J=7.4 \mathrm{~Hz}, \mathrm{~g}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.67\left(\mathrm{~d},{ }^{3} J_{C-P}=8 \mathrm{~Hz}\right.$, ipso C of phenyl group), 128.19 (aryl), 126.51 (aryl), 125.98 (aryl), $61.18-61.02$ (m, b+b'), 39.68 (d, ${ }^{1} J_{C-P}=138 \mathrm{~Hz}$, c), $39.66\left(\mathrm{~d},{ }^{2} J_{C-P}=3 \mathrm{~Hz}, \mathrm{~d}\right), 36.88\left(\mathrm{~d},{ }^{3} J_{C-P}=14 \mathrm{~Hz}, \mathrm{f}\right), 24.09\left(\mathrm{~d},{ }^{3} J_{C-P}=4 \mathrm{~Hz}, \mathrm{f}\right), 16.50-16.40(\mathrm{~m}$, a+a'), 8.81 (g) ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.12 \mathrm{ppm}$; IR (neat) 3021 (aromatic C-H), 2915 (aliphatic C-H), 1251 (P=O), 1015 (C-O), 940 (P-O) cm ${ }^{-1}$.

Synthesis of α-hydroxyphosphonate 23: This transformation is carried out with few modifications of the original procedure ${ }^{12}$ reported by Weimer as follows: A solution of the chiral phosphonate (S) - 22 ($213 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00 \mathrm{eq}$) in dry THF (15 mL) is cooled down to $-78^{\circ} \mathrm{C}$ using a dry ice-acetone bath and a solution of $n \mathrm{BuLi}$ in hexanes ($2.5 \mathrm{M} ; 0.6 \mathrm{~mL}, 1.5 \mathrm{mmol}, 2.0 \mathrm{eq}$) is added drop-wise. The resultant mixture is stirred at $-78^{\circ} \mathrm{C}$ for 5 minutes and then the cooling bath is removed and the mixture is stirred at room temperature for an hour. The mixture is recooled to $-78^{\circ} \mathrm{C}$ and a solution of Davis' Oxaziridine ($392 \mathrm{mg}, 1.50 \mathrm{mmol}, 2.00 \mathrm{eq}$) in dry THF (5 mL) is added drop-wise. The resultant mixture is maintained at $-78^{\circ} \mathrm{C}$ for a total of $c a .3$ hours and then quenched with the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (25 mL) at $-78^{\circ} \mathrm{C}$. The resultant frozen mixture is allowed to slowly warm up to room temperature over 1 hour and is then extracted with ethyl acetate ($25 \mathrm{~mL} x 3$). The combined organics are washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. Flash chromatography over silica gel (ethyl acetate/hexanes 6:4) affords the product as an opaque semi-solid material ($186 \mathrm{mg}, 83 \%$; formed as a $\sim 2: 1$ mixture of diastereomers): TLC analysis (ethyl acetate/hexanes $6: 4$) $\mathrm{R}_{f}=0.5 ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.23(5 \mathrm{H}, \mathrm{m}$, aryl), 4.10-3.75 ($5 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}+\mathrm{c}), 2.11-2.07(1 \mathrm{H}, \mathrm{m}$, f), 2.00-1.97 ($1 \mathrm{H}, \mathrm{m}, \mathrm{f}$), $1.57(0.9 \mathrm{H}, \mathrm{s}$, e (minor diastereomer)), $1.53(2.1 \mathrm{H}$, s, e (major
diastereomer)), $1.30(0.98 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, a or a' (minor diastereomer)), $1.21(0.89 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, a or a' (minor diastereomer)), $1.17(2.01 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, a or a' (major diastereomer) $), 1.11(1.99 \mathrm{H}$, $\mathrm{t}, J=7.0 \mathrm{~Hz}$, a or a' (major diastereomer)), 0.70-0.66 (3H, m, g) ppm; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 143.57\left(\mathrm{~d},{ }^{3} J_{C-P}=10 \mathrm{~Hz}\right.$, ipso C of aromatic ring (minor diastereomer)), 143.28 (d, ${ }^{3} J_{C-P}=10$ Hz , ipso C of aromatic ring (major diastereomer)), 128.43 (meta C's of aromatic ring (minor diastereomer)), 128.20 (meta C's of aromatic ring (major diastereomer)), 127.74 (ortho C's of aromatic ring (major diastereomer)), 127.66 (ortho C's of aromatic ring (minor diastereomer)), 126.61 (para C of aromatic ring (minor diastereomer)), 126.46 (para C of aromatic ring (major diastereomer)), 76.93 (d, ${ }^{1} J_{C-P}=155 \mathrm{~Hz}$, c (major diastereomer)), 76.66 (d, ${ }^{1} J_{C-P}=155 \mathrm{~Hz}, \mathrm{c}$ (minor diastereomer)), 62.43 (d, ${ }^{2} J_{C-P}=7 \mathrm{~Hz}$, b or b^{\prime} (minor diastereomer)), $62.43\left(\mathrm{~d},{ }^{2} J_{C-P}=7 \mathrm{~Hz}, \mathrm{~b}\right.$ or b' (major diastereomer)), 62.27 (d, ${ }^{2} J_{C-P}=8 \mathrm{~Hz}$, b or b' (minor diastereomer)), 62.19 (d, ${ }^{2} J_{C-P}=6 \mathrm{~Hz}$, b or b' (major diastereomer)), 31.26-31.18 (m, f), 19.27 (d, ${ }^{3} J_{C-P}=3 \mathrm{~Hz}$, e (minor diastereomer)), 18.76 (d, ${ }^{3} J_{C-P}=3 \mathrm{~Hz}$, e (major diastereomer)), 16.62 ($\mathrm{d},{ }^{3} J_{C-P}=6 \mathrm{~Hz}$, a or a' (minor diastereomer)), $16.56\left(\mathrm{~d},{ }^{3} J_{C-P}=6 \mathrm{~Hz}\right.$, a or a^{\prime} (minor diastereomer)), $16.48\left(\mathrm{~d},{ }^{3} J_{C-P}=6 \mathrm{~Hz}\right.$, a or a^{\prime} (major diastereomer)), 16.41 (d, ${ }^{3} J_{C-P}=6 \mathrm{~Hz}$, a or a' (major diastereomer)), 8.41 (g , minor diastereomer), 8.29 (g , major diastereomer) ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.43$ (67%, major diastereomer), 23.32 (33%, minor diastereomer) ppm; IR (neat) 3256 (O-H), 2971 (aromatic CH), 2906 (aliphatic C-H), 1212 ($\mathrm{P}=\mathrm{O}$), 1026 (C-O), 975 (P-O), $699 \mathrm{~cm}^{-1}$.

Synthesis of aldehyde (\boldsymbol{S})-24 from $\boldsymbol{\alpha}$-hydroxyphosphonate 23: ${ }^{11}$ This transformation is carried out with some modifications of the original procedure ${ }^{13}$ reported by Spilling and coworkers as follows: A stirred suspension of hydroxyphosphonate $23(60 \mathrm{mg}, 0.2 \mathrm{mmol}, 1 \mathrm{eq})$ and sodium bicarbonate ($84 \mathrm{mg}, 1.0 \mathrm{mmol}, 5 \mathrm{eq}$) in $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ is refluxed for 1 hour. Following this, the mixture is diluted with ethyl acetate (25 mL) and the aqueous layer separated. The organic layer is washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum to afford pure aldehyde (S)-24 (29 mg, 89\%): TLC analysis (ethyl acetate/hexanes 1:40) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+9.2^{\circ}$ $\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.54(1 \mathrm{H}, \mathrm{s}$, aldehyde H$), 7.42-7.27(5 \mathrm{H}, \mathrm{m}$, aryl), 2.07-1.88 ($2 \mathrm{H}, \mathrm{m}, \mathrm{d}$), $1.46(3 \mathrm{H}, \mathrm{s}, \mathrm{c}), 0.82(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{e}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.91$ (a), 140.14 (aryl), 128.98 (aryl), 127.39 (aryl), 127.33 (aryl), 54.47 (b), 28.73 (d), 18.45 (c), 8.56 (e) ppm; IR (neat) 3057 (aldehyde C-H), 2968 (aromatic C-H), 2936 (aliphatic C-H), $1722(\mathrm{C}=\mathrm{O}), 1494$ (aromatic $\mathrm{C}=\mathrm{C}$), 1446 (aromatic $\mathrm{C}=\mathrm{C}$) cm^{-1}. Upon reduction with NaBH_{4} in MeOH , aldehyde (S) $\mathbf{- 2 4}$ is transformed to the alcohol $(S)-(+)-\mathbf{2 6}$ (vide infra), which unambiguously confirmed its absolute configuration to be " S " based on the positive value of the optical rotation of (S)-(+)-26. The formed alcohol (S)-26 was derivatized using (S)-(-)- α-methoxy-α-(trifluoromethyl) phenylacetyl chloride to obtain the corresponding ester, the ${ }^{19} \mathrm{~F}$-NMR of which yielded a dr of 97:3. Enantiomer ratio of aldehyde (S)-24 also determined via chiral HPLC analysis of the formed alcohol (upon reduction using NaBH_{4}): 95:5 er (vide infra).

Synthesis of $\boldsymbol{\alpha}$-oxophosphonate (S)-25: A suspension of hydroxyphosphonate 23 ($60 \mathrm{mg}, 0.2$ $\mathrm{mmol}, 1 \mathrm{eq})$ and Dess-Martin Periodinane ($170 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$) in dichloromethane (5 mL) is stirred at room temperature for 3 hours. The completion of the reaction is indicated by the disappearance of the diastereomeric hydroxyphosphonate peaks at $\sim 25 \mathrm{ppm}$ and appearance of a new peak at -3 ppm indicative of the presence of oxophosphonate in the reaction mixture. The mixture is diluted with ethyl acetate (25 mL), washed with saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$ and brine (5 mL). The resultant organic extract is dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. Flash chromatography on silica gel (ethyl acetate/hexanes $1: 1$) affords the desired product (S) $\mathbf{- 2 5}$ as a colorless viscous oil ($55 \mathrm{mg}, 92 \%$) : TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+54.8^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.36-7.22 (5H, m, aryl), 3.94-3.72 (4H, m, b+b'), 2.17-1.96 ($2 \mathrm{H}, \mathrm{m}, \mathrm{f}$), $1.60(3 \mathrm{H}, \mathrm{s}, \mathrm{e}), 1.13(6 \mathrm{H}$, $\mathrm{m}, \mathrm{a}+\mathrm{a}$), $0.75(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{~g}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.14\left(\mathrm{~d},{ }^{1} J_{C-P}=155\right.$ Hz, c), 139.44 (aryl), 128.73 (aryl), 127.50 (aryl), 127.37 (aryl), 63.48-63.23 (m, b+b'), 57.41 (d, $\left.{ }^{2} J_{C-P}=51 \mathrm{~Hz}, \mathrm{~d}\right), 29.49$ (f), 19.31 (e), 16.29 (dd, ${ }^{3} J_{C-P}=5 \mathrm{~Hz}, \mathrm{a}+\mathrm{a}$), 8.49 (g) ppm; ${ }^{31} \mathrm{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.21 \mathrm{ppm}$; IR (neat) 2878 (aromatic C-H), 2936 (aliphatic C-H), 1678 (C=O), 1496 (aromatic $\mathrm{C}=\mathrm{C}$), 1446 (aromatic $\mathrm{C}=\mathrm{C}$), 1255 ($\mathrm{P}=\mathrm{O}$), 1014 (C-O), 967 ($\mathrm{P}-\mathrm{O}$) cm^{-1}. HRMS (EI) calculated for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{P}=298.1334$, found $298.1329 \mathrm{~m} / \mathrm{z}$.

Synthesis of oxophosphonate ($\mathbf{\pm}$)-25: To a solution of (\pm)-2-methyl-2-phenylbutanoic acid (1.00 $\mathrm{g}, 5.61 \mathrm{mmol}, 1.00$ eq.) in dry dichloromethane $(10 \mathrm{~mL})$ is added oxalyl chloride ($0.72 \mathrm{~mL}, 8.42$ mmol, 1.5 eq.) dropwise at $0^{\circ} \mathrm{C}$. After complete addition of oxalyl chloride, a drop of DMF is added and the reaction mixture is stirred at room temperature for a total of 2 hours. Following this, the reaction mixture is concentrated in vacuum to get rid of the volatiles and the concentrate is dissolved in dry dichloromethane (10 mL). Triethylphosphite ($0.96 \mathrm{~mL}, 5.61 \mathrm{mmol}, 1.50 \mathrm{eq}$) is added drop-wise to the solution of the intermediate acyl chloride in dichloromethane at room temperature. ${ }^{14}$ The completion of the reaction (ca. 1 hour) is determined by the ${ }^{31} \mathrm{P}$ NMR analysis of the crude reaction mixture following disappearance of the triethylphosphite peak at $\sim 130 \mathrm{ppm}$ and appearance of a new peak at -3 ppm corresponding to the oxophosphonate product. Afterwards the reaction mixture is concentrated under reduced pressure. Flash chromatography on silica gel (ethyl acetate/hexanes $1: 1$) affords the desired product (\pm) - $\mathbf{2 5}$ as a colorless viscous oil (1.49 g , 89\%).

Synthesis of alcohol (S)-26: ${ }^{11}$ This transformation is carried out with some modifications of the original reported procedure ${ }^{15}$ by Yamamoto and coworkers as follows: To a solution of acylphosphonate $(S)-\mathbf{2 5}(60 \mathrm{mg}, 0.2 \mathrm{mmol}, 1 \mathrm{eq})$ in THF $(2 \mathrm{~mL})$ is added lithium aluminum hydride ($30 \mathrm{mg}, 0.8 \mathrm{mmol}, 4 \mathrm{eq}$) at $0^{\circ} \mathrm{C}$. The resultant mixture is stirred for 2 hours at room temperature. The disappearance of the peak corresponding to oxo-phosphonate in crude ${ }^{31} \mathrm{P}$ NMR ($\sim-3 \mathrm{ppm}$) is indicative of reaction completion. The reaction mixture is cooled down to $0^{\circ} \mathrm{C}$ and is quenched with the addition of 2 M HCl till pH 2 . The resultant mixture is extracted with diethyl ether (3 mL $x 4$), the combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum to yield the desired product (S) $\mathbf{- 2 6}(29 \mathrm{mg}, 89 \%$) as a colorless oil: TLC analysis (ethyl acetate/hexanes 2:8) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+8.8^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-$ $7.35(4 \mathrm{H}, \mathrm{m}$, aryl), $7.28-7.22(1 \mathrm{H}, \mathrm{m}$, aryl), $3.75(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}, \mathrm{a}), 3.57(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}$, a), $1.89-1.80(1 \mathrm{H}, \mathrm{m}, \mathrm{d}), 1.64-1.55(1 \mathrm{H}, \mathrm{m}, \mathrm{d}), 1.37(3 \mathrm{H}, \mathrm{s}, \mathrm{c}), 1.29(1 \mathrm{H}, \mathrm{br}$ s, OH$), 0.75(3 \mathrm{H}, \mathrm{t}, J$ $=7.4 \mathrm{~Hz}, \mathrm{e}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 144.78$ (aryl), 128.62 (aryl), 127.04 (aryl), 126.30 (aryl), 72.59 (a), 43.89 (b), 31.07 (d), 21.14 (c), 8.42 (e) ppm; IR (neat) 3300 (O-H), 2920 (aromatic C-H), 2851 (aliphatic C-H), 1495 (aromatic C=C), 1463 (aromatic $\mathrm{C}=\mathrm{C}$), $1034,756 \mathrm{~cm}^{-1}$. The above alcohol (S)-26 was derivatized using (S)-(-)- α-methoxy- α-(trifluoromethyl) phenylacetyl chloride to obtain the corresponding ester, the ${ }^{19} \mathrm{~F}$-NMR of which yielded a dr of 97:3 (See spectra in SI-2). Enantiomer ratio also determined by chiral HPLC analysis: 95:5. HPLC conditions: ${ }^{11}$ Stationary phase $=$ CHIRALPAK IB; Mobile Phase $=$ 99.5:0.5 Hexanes:Isopropanol; Flow rate $=$ $0.5 \mathrm{~mL} / \mathrm{min}$; HPLC UV detector $\lambda=210 \mathrm{~nm}$, rt. HPLC traces:
(a) Racemate:

(b) R:S = 5:95. CAHB of 5a with $(R, R)-\mathbf{T} \mathbf{2}$, followed by transformations to yield $(S) \mathbf{- 2 6}$.

(S)-25
(S)-27

Synthesis of ethyl ester (\boldsymbol{S})-27: This transformation is carried out with some modifications of the original procedure ${ }^{14}$ reported by Yamamoto and coworkers as follows: To a solution of acylphosphonate $(S)-\mathbf{2 5}(60 \mathrm{mg}, 0.2 \mathrm{mmol}, 1 \mathrm{eq})$ in anhydrous ethanol (1 mL), DBU ($30 \mu \mathrm{~L}, 0.2$ $\mathrm{mmol}, 1 \mathrm{eq}$) is added at room temperature. The completion of the reaction ($c a .30 \mathrm{~min}$) is indicated by the disappearance of the oxophosphonate peak at -3 ppm and appearance of the diethylphosphite peak at $\sim 8 \mathrm{ppm}$. The reaction mixture is concentrated under reduced pressure and is dissolved in 10% ethyl acetate in hexanes (2 mL) and is filtered over a small plug of silica gel. The plug is subsequently washed with 2 more portions of the eluent (2 mL each time) and the combined filtrates are concentrated under reduced pressure to afford the ethyl ester (S) - $\mathbf{2 7}$ as a colorless oil (39 mg, 95\%): TLC analysis (ethyl acetate/hexanes 1:20) $\mathrm{R}_{f}=0.6 ;[\alpha]_{\mathrm{D}}{ }^{20}=+6.1^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.22(5 \mathrm{H}, \mathrm{m}, \operatorname{aryl}), 4.16(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{~b}), 2.18-2.09(1 \mathrm{H}$, $\mathrm{m}, \mathrm{f}), 2.02-1.93(1 \mathrm{H}, \mathrm{m}, \mathrm{f}), 1.55(3 \mathrm{H}, \mathrm{s}, \mathrm{e}), 1.21(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{a}), 0.86(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{~g})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.43$ (c), 144.24 (aryl), 128.45 (aryl), 126.70 (aryl), 126.23 (aryl), 60.83 (b), 50.75 (d), 31.98 (f), 22.42 (e), 14.28 (a), 9.33 (g) ppm; IR (neat) 2975 (aromatic C-H), 2938 (aliphatic C-H), 1724 (C=O), 1496 (aromatic $\mathrm{C}=\mathrm{C}$), 1446 (aromatic $\mathrm{C}=\mathrm{C}$), 1031 (CO) cm^{-1}. Ester $(S)-27$ is transformed to the carboxylic acid (S)-29 (vide infra) via hydrolysis using LiOH in $\mathrm{H}_{2} \mathrm{O}$. The formed carboxylic acid was derivatized to the L-phenyl-alanine ethyl ester derivative and the dr of the same was found to be $96: 4$ via ${ }^{1} \mathrm{H}$ NMR analysis. Therefore, er of ethyl ester $(S) \mathbf{- 2 7}=96: 4$.

Synthesis of acetamide (\boldsymbol{S})-28: ${ }^{16}$ This transformation is carried out with some modifications of the original reported procedure ${ }^{17}$ by Liu and Feng as follows: To a solution of acylphosphonate $(S)-\mathbf{2 5}(45 \mathrm{mg}, 0.15 \mathrm{mmol}, 1 \mathrm{eq})$ in THF $(1 \mathrm{~mL})$ is added NH_{3} solution in $\mathrm{H}_{2} \mathrm{O}(32 \%, 3 \mathrm{~mL})$ under
stirring. To the resultant mixture is added tetrabutylammonium bromide (TBABr; $4.8 \mathrm{mg}, 15 \mu \mathrm{~mol}$, $0.1 \mathrm{eq})$ and the reaction mixture is stirred at room temperature for 9 hours. Afterwards, the mixture is subjected to high vacuum to get rid of ammonia and the resultant mixture is extracted with ethyl acetate ($5 \mathrm{~mL} x 3$). The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. Flash chromatography over silica gel (ethyl acetate/hexanes 1:1) affords the desired product $(S)-\mathbf{2 8}(23 \mathrm{mg}, 85 \%)$ as colorless waxy solid: TLC analysis (ethyl acetate/hexanes 1:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+14^{\circ}\left(c=1.0, \mathrm{C}_{6} \mathrm{H}_{6}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-$ $7.22\left(5 \mathrm{H}, \mathrm{m}\right.$, aryl), $6.14\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{\mathrm{a}}\right.$ or $\left.\mathrm{NH}_{\mathrm{b}}\right), 5.25\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{\mathrm{a}}\right.$ or $\left.\mathrm{NH}_{\mathrm{b}}\right), 2.11-1.97(2 \mathrm{H}, \mathrm{m}$, d), $1.53(3 \mathrm{H}, \mathrm{s}, \mathrm{c}), 0.82(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{e}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.06$ (a), 144.07 (aryl), 128.73 (aryl), 127.03 (aryl), 126.90 (aryl), 50.83 (b), 31.57 (d), 23.19 (c), 8.94 (e) ppm; IR (neat) $3400(\mathrm{~N}-\mathrm{H}), 3203(\mathrm{~N}-\mathrm{H}), 2982$ (aromatic C-H), 2969 (aliphatic C-H), 1648 (C=O), 1494 (aromatic C=C), 1459 (aromatic $C=C$), 1363, $694 \mathrm{~cm}^{-1}$. Enantiomer ratio $=97: 3$, determined by chiral HPLC analysis: Stationary phase $=$ CHIRALPAK AS-H; Mobile Phase $=60: 40$ Hexanes:Isopropanol; Flow rate $=1.25 \mathrm{~mL} / \mathrm{min}$; HPLC UV detector $\lambda=210 \mathrm{~nm}$, rt. HPLC traces:
(a) Racemate

(b) $\mathrm{R}: \mathrm{S}=3: 97$. CAHB of $\mathbf{5 a}$ with (R, R) - $\mathbf{T} \mathbf{2}$, followed by transformations to yield 28.

Synthesis of carboxylic acid (S)-(+)-29: ${ }^{18}$ This transformation is carried out with some modifications of the original procedure ${ }^{14}$ reported by Yamamoto and coworkers as follows: To a solution of acylphosphonate $(S)-25(60 \mathrm{mg}, 0.2 \mathrm{mmol}, 1 \mathrm{eq})$ in tetrahydrofuran $(0.5 \mathrm{~mL}), 2 \mathrm{M}$ aqueous NaOH solution ($0.5 \mathrm{~mL}, 1 \mathrm{mmol}, 5$ eq.) is added and the resultant biphasic mixture is stirred for 3 hours at room temperature. The completion of the reaction is indicated by the disappearance of the oxophosphonate peak at -3 ppm and appearance of the diethylphosphite peak at $\sim 8 \mathrm{ppm}$. Afterwards, the reaction mixture is acidified to pH 1 using 2 N HCl and the resultant mixture is extracted with dichloromethane ($10 \mathrm{~mL} \times 3$). The combined organic extracts are washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum to afford pure carboxylic acid (S)-29 (32.5 mg, 91\%): TLC analysis (ethyl acetate/hexanes 2:8) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+10.2^{\circ}(c=1.0$,
CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 12.37(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{COOH}), 7.34-7.20(5 \mathrm{H}, \mathrm{m}$, aryl $)$, 2.03$1.84(2 \mathrm{H}, \mathrm{m}, \mathrm{d}), 1.43(3 \mathrm{H}, \mathrm{s}, \mathrm{c}), 0.78(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{e}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$) $\delta 177.15(\mathrm{COOH}), 144.29$ (aryl), 126.41 (aryl), 126.02 (aryl), 49.90 (b), 31.37 (d), 22.16 (c), 9.23 (e) ppm; IR (neat) 3200 (br, O-H), 2976 (aromatic C-H), 2941 (aliphatic C-H), 1690 (C=O), 1495 (aromatic $\mathrm{C}=\mathrm{C}$), 1445 (aromatic $\mathrm{C}=\mathrm{C}$), $1155(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$. The above carboxylic acid, $(S)-29$ is transformed into the amino acid derivative 37 and the dr (96:4) is determined via ${ }^{1} \mathrm{H}$ NMR analysis. Therefore, er of the carboxylic acid $(S) \mathbf{- 2 9}=96: 4$.

Synthesis of the amino acid derivative 37: To a stirred solution of the carboxylic acid (S)-29 (36 $\mathrm{mg}, 0.2 \mathrm{mmol}, 1 \mathrm{eq}$) in dry dichloromethane (2 mL), oxalyl chloride ($34 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$) is added followed by a drop of dry DMF at $0^{\circ} \mathrm{C}$. The mixture is allowed to warm up to room temperature and stirred for a total of 2 hours. Afterwards, the mixture is concentrated under high vacuum and the resultant residue is dissolved in dry dichloromethane (1 mL). A solution of Lphenylalanine ethyl ester ($77 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$) in dry dichloromethane (1 mL) is added dropwise to the mixture mixture. Following that, triethylamine ($70 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}$) is added and the resultant mixture is stirred for 2 hours at room temperature. The reaction mixture is concentrated in high vacuum and flash chromatography on silica gel (ethyl acetate/hexanes 1:9) results in the pure product 37 as a sticky waxy liquid ($64 \mathrm{mg}, 90 \%$): TLC analysis (ethyl acetate/hexanes 1:9) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+32^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-$ $7.18(8 \mathrm{H}, \mathrm{m}$, aryl), 6.89-6.86 ($2 \mathrm{H}, \mathrm{m}$, aryl), $5.58(1 \mathrm{H}, \mathrm{t}, J=9.0 \mathrm{~Hz}, \mathrm{NH}), 4.86-4.82(1 \mathrm{H}, \mathrm{m}, \mathrm{d})$, $4.13(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{~b}), 3.03-2.96(2 \mathrm{H}, \mathrm{m}, \mathrm{e}), 2.05-1.99(2 \mathrm{H}, \mathrm{m}, \mathrm{i}), 1.50(0.12 \mathrm{H}, \mathrm{s}, \mathrm{h}$ (minor diastereomer, 4%)), $1.46(2.88 \mathrm{H}, \mathrm{s}, \mathrm{h}$ (major diastereomer, $96 \%)$), $1.23(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{a}), 0.81$ $(2.89 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{j}$ (major diastereomer, 96%)), $0.70(0.11 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{j}$ (minor diastereomer, 4\%)) ppm; ${ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.56$ (f), 171.65 (c), 143.73 (aryl), 136.04 (aryl), 129.34 (aryl), 128.83 (aryl), 128.66 (aryl), 127.11 (aryl), 61.55 (b), 53.06 (d), 50.92 (g), 37.96 (e), 31.42 (i), 23.20 (h), 14.29 (a), 8.93 (j) ppm; IR (neat) 3359 (amide N-H), 2973 (aromatic C-H), 2879 (aliphatic $\mathrm{C}-\mathrm{H}$), 1735 (ester $\mathrm{C}=\mathrm{O}$), 1660 (amide $\mathrm{C}=\mathrm{O}$), 1495 (aromatic $\mathrm{C}=\mathrm{C}$), 1445 (aromatic $\mathrm{C}=\mathrm{C}$) cm^{-1}. The ${ }^{1} \mathrm{H}$ NMR analysis provided the dr to be 96:4.

Synthesis of the aryl ketone (S)-30: ${ }^{19}$ This transformation is carried out with some modifications of the original reported procedure ${ }^{20}$ by Maeda et. al. as follows: To a suspension of magnesium turnings ($11 \mathrm{mg}, 0.46 \mathrm{mmol}$) in dry THF (1.5 mL) under a nitrogen atmosphere was added bromobenzene ($47 \mu \mathrm{~L}, 0.45 \mathrm{mmol}, 3 \mathrm{eq}$) and the resultant mixture was refluxed for a total of 2 hours until the solution turned brown and all of the magnesium dissolved. The resultant Grignard reagent is cooled down to room temperature and then to $-78^{\circ} \mathrm{C}$ using a dry ice-acetone bath. A
solution of acylphosphonate $(S)-\mathbf{2 5}(45 \mathrm{mg}, 0.15 \mathrm{mmol}, 1 \mathrm{eq})$ in dry THF $(0.75 \mathrm{~mL})$ is added to the reaction mixture and the resultant mixture is stirred at $-78^{\circ} \mathrm{C}$ for 15 minutes. Following this, the reaction mixture is acidified to pH 1 using 1 N HCl and the resultant mixture is extracted with dichloromethane ($25 \mathrm{~mL} \times 3$). The combined organic extracts are dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The resultant residue is dissolved in THF (1 mL) and a 2 N solution of $\mathrm{NaOH}(0.5 \mathrm{~mL})$ is added drop-wise. The resultant mixture is stirred for 1 hour. Afterwards, the mixture is extracted with diethyl ether $(10 \mathrm{~mL} \times 3)$ and the combined organics were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum to afford pure phenyl ketone (S) - $\mathbf{3 0}(28 \mathrm{mg}$, 78%): TLC analysis (ethyl acetate/hexanes 1:49) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+37^{\circ}\left(c=1.0, \mathrm{C}_{6} \mathrm{H}_{6}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.21(10 \mathrm{H}, \mathrm{m}$, aryl), $2.24-2.05(2 \mathrm{H}, \mathrm{m}, \mathrm{d}), 1.58(3 \mathrm{H}, \mathrm{s}, \mathrm{c}), 0.77(3 \mathrm{H}, \mathrm{t}, J$ $=7.4 \mathrm{~Hz}, \mathrm{e}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.00$ (a), 144.56 (aryl), 137.15 (aryl), 131.72 (aryl), 129.63 (aryl), 129.08 (aryl), 128.10 (aryl), 126.95 (aryl), 126.48 (aryl), 55.16 (b), 32.27 (d), 23.92 (c), 8.83 (e) ppm; IR (neat) 3059 (aromatic C-H), 2971 (aliphatic C-H), 1674 (C=O), 1495 (aromatic $\mathrm{C}=\mathrm{C}$), 1445 (aromatic $\mathrm{C}=\mathrm{C}$), 1232, $907 \mathrm{~cm}^{-1}$.

(9) Absolute configuration assignments

9.1 CAHB of conjugated methylidene substrate 5a

9.1.1 Absolute configuration assignment of the major regioisomer: tertiary boronic ester 6a:

The configurations of all other chiral tertiary benzylic boronic esters derived from conjugated methylidene substrates are assigned based on the following. CAHB of phenyl-substituted methylidene substrate 5a with (R, R) - $\mathbf{T 2}$ results in the formation of chiral tertiary benzylic boronic ester 6a as the major product. The latter is protodeboronated to $\mathbf{1 9}$ (see GP6) using conditions reported by Aggarwal ${ }^{8}$ giving the corresponding chiral reduced product whose configuration is assigned " R " based on the positive value of its optical rotation for this previously reported compound. ${ }^{21}$ Since protodeboronation of chiral tertiary benzylic boronic esters proceeds with retention of stereochemistry, the chiral boronic ester 6a derived from CAHB with (R, R)-T2 is assigned as " R ", the result of B-H addition to the top-face of the alkene in the perspective drawn.

The assigned absolute configuration is further supported by conversion of $(R) \mathbf{- 6 a}$ to (S) - $\mathbf{2 1}$ setting the all-carbon quaternary carbon stereocenter with retention of stereochemistry; the details are described above. [Note: Aggarwal ${ }^{11}$ has shown that chiral tertiary boronic esters undergo vinylation reaction with stereoretention]. Hydrogenation to $(S)-\mathbf{2 2}$ sets the stage for conversions to the known alcohol $(S)-(+)-26$, carboxylic acid $(S)-(+)-29$ and ketone $(S)-(+)-\mathbf{3 0}$, each of which gives the expected (+) sign of optical rotation. However, the literature indicates that aldehyde (S) 24 and amide $(S)-\mathbf{2 8}$ should have the $(-)$ sign of rotation which we believe is incorrect. We find $(+)$-rotations for each, and furthermore, NaBH_{4} reduction of our (+)-24 affords ($(S)-(+)$-26.
9.1.2 Absolute configuration assignment of minor regioisomer: primary boronic ester 6a':

5a

(S, S)-T2

CAHB of the conjugated methylidene substrate $\mathbf{5 a}$ also gives a small amount of the chiral primary boronic ester $\mathbf{6 a}^{\mathbf{\prime}}$ as a minor product. For mechanistic interest and to compare to other directedCAHBs, we proved the stereochemistry of the major enantiomer of $\mathbf{6 a}$ ' that is formed. Oxidation of 6a' resulted in the formation of chiral γ-hydroxy phosphonate $\mathbf{4 0} ;(R, R)$ - $\mathbf{T 2}$ gives the S -isomer and (S, S) - $\mathbf{T} 2$ gives the R -isomer. To establish those assignments, $(R)-\mathbf{4 0}$ was synthesized using the Evans' chiral auxillary for asymmetric alkylation to establish the stereochemistry. The oxazolidinone derivative $\mathbf{3 8}$ was prepared according to literature procedure. ${ }^{22}$ Reduction of the oxazolidinone derivative $\mathbf{3 8}$ using LiAlH_{4} in THF afforded the chiral alcohol (S)-39; the negative value of its optical rotation confirms the absolute configuration. ${ }^{18}$ Sequential bromination $\left(\mathrm{PPh}_{3} / \mathrm{NBS}\right)$, Michaelis-Arbuzov rearrangement (GP1) and benzyl-ether cleavage $\left(\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}\right)$ afforded the enantiopure chiral γ-hydroxy phosphonate (R)-40. As illustrated above, analysis of the chiral HPLC traces and optical rotations revealed that the chiral γ-hydroxy phosphonate (R) 40 obtained via asymmetric alkylation is the enantiomer of the minor product obtained from CAHB of 5a using (R, R)-T2 followed by oxidation. (S) - $\mathbf{4 0}$ arises from the B-H addition to the "top-face" of the alkene $\mathbf{5 a}$ in the perspective drawn.

Characterization Data:

To a solution of oxazolidinone derivative 38 ($623 \mathrm{mg}, 1.50 \mathrm{mmol}, 1.00 \mathrm{eq}$) in dry THF (15 mL) at $0^{\circ} \mathrm{C}$ was added $\mathrm{LiAlH}_{4}(230 \mathrm{mg}, 6.00 \mathrm{mmol}, 4.00 \mathrm{eq})$ slowly and the resultant mixture was stirred vigorously for 1 hour. Afterwards, the reaction mixture was carefully quenched with the addition
of ethyl acetate (20 mL) and water (2 mL) and the resultant mixture was filtered over a small pad of silica gel and the silica pad was washed with ethyl acetate (20 mL). The combined filtrates were concentrated under reduced pressure. Flash chromatography over silica gel (ethyl acetate/hexanes 1:3) afforded the alcohol (S)-39 (309 mg, 85\%) as a colorless oil: TLC analysis (ethyl acetate/hexanes 1:3) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=-35^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-$ $7.24(10 \mathrm{H}, \mathrm{m}), 4.59(2 \mathrm{H}, \mathrm{s}), 4.07-4.02(1 \mathrm{H}, \mathrm{m}), 3.93-3.79(3 \mathrm{H}, \mathrm{m}), 3.28-3.22(1 \mathrm{H}, \mathrm{m}), 2.47(1 \mathrm{H}$, br d, $J=9.6 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.77,138.05,128.86,128.69,128.20$, 127.99, 127.87, 127.28, 73.88, 73.66, 66.75, 48.01 ppm ; IR (neat) 3396 (O-H), 3028 ($\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 2863 ($\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 1495 (aromatic $\mathrm{C}=\mathrm{C}$), 1452 (aromatic $\mathrm{C}=\mathrm{C}$), 1363, 1075 (C-O), 1027 (C-O), 735, $696 \mathrm{~cm}^{-1}$.

To a solution of the alcohol $(S) \mathbf{- 3 9}(242 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00 \mathrm{eq})$ in dry dichloromethane (10 mL) at $0^{\circ} \mathrm{C}$ was added $\mathrm{PPh}_{3}(393 \mathrm{mg}, 1.50 \mathrm{mmol}, 1.5 \mathrm{eq})$ and NBS $(267 \mathrm{mg}, 1.50 \mathrm{mmol}, 1.5 \mathrm{eq})$. The resultant mixture was stirred for 1 hour when TLC (ethyl acetate/hexanes $1: 3$) indicated complete consumption of starting material. The solvent was evaporated under reduced pressure and to the residue was added 20% ethyl acetate in hexanes. The resultant mixture was filtered over a small bed of silica gel and the bed was further washed with more 20% ethyl acetate in hexanes (40 mL total). The combined filtrates were concentrated under reduced pressure. The resultant residue was refluxed with triethylphosphite $(0.51 \mathrm{~mL})$ under a nitrogen atmosphere for 6 hours. Following the Arbuzov rearrangement (crude NMR analysis: appearance of a phosphonate peak at $\sim 31 \mathrm{ppm}$), excess triethylphosphite was distilled off in the Kugelrohr. A mixture of the resultant residue and $10 \% \mathrm{Pd}$ on activated carbon ($40 \mathrm{mg}, 4.0 \mathrm{~mol} \%$ Pd-loading) in ethanol (10 mL) is stirred under a hydrogen atmosphere (balloon pressure) for 6 hours. Afterwards, the mixture was filtered and concentrated under reduced pressure. Flash chromatography over silica gel (ethyl acetate/methanol 24:1) afforded the phosphonate $(R)-40$ as a colorless viscous oil ($169 \mathrm{mg}, 62 \%$ overall): TLC analysis (ethyl acetate/methanol 24:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=-22^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.33-7.21 (5H, m, aryl), 4.06-3.88 (4H, m, b+b'), 3.82-3.73 ($2 \mathrm{H}, \mathrm{m}, \mathrm{e}$), $3.48(1 \mathrm{H}, \mathrm{br}$ s, $\mathrm{OH}), 3.27-3.18(1 \mathrm{H}, \mathrm{m}, \mathrm{d}), 2.38-2.28(1 \mathrm{H}, \mathrm{m}, \mathrm{c}(1 \mathrm{H})), 2.14-2.00(1 \mathrm{H}, \mathrm{m}, \mathrm{c}(1 \mathrm{H})), 1.23(3 \mathrm{H}, \mathrm{t}, J=$ 7.0 Hz , a or a'), $1.21\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.34(\mathrm{~d}$, $\left.{ }^{3} J_{C-P}=11 \mathrm{~Hz}, \mathrm{f}\right), 128.75\left(\mathrm{~g}\right.$ or h), $127.73\left(\mathrm{~g}\right.$ or h), 127.10 (i), $67.65\left(\mathrm{~d},{ }^{3} J_{C-P}=10.25 \mathrm{~Hz}, \mathrm{e}\right), 61.91$ $\left(\mathrm{d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), $61.79\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), $43.12\left(\mathrm{~d},{ }^{2} J_{C-P}=3.0 \mathrm{~Hz}, \mathrm{~d}\right), 29.36(\mathrm{~d}$, $\left.{ }^{1} J_{C-P}=140 \mathrm{~Hz}, \mathrm{c}\right), 16.42\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}, \mathrm{a}+\mathrm{a}^{\prime}\right) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.38 \mathrm{ppm}$; IR (neat) $3372(\mathrm{O}-\mathrm{H}), 2981\left(\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}\right), 2906\left(\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1453$ (aromatic $\mathrm{C}=\mathrm{C}$), 1391 (aromatic $\mathrm{C}=\mathrm{C}$), 1222 ($\mathrm{P}=\mathrm{O}$), 1051 (C-O), 1019 (C-O), 957 (P-O), $699 \mathrm{~cm}^{-1}$.

Obtaining $\boldsymbol{\gamma}$-hydroxyphosphonate 40 from alkene substrate 5a: Substrate 5a ($1.02 \mathrm{~g}, 4.00$ mmol) was subjected to CAHB according to GP3. After purification of the major product (tertiary boronic ester 6a), the minor regioisomer 6a' and the reduced product 6a" were flushed out of the silica packed column with methanol, the mixture is concentrated under reduced pressure and is subjected to oxidation following GP5. Afterwards, the mixture was extracted with ethyl acetate ($20 \mathrm{~mL} \mathrm{x} \mathrm{5)} \mathrm{and} \mathrm{the} \mathrm{combined} \mathrm{extracts} \mathrm{were} \mathrm{concentrated} \mathrm{under} \mathrm{reduced} \mathrm{pressure}$. chromatography over silica gel (ethyl acetate/methanol 24:1) afforded the hydroxy phosphonate 40 as a colorless viscous oil ($109 \mathrm{mg}, 10 \%$ overall from the hydroboration/oxidation sequence).

Enantiomer ratio is determined by chiral HPLC analysis: Stationary phase $=$ CHIRALPAK AD; Mobile Phase $=90: 10$ Hexanes:Isopropanol; Flow rate $=1 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\lambda=210$ nm, rt. HPLC traces:
(a) $\mathrm{R}: \mathrm{S}=11: 89, \mathrm{CAHB}$ of $\mathbf{5 a}$ with $(R, R)-\mathbf{T} \mathbf{2}$ to form $(R)-6 a^{\prime}$, then oxidation to yield 40.

(b) $\mathrm{R}: \mathrm{S}=87: 13$, CAHB of $\mathbf{5 a}$ with $(S, S)-\mathbf{T 2}$ to form $(S)-6 \mathbf{a}^{\prime}$, then oxidation to yield 40.

(c) $\mathrm{R}: \mathrm{S}=93: 7,40$ (enriched with " R " enantiomer) obtained via chiral auxillary sequence.

9.2 CAHB of conjugated methylidene substrate 5 n bearing an ortho-methylphenyl group:

CAHB of conjugated methylidene substrate $\mathbf{5 n}$ bearing an ortho-methyl phenyl group at the beta position resulted in an inseparable mixture of primary boronic ester $\mathbf{6 n}$ (major product) along with the reduction side product. Oxidation of this CAHB mixture after partial purification (ref. GP5) allowed for the separation of the chiral γ-hydroxy phosphonate $\mathbf{1 8 n}$ from other products. $(R) \mathbf{- 1 8 n}$ was independently synthesized via asymmetric alkylation using the Evans' chiral auxiliary to set the required stereochemistry. The chiral oxazolidinone auxillary (S) $\mathbf{- 4 1}$ (derived from Lphenylalanine) was treated with $n \mathrm{BuLi}$, followed by 2 -(o-tolyl)acetyl chloride to obtain intermediate 42. Alkylation of 42 with benzyl-chloromethyl ether under standard conditions afforded the oxazolidinone derivative 43. Reduction of the oxazolidinone derivative $\mathbf{4 3}$ using NaBH_{4} resulted in the chiral alcohol (S)-44. Sequential bromination ($\mathrm{PPh}_{3} / \mathrm{NBS}$), MichaelisArbuzov Rearrangement $\left(\mathrm{P}(\mathrm{OEt})_{3}\right.$ reflux) and benzyl-ether cleavage $\left(\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}\right)$ afforded the enantiopure chiral primary alcohol $(R)-\mathbf{1 8 n}$. Chiral HPLC analysis and optical rotation measurements show that $(R) \mathbf{- 1 8 n}$ obtained via asymmetric synthesis opposite the major enantiomer obtained via CAHB of $\mathbf{5 n}$ using $(R, R)-\mathbf{T} \mathbf{2}$ followed by oxidation. The latter (i.e., (S)-18n) arise BH addition to the "top-face" of the alkene $\mathbf{5 n}$ in the perspective drawn. The absolute configuration of chiral primary boronic ester derived from ortho-methoxy substituted substrate $\mathbf{5 0}$ is assigned based on analogy.

Characterization Data:

To a solution of the oxazolidinone auxillary $(S)-41(1.77 \mathrm{~g}, 10.0 \mathrm{mmol}, 1 \mathrm{eq})$ in THF (20 mL) at $78^{\circ} \mathrm{C}$ was added $n \mathrm{BuLi}(2.5 \mathrm{M}$ solution in hexanes; $4.0 \mathrm{~mL}, 10 \mathrm{mmol}, 1.0 \mathrm{eq})$ dropwise. The resultant mixture was stirred for 30 minutes, following which, a solution of 2-(o-tolyl)acetyl chloride ($1.68 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.00 \mathrm{mmol}$) in THF (10 mL) was added dropwise. The resultant mixture was stirred for 1 hour at $-78^{\circ} \mathrm{C}$, warmed up to room temperature and stirred for an additional 1 hour and then quenched with the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The resultant mixture was extracted with ethyl acetate ($20 \mathrm{~mL} x 3$) and the combined organics were washed with brine, dried over anhydrous sodium sulfate and concentrated in vacuum. Flash chromatography on silica gel (dichloromethane/ethyl-acetate/hexanes $1: 2: 17$) afforded the desired oxazolidinone derivative 42 as a light yellow solid ($2.56 \mathrm{~g}, 83 \%$): TLC analysis (ethyl acetate/hexanes 1:4) $\mathrm{R}_{f}=$ $0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+68^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.22(9 \mathrm{H}, \mathrm{m}), 4.76-4.70$ $(1 \mathrm{H}, \mathrm{m}), 4.42-4.22(4 \mathrm{H}, \mathrm{m}), 3.36(1 \mathrm{H}, \mathrm{dd}, J=13.0,3.0 \mathrm{~Hz}), 2.82(1 \mathrm{H}, \mathrm{dd}, J=13.0,10.0 \mathrm{~Hz}), 2.35$ ($3 \mathrm{H}, \mathrm{s}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.14,153.75,137.28,135.38,132.55,130.54$, $130.37,129.57,129.13,127.71,127.53,126.29,66.47,55.62,40.11,38.04,19.81 \mathrm{ppm}$; IR (neat) $3060\left(\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}\right), 2921\left(\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1771$ (C=O), 1697 (C=O), 1387, 1357, 1249, 1210, 1104, 741, $695 \mathrm{~cm}^{-1}$.

To a solution of the oxazolidinone derivative $42(1.24 \mathrm{~g}, 4.00 \mathrm{mmol}, 1.00 \mathrm{mmol})$ in dry dichloromethane (8 mL) was added TiCl_{4} (1 M solution in dichloromethane; $6 \mathrm{~mL}, 1.5 \mathrm{eq}$) dropwise at $0^{\circ} \mathrm{C}$. To the resultant solution was added diisopropylethylamine ($1.4 \mathrm{~mL}, 8.0 \mathrm{mmol}$, 2.0 eq) and the dark blue solution was stirred for 1 hour at $0^{\circ} \mathrm{C}$. Following this, benzyl chloromethyl ether ($1.14 \mathrm{~mL}, 8.00 \mathrm{mmol}, 2.00 \mathrm{eq}$) was added dropwise and the resultant mixture was stirred at room temperature for 12 hours. (Note: Commercial benzylchloromethyl ether is contaminated with $\sim 25 \%$ benzyl chloride, which can be removed via Kugelrohr distillation at 2 mmHg vacuum at $60^{\circ} \mathrm{C}$. After distillation of benzyl chloride, about 90% clean benzyl chloromethyl ether is obtained which is contaminated with $\sim 10 \%$ of formaldehyde dibenzyl acetal: this was used for synthesis). Afterwards, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction and the resultant mixture was extracted with ethyl acetate ($25 \mathrm{~mL} \times 3$). The combined organics were washed with brine, dried over sodium sulfate and concentrated under reduced pressure. Flash chromatography over silica gel (ethyl acetate/hexanes 15:85) afforded 43 as a viscous light-yellow liquid ($1.39 \mathrm{~g}, 81 \%$):

TLC analysis (ethyl acetate/hexanes 1:3) $\mathrm{R}_{f}=0.6 ;[\alpha]_{\mathrm{D}}{ }^{20}=+220^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.14(14 \mathrm{H}, \mathrm{m}), 5.61-5.57(1 \mathrm{H}, \mathrm{m}), 4.74-4.59(3 \mathrm{H}, \mathrm{m}), 4.19-4.09(3 \mathrm{H}, \mathrm{m})$, 3.59-3.55 ($1 \mathrm{H}, \mathrm{m}$), 3.37-3.33 ($1 \mathrm{H}, \mathrm{m}$), 2.96-2.90 $(1 \mathrm{H}, \mathrm{m}), 2.49(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.72,152.97,138.39,137.95,135.41,133.43,131.14,129.78,129.12,128.57,127.86$, $127.82,127.51,126.70,126.29,73.46,71.65,65.92,55.82,46.76,37.91,19.64 \mathrm{ppm}$; IR (neat) 3063 ($\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 2941 ($\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 1769 (C=O), 1691 (C=O), 1391, 1357, 1212, 1099, 743, 6951 cm^{-1}.

The oxazolidinone derivative $\mathbf{4 3}$ was cleaved to afford the chiral alcohol $(S) \mathbf{4 4}$ according to literature procedure as follows: To a solution of oxazolidinone $\mathbf{4 3}(859 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.00 \mathrm{eq})$ in 1:1 THF: $\mathrm{H}_{2} \mathrm{O}$ mixture (40 mL) at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(302 \mathrm{mg}, 8.00 \mathrm{mmol}, 4.00 \mathrm{eq})$ and the resultant mixture was stirred vigorously for 9 hours. Afterwards, the reaction mixture was cooled down to $0^{\circ} \mathrm{C}$ and was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (Caution: careful addition is required, quenching is exothermic). The resultant mixture was extracted with ethyl acetate (3×30 mL). The combined organics were washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. Flash chromatography over silica gel (ethyl acetate/hexanes 1:3) afforded the alcohol (S) $\mathbf{- 4 4}$ as a colorless liquid ($456 \mathrm{mg}, 89 \%$): TLC analysis (ethyl acetate/hexanes 1:3) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=-25^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-$ $7.31(5 \mathrm{H}, \mathrm{m}), 7.22-7.12(4 \mathrm{H}, \mathrm{m}), 4.60(2 \mathrm{H}, \mathrm{s}), 4.08-4.00(1 \mathrm{H}, \mathrm{m}), 3.92-3.82(2 \mathrm{H}, \mathrm{m}), 3.76(1 \mathrm{H}, \mathrm{dd}$, $J=9.0,4.5 \mathrm{~Hz}), 3.57-3.50(1 \mathrm{H}, \mathrm{m}), 2.62(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.40(3 \mathrm{H}, \mathrm{s}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.01,137.76,136.65,130.89,128.71,128.02,127.87,126.99,126.42,74.05,73.69,66.66$, 43.08, 19.87 ppm ; IR (neat) 3425 (O-H), 3027 ($\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 2861 ($\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 1493, 1453, 1362, 1093, 1067, 1027, 727, $696 \mathrm{~cm}^{-1}$.

To a solution of the alcohol $(S)-44(256 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00 \mathrm{eq})$ in dry dichloromethane (10 mL) at $0^{\circ} \mathrm{C}$ was added $\mathrm{PPh}_{3}(393 \mathrm{mg}, 1.50 \mathrm{mmol}, 1.5 \mathrm{eq})$ and NBS $(267 \mathrm{mg}, 1.50 \mathrm{mmol}, 1.5 \mathrm{eq})$. The resultant mixture was stirred for 1 hour when TLC (ethyl acetate/hexanes 1:3) indicated complete consumption of starting material. The solvent was evaporated under reduced pressure and to the residue was added 20% ethyl acetate in hexanes. The resultant mixture was filtered over a small bed of silica gel and the bed was further washed with more 20% ethyl acetate in hexanes (40 mL total). The combined filtrates were concentrated under reduced pressure. The resultant residue was refluxed with triethylphosphite $(0.51 \mathrm{~mL})$ under a nitrogen atmosphere for 6 hours. Following the

Arbuzov rearrangement (crude NMR analysis: appearance of a phosphonate peak at $\sim 31 \mathrm{ppm}$), excess triethylphosphite was distilled off in the Kugelrohr. A mixture of the resultant residue and $10 \% \mathrm{Pd}$ on activated carbon ($80 \mathrm{mg}, 8.0 \mathrm{~mol} \%$ Pd-loading) in ethanol (10 mL) is stirred under a hydrogen atmosphere (balloon pressure) for 12 hours. Afterwards, the mixture was filtered and concentrated under reduced pressure. Flash chromatography over silica gel (ethyl acetate/methanol 49:1) afforded the phosphonate $(R) \mathbf{- 1 8 n}$ as a colorless viscous oil ($146 \mathrm{mg}, 51 \%$ overall): TLC analysis (ethyl acetate/methanol 49:1) $\mathrm{R}_{f}=0.5 ;[\alpha]{ }_{\mathrm{D}}{ }^{20}=-16.9^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23-7.13(4 \mathrm{H}, \mathrm{m}$, aryl), 4.11-3.97(4H, m, b+b'), 3.85-3.77($2 \mathrm{H}, \mathrm{m}, \mathrm{e}$), 3.60-3.50 $(1 \mathrm{H}, \mathrm{m}, \mathrm{d}), 2.41(3 \mathrm{H}, \mathrm{s}, 1), 2.29(1 \mathrm{H}, \mathrm{ddd}, J=18.0,15.0,8.5 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 2.09(1 \mathrm{H}, \mathrm{ddd}, J=19.0$, $18.0,5.5 \mathrm{~Hz}, \mathrm{c}(1 \mathrm{H})), 1.28\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a'), $1.28\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') ppm ; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.79$ (d, ${ }^{3} J_{C-P}=12.0 \mathrm{~Hz}, \mathrm{f}$), 136.13 (k), 130.86 (aryl), 126.92 (aryl), 126.61 (aryl), 126.05 (aryl), 67.63 (d, ${ }^{3} J_{C-P}=8.0 \mathrm{~Hz}$, e), 62.11 (d, ${ }^{2} J_{C-P}=7.0 \mathrm{~Hz}$, b or b'), 62.01 $\left(\mathrm{d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), $38.00\left(\mathrm{~d},{ }^{2} J_{C-P}=3.0 \mathrm{~Hz}, \mathrm{~d}\right), 29.94\left(\mathrm{~d},{ }^{1} J_{C-P}=139 \mathrm{~Hz}, \mathrm{c}\right), 19.85$ (1), 16.57 (d, ${ }^{3} J_{C-P}=6.0 \mathrm{~Hz}$, a or a'), $16.54\left(\mathrm{~d},{ }^{3} J_{C-P}=6.0 \mathrm{~Hz}\right.$, a or a') ppm; ${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 31.90 ppm ; IR (neat) $3364(\mathrm{O}-\mathrm{H}), 2980\left(\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}\right.$), 2914 ($\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 1456 (aromatic C=C), 1391 (aromatic $\mathrm{C}=\mathrm{C}$), 1218 ($\mathrm{P}=\mathrm{O}$), 1019 (C-O), 961 (P-O), $757 \mathrm{~cm}^{-1}$. HRMS (ESI) calculated for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{P}+\mathrm{Na}^{+}=309.1232$, found $309.1228 \mathrm{~m} / \mathrm{z}$.

Obtaining γ-hydroxyphosphonate 18 from alkene substrate $\mathbf{5 n}$: Following the general procedure for CAHB (GP3), the substrate $5 \mathbf{n}(54 \mathrm{mg}, 0.2 \mathrm{mmol})$ yielded a mixture of boronic esters and reduced products that were not separable via silica gel chromatography. The crude CAHB mixture was chromatographed (ethyl acetate/hexanes $3: 1$) over silica gel to get rid of the non-polar colored complex and the polar metal residues. The crude mixture obtained after this partial purification was subjected to oxidation following GP5 to obtain the γ-hydroxyphosphonate 18n ($47 \mathrm{mg}, 82 \%$ overall from the hydroboration/oxidation sequence) as a colorless oil.

Enantiomer ratio is determined by chiral HPLC analysis: Stationary phase = CHIRALPAK AS-H; Mobile Phase $=90: 10$ Hexanes:Isopropanol; Flow rate $=1.25 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\lambda=$ 210 nm , rt. HPLC traces:
(a) $\mathrm{R}: \mathrm{S}=24: 76, \mathrm{CAHB}$ of $\mathbf{5 n}$ with $(R, R)-\mathbf{T 2}$, followed by oxidation to yield $(S) \mathbf{- 1 8 n}$

(c) $\mathrm{R}: \mathrm{S}=99: 1,18 \mathrm{n}$ (enantioenriched " R ") obtained via chiral auxillary sequence.

(b) $\mathrm{R}: \mathrm{S}=78: 22$, CAHB of $\mathbf{5 n}$ with $(S, S)-\mathbf{T} \mathbf{2}$, followed by oxidation to yield $(R) \mathbf{- 1 8 n}$

9.3 CAHB of non-conjugated methylidene substrate 7:

7

(S, S)-T2

$$
\mathrm{R}: \mathrm{S}=89: 11
$$

CAHB of the non-conjugated methylidene substrate 7 resulted in an inseparable mixture of primary boronic ester $\mathbf{8}$ (major product) along with the tertiary boronic ester 9 (minor product) along with some of the reduction product. Oxidation of the mixture after partial purification (ref. GP5) allowed for the separation of the chiral γ-hydroxy phosphonate 47 from the other products. $(R)-47$ was independently synthesized via asymmetric alkylation using the Evans' chiral auxiliary. Oxazolidinone derivative 45 was prepared according to its literature report. ${ }^{23}$ Reduction of the oxazolidinone derivative using NaBH_{4} resulted in the chiral alcohol (S)-46 whose absolute configuration was verified by the observed strong negative optical rotation. ${ }^{24}$ Sequential bromination $\left(\mathrm{PPh}_{3} / \mathrm{NBS}\right)$, Michaelis-Arbuzov rearrangement $\left(\mathrm{P}(\mathrm{OEt})_{3}\right.$ reflux) and benzyl-ether cleavage $\left(\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}\right)$ afforded primary alcohol $(R)-47$. Chiral HPLC analysis revealed that the product obtained via asymmetric synthesis is and that of CAHB (using (S, S)-T2) and oxidation sequence from substrate 7 are enriched with the same configuration (i.e., " R "). The alcohol obtained from substrate 7 after CAHB (using $(R, R)-\mathbf{T 2}$) followed by oxidation is enriched with " S " configuration, which comes from the precursor boronic ester 8 enriched with the " R " configuration: which resulted from the B-H addition to the "top-face" of the alkene 7 in the perspective drawn.

Characterization Data:

The oxazolidinone derivative was cleaved to afford the chiral alcohol $(S)-\mathbf{4 6}$ according to the procedure outlined for the reduction of oxazolidinone derivative $\mathbf{4 3}$ in Sec . 9.2: The oxazolidinone
derivative 45 ($859 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.00 \mathrm{eq}$) afforded the chiral alcohol (S) $\mathbf{- 4 6}$ ($471 \mathrm{mg}, 92 \%$) as a colorless oil: TLC analysis (ethyl acetate/hexanes 1:3) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=-34.5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.21(10 \mathrm{H}, \mathrm{m}), 4.54(2 \mathrm{H}, \mathrm{dd}, J=18.0,12.0 \mathrm{~Hz}), 3.80-3.62$ $(3 \mathrm{H}, \mathrm{m}), 3.53(1 \mathrm{H}, \mathrm{dd}, J=9.0,6.5 \mathrm{~Hz}), 2.76-2.67(2 \mathrm{H}, \mathrm{m}), 2.61(1 \mathrm{H}, \mathrm{t}, J=5.0 \mathrm{~Hz}), 2.23-2.16(1 \mathrm{H}$, m) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.15,138.16,129.22,128.62,128.53,127.91,127.81$, $126.21,73.59,72.86,65.35,42.76,34.64 \mathrm{ppm}$; IR (neat) $3378(\mathrm{O}-\mathrm{H}), 3027$ (aromatic C-H), 2857 (aliphatic C-H), 1494 (aromatic $\mathrm{C}=\mathrm{C}$), 1453 (aromatic $\mathrm{C}=\mathrm{C}$), 1362 (aromatic $\mathrm{C}=\mathrm{C}$), 1027 (C-O), $735,696 \mathrm{~cm}^{-1}$.

The chiral alcohol (S) - $\mathbf{4 6}$ was transformed to the chiral γ-hydroxyphosphonate (R) - $\mathbf{4 7}$ according to the procedure detailed out in Sec. 9.1. The chiral alcohol $(S)-46(256 \mathrm{mg}, 1.00 \mathrm{mmol})$ underwent bromination, Arbuzov rearrangement and benzyl ether cleavage to afford $(R)-47(175 \mathrm{mg}, 61 \%)$ as a colorless viscous liquid: TLC analysis (ethyl acetate/methanol 49:1) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+15^{\circ}(c$ $\left.=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.19(5 \mathrm{H}, \mathrm{m}$, aryl $), 4.16-3.98(4 \mathrm{H}, \mathrm{m}, \mathrm{b}+\mathrm{b}$ '), $3.77(1 \mathrm{H}, \mathrm{dd}, J=12.0,4.0 \mathrm{~Hz}, \mathrm{e}(1 \mathrm{H})), 3.59(1 \mathrm{H}, \mathrm{dd}, J=12.0,6.0 \mathrm{~Hz}, \mathrm{e}(1 \mathrm{H})), 2.79(1 \mathrm{H}, \mathrm{ddd}, J=$ $13.5,7.0,2.5 \mathrm{~Hz}, \mathrm{f}(1 \mathrm{H})$), $2.64(1 \mathrm{H}, \mathrm{dd}, J=13.0,8.0 \mathrm{~Hz}, \mathrm{f}(1 \mathrm{H})), 2.33-2.20(1 \mathrm{H}, \mathrm{m}, \mathrm{d}), 1.89-1.73$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{c}), 1.33\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a'), $1.32\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, a or a') $\mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 32.86 \mathrm{ppm}$; IR (neat) 3378 (O-H), 2981 (aromatic C-H), 2909 (aliphatic C-H), 1453 (aromatic $\mathrm{C}=\mathrm{C}$), 1391 (aromatic $\mathrm{C}=\mathrm{C}$), 1216 ($\mathrm{P}=\mathrm{O}$), 1049 (C-O), 1021 (C-O), 959 (P-O), $700 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{P}+\mathrm{Na}^{+}=309.1232$, found $309.1230 \mathrm{~m} / \mathrm{z}$.

Obtaining γ-hydroxyphosphonate 47 from alkene substrate 7: Following the general procedure for CAHB (GP3; 6 h total reaction time), the substrate $7(54 \mathrm{mg}, 0.2 \mathrm{mmol})$ yielded a mixture of boronic ester regioisomers and reduced products that were not separable via silica gel chromatography. The crude CAHB mixture was chromatographed (ethyl acetate/hexanes 1:1) over silica gel to get rid of the non-polar colored complex and the polar metal residues. The crude mixture obtained after this partial purification was subjected to oxidation following GP5 to obtain the γ-hydroxyphosphonate $\mathbf{4 7}$ ($47 \mathrm{mg}, 71 \%$ overall from the hydroboration/oxidation sequence) as a colorless oil.

Enantiomer ratio is determined by chiral HPLC analysis: Stationary phase $=$ CHIRALPAK IC 3 micron; Mobile Phase $=80: 20$ Hexanes: Isopropanol; Flow rate $=1.25 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\lambda=210 \mathrm{~nm}$, rt. HPLC traces:
(a) $\mathrm{R}: \mathrm{S}=12: 88$, CAHB of 7 with $(R, R)-\mathbf{T} 2$, followed by oxidation to yield $(S)-47$.

(c) $\mathrm{R}: \mathrm{S}=98: 2,(R)-47$ (enantioenriched " R ") obtained via chiral auxillary sequence.

(b) R:S = 89:11, CAHB of 7 with (S, S) - $\mathbf{T 2}$, followed by oxidation to yield $(R)-47$.

9.4 CAHB of β-aryl trisubstituted alkene substrate 15 k :

CAHB of the conjugated (β-aryl) trisubstituted substrate $\mathbf{1 5 k}$ with (R, R) - $\mathbf{T} 2$ resulted in the formation of chiral tertiary benzylic boronic ester product $\mathbf{1 6 k}$. The latter is protodeboronated (GP6) using conditions reported by Aggarwal to the corresponding chiral reduced product 50. The $(S)-\mathbf{5 0}$ enantiomer of the chiral reduced product was obtained via asymmetric alkylation using the Evans chiral auxiliary. Chiral HPLC analysis establishes that the protodeborylated product from the chiral boronic ester is $(R)-\mathbf{5 0}$. Since protodeborylation of chiral boronic esters proceed with retention of configuration, the configuration of the chiral boronic ester 16k obtained from (E) - $\mathbf{1 5 k}$ using $(R, R)-\mathbf{T} \mathbf{2}$ is also assigned as " R ". The configurations of all other chiral tertiary benzylic boronic esters derived from conjugated (β-aryl) trisubstituted substrates using (R, R)- $\mathbf{T} \mathbf{2}$ are assigned as " R " by analogy.

Characterization data:

Compound 48 was prepared according to literature procedure. ${ }^{25}$ The oxazolidinone derivative was cleaved to afford the chiral alcohol $(S)-49$ according to the procedure outlined for the reduction of oxazolidinone derivative 43 in Sec. 9.2. The oxazolidinone derivative 48 ($410 \mathrm{mg}, 1.00 \mathrm{mmol}$, $1.00 \mathrm{eq})$ afforded the chiral alcohol $(S)-49(203 \mathrm{mg}, 85 \%)$ as a colorless oil: TLC analysis (ethyl acetate/hexanes 1:3) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+41^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-$ $7.20(10 \mathrm{H}, \mathrm{m}), 6.44(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}), 6.20-6.12(2 \mathrm{H}, \mathrm{m}), 3.90-3.81(2 \mathrm{H}, \mathrm{m}), 3.03(1 \mathrm{H}$, quin, J $=7.0 \mathrm{~Hz}), 2.72-2.55(2 \mathrm{H}, \mathrm{m}), 1.46(\mathrm{br} \mathrm{s}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.99,137.62$, $131.79,128.85,128.60,128.21,128.17,127.18,127.02,126.16,66.99,48.70,35.99 \mathrm{ppm}$; IR (neat) 3397 (O-H), 3025 ($\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 2926 ($\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 1599 (C=C), 1493 (aromatic $\mathrm{C}=\mathrm{C}$), 1451 (aromatic $\mathrm{C}=\mathrm{C}$), 1026 (C-O), 964, 746, $692 \mathrm{~cm}^{-1}$.

A mixture of $(S)-49(191 \mathrm{mg}, 0.80 \mathrm{mmol}, 1.00 \mathrm{eq})$ and 10% Pd over activated carbon (10 mg) in ethanol (10 mL) was stirred under hydrogen atmosphere (balloon pressure) for 6 hours. Following this, the reaction mixture was filtered over a bed of celite to get rid of the insoluble catalyst particles. The celite bed was washed with ethanol $(10 \mathrm{~mL})$ and the combined organics were concentrated under reduced pressure. To the resultant residue was added PPh_{3} ($315 \mathrm{mg}, 1.20$ $\mathrm{mmol}, 1.5 \mathrm{eq})$ and dry dichloromethane (16 mL) and the resultant solution was cooled down to $0^{\circ} \mathrm{C}$. NBS ($214 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added portion wise and the resultant mixture was allowed to warm up to room temperature and stirred for a total of 2 hours. Afterwards, the reaction mixture was concentrated under reduced pressure and 15 mL of 10% ethyl acetate in hexanes was added. The resultant mixture was filtered over a small pad of silica gel to get rid of the insoluble components. The silica pad was washed with 2 more portions of 15 mL of 10% ethyl acetate in hexanes and the combined organics were concentrated under reduced pressure. To the resultant residue in a 10 mL round bottomed flask charged with a stirbar was added triethylphosphite $(0.27$ $\mathrm{mL}, 1.6 \mathrm{mmol}, 2.0 \mathrm{eq}$) and the resultant mixture was refluxed vigorously under nitrogen for 1 hour. Afterwards, the volatiles were removed under reduced pressure and the residue was purified by flash chromatography over silica gel (ethyl acetate) to afford the desired chiral phosphonate product (S)-50 (187 mg, 65\%) as a colorless oil: TLC analysis (ethyl acetate) $\mathrm{R}_{f}=0.5$; $[\alpha]_{\mathrm{D}}{ }^{20}=$ $+9.3^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.09(10 \mathrm{H}, \mathrm{m}, \operatorname{aryl}), 4.02-3.74(4 \mathrm{H}, \mathrm{m}$, b+b'), 3.11-3.01 ($1 \mathrm{H}, \mathrm{m}, \mathrm{d}$), 2.65-2.50 $(2 \mathrm{H}, \mathrm{m}, \mathrm{h}), 2.13-2.07(2 \mathrm{H}, \mathrm{m}, \mathrm{c}), 1.93-1.84(1 \mathrm{H}, \mathrm{m}, \mathrm{e}(1 \mathrm{H}))$, $1.73-1.64(1 \mathrm{H}, \mathrm{m}, \mathrm{e}(1 \mathrm{H})), 1.57-1.38(2 \mathrm{H}, \mathrm{m}, \mathrm{f}), 1.21(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, a or a'), $1.15(3 \mathrm{H}, \mathrm{t}, J=7.0$ Hz , a or a') ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.57\left(\mathrm{~d},{ }^{3} J_{C-P}=8.5 \mathrm{~Hz}, 1\right.$), 142.38 (h), 128.55 (aryl), 128.48 (aryl), 128.36 (aryl), 127.66 (aryl), 126.61 (aryl), 125.79 (aryl), 61.43 (d, ${ }^{2} J_{C-P}=7.0$ Hz, b or $\left.\mathrm{b}^{\prime}\right), 61.26\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), $40.29\left(\mathrm{~d},{ }^{2} J_{C-P}=3.5 \mathrm{~Hz}, \mathrm{~d}\right), 37.45\left(\mathrm{~d},{ }^{3} J_{C-P}=12.0\right.$ $\mathrm{Hz}, \mathrm{e}), 35.79(\mathrm{~g}), 33.39\left(\mathrm{~d},{ }^{1} J_{C-P}=139 \mathrm{~Hz}, \mathrm{c}\right), 29.15(\mathrm{f}), 16.43\left(\mathrm{~d},{ }^{3} J_{C-P}=7.0 \mathrm{~Hz}\right.$, a or a'), $16.41(\mathrm{~d}$, ${ }^{3} J_{C-P}=7.0 \mathrm{~Hz}$, a or a') ppm; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.18 \mathrm{ppm}$; IR (neat) 3026 ($\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 2933 ($\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 1495 (aromatic $\mathrm{C}=\mathrm{C}$), 1453 (aromatic $\mathrm{C}=\mathrm{C}$), 1241 ($\mathrm{P}=\mathrm{O}$), 1053 (C-O), 1024 (CO), $955(\mathrm{P}-\mathrm{O}), 697 \mathrm{~cm}^{-1}$. HRMS (EI) calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{P}=360.1854$, found $360.1843 \mathrm{~m} / \mathrm{z}$.

Enantiomer ratio is determined by chiral HPLC analysis: Stationary phase = CHIRALPAK IC; Mobile Phase $=20: 80$ Hexanes:Isopropanol; Flow rate $=1 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\lambda=210$ nm, rt. HPLC traces:
(a) $\mathrm{R}: \mathrm{S}=12: 88, \mathbf{5 0}$ synthesized via chiral auxillary synthesis.

(b) $\mathrm{R}: \mathrm{S}=83: 17, \mathrm{CAHB}$ of $\mathbf{1 5 k}$ with $(R, R)-\mathbf{T} \mathbf{2}$ to form 16k and then protodeboronation to form 50.

(c) Racemic mixture of $\mathbf{5 0}$ obtained by hydrogenation of $(E) \mathbf{- 1 5 k}$ with H_{2} over Pd / C.

9.5 CAHB of β, γ-diaryl trisubstituted alkene substrate 15 j :

CAHB of the β, γ-diphenyl trisubstituted substrate $\mathbf{1 5 j}$ with (R, R) - $\mathbf{T} \mathbf{2}$ resulted in β-borylation with the formation of chiral tertiary benzylic boronic ester product $\mathbf{1 6 j}$. The latter is protodeboronated using GP6 to afford the corresponding chiral reduced product with the retention of configuration at the chiral carbon. ${ }^{8}$ Enantioenriched (S)-53 was obtained via asymmetric alkylation using the Evans chiral auxiliary to give the known chiral alcohol (S)-52. ${ }^{26}$ Chiral HPLC analysis shows that the protodeborylated product obtained from the chiral tertiary boronic ester $\mathbf{1 6 j} \mathbf{j}$ is $(R) \mathbf{- 5 3}$.

Characterization Data:

Compound $\mathbf{5 1}$ was prepared as previously reported. ${ }^{27}$ The oxazolidinone derivative $\mathbf{5 1}$ was cleaved to afford the chiral alcohol $(S)-52$ according to the procedure outlined for the reduction of oxazolidinone derivative 43 in Sec. 9.2. The oxazolidinone derivative 51 ($385 \mathrm{mg}, 1.00 \mathrm{mmol}$, $1.00 \mathrm{eq})$ afforded the chiral alcohol $(S)-52(174 \mathrm{mg}, 82 \%)$ as a colorless oil: TLC analysis (ethyl acetate/hexanes 1:3) $\mathrm{R}_{f}=0.5 ;[\alpha]_{\mathrm{D}}{ }^{20}=+49^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-$ $7.11(10 \mathrm{H}, \mathrm{m}), 3.86-3.77(2 \mathrm{H}, \mathrm{m}), 3.16-2.92(3 \mathrm{H}, \mathrm{m}), 1.34(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.11,140.12,129.26,128.84,128.45,128.30,127.06,126.23,66.57,50.39$, 38.91 ppm ; IR (neat) $3320(\mathrm{O}-\mathrm{H}), 3025\left(\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}\right), 2920\left(\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}\right), 1601,1494$ (aromatic $\mathrm{C}=\mathrm{C}$), 1451 (aromatic C=C), 1060 (C-O), 1028 (C-O), 757, $695 \mathrm{~cm}^{-1}$.

To a solution of the chiral alcohol $(S)-52(106 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dry dichloromethane (10 $\mathrm{mL})$ was added $\mathrm{PPh}_{3}(197 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.50 \mathrm{eq})$ and the resultant solution was cooled down to
$0^{\circ} \mathrm{C}$. To the resultant solution was added NBS ($134 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.50 \mathrm{eq}$) portion wise and the resultant mixture was allowed to warm up to room temperature and stirred for a total of 2 hours. Afterwards, the reaction mixture was concentrated under reduced pressure and 10 mL of 15% ethyl acetate in hexanes was added. The resultant mixture was filtered over a small pad of silica gel to get rid of the insoluble components. The silica pad was washed with 2 more portions of 10 mL of 10% ethyl acetate in hexanes and the combined organics were concentrated under reduced pressure. To the resultant residue was added triethylphosphite ($0.17 \mathrm{~mL}, 1.0 \mathrm{mmol}, 2.0 \mathrm{eq}$) and the resultant mixture was refluxed vigorously under nitrogen atmosphere for 2 hours. Afterwards, the volatiles were removed under reduced pressure and the residue was purified by flash chromatography over silica gel (ethyl acetate) to afford the desired chiral phosphonate product (S)$53(116 \mathrm{mg}, 70 \%)$ as a colorless oil: TLC analysis (ethyl acetate) $\mathrm{R}_{f}=0.5$; $[\alpha]_{\mathrm{D}}{ }^{20}=+34^{\circ}(c=1.0$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.26(2 \mathrm{H}, \mathrm{m}, \operatorname{aryl}), 7.23-7.15(6 \mathrm{H}, \mathrm{m}$, aryl), $7.03(2 \mathrm{H}$, d, $J=7.0 \mathrm{~Hz}$, aryl), 3.97-3.91 $(1 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or b'), $3.90-3.84(2 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or b'), $3.74-3.68(1 \mathrm{H}, \mathrm{m}, \mathrm{b}$ or $\left.\mathrm{b}^{\prime}\right)$, 3.35-3.29 ($1 \mathrm{H}, \mathrm{m}, \mathrm{d}$), $3.05(1 \mathrm{H}, \mathrm{dd}, J=13.5,7.5 \mathrm{~Hz}$, e (1 H)), $2.94(1 \mathrm{H}, \mathrm{ddd}, J=13.5,7.5,1.5$ Hz , e $(1 \mathrm{H})$), 2.22-2.11 $(2 \mathrm{H}, \mathrm{m}, \mathrm{c}), 1.18(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, a or a'), $1.13(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, a or a') ppm; ${ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.99$ ($\mathrm{d},{ }^{3} J_{C-P}=7.0 \mathrm{~Hz}, \mathrm{j}$), 139.56 (f), 129.51 (aryl), 128.46 (aryl), 128.36 (aryl), 127.91 (aryl), 126.75 (aryl), 126.35 (aryl), 61.56 (d, ${ }^{2} J_{C-P}=6.5 \mathrm{~Hz}, \mathrm{~b}$ or b'), $61.34\left(\mathrm{~d},{ }^{2} J_{C-P}=6.5 \mathrm{~Hz}\right.$, b or b'), $44.70\left(\mathrm{~d},{ }^{3} J_{C-P}=14.0 \mathrm{~Hz}, \mathrm{e}\right), 42.46\left(\mathrm{~d},{ }^{2} J_{C-P}=3.5 \mathrm{~Hz}, \mathrm{~d}\right), 31.75$ $\left(\mathrm{d},{ }^{1} J_{C-P}=139 \mathrm{~Hz}, \mathrm{c}\right), 16.44\left(\mathrm{~d},{ }^{3} J_{C-P}=6.5 \mathrm{~Hz}, \mathrm{a}+\mathrm{a}\right) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $\left(283 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.09$ ppm; IR (neat) 3018 ($\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$), 2943 ($\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$), 1496 (aromatic C=C), 1451 (aromatic C=C), 1239 ($\mathrm{P}=\mathrm{O}$), $1051(\mathrm{C}-\mathrm{O}), 1025(\mathrm{C}-\mathrm{O}), 955(\mathrm{P}-\mathrm{O}), 698 \mathrm{~cm}^{-1} . \mathrm{HRMS}(\mathrm{EI})$ calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{P}=$ 332.1541 , found $=332.1538 \mathrm{~m} / \mathrm{z}$.

Enantiomer ratio is determined by chiral HPLC analysis: Stationary phase = CHIRALPAK IC; Mobile Phase $=20: 80$ Hexanes: Isopropanol; Flow rate $=1 \mathrm{~mL} / \mathrm{min}$. HPLC UV detector $\boldsymbol{\lambda}=210$ nm, rt. HPLC traces:
(a) $\mathrm{R}: \mathrm{S}=9: 91, \mathbf{5 3}$ synthesized via chiral auxillary synthesis.

(b) $\mathrm{R}: \mathrm{S}=88: 12$, CAHB of $\mathbf{1 5 j}$ with $(R, R)-\mathbf{T} \mathbf{2}$ to form $\mathbf{1 6} \mathbf{j}$ which protodeboronates to form 53.

(c) Racemic mixture of $\mathbf{5 3}$ obtained by
hydrogenation of $(E) \mathbf{- 1 5 j}$ with H_{2} over Pd / C.

(10) Experimental procedures and characterization data for oximes

Preparation of acetone oxime substrate 3: Unsaturated acetone-derived oxime ether substrate 3 was prepared according to the recently reported procedure by Zhao^{28} with minor modification. To a solution (room temperature) of 2-phenylprop-2-en-1-ol (1.0 equiv, $3.00 \mathrm{~g}, 22.4 \mathrm{mmol}$), N hydroxyphthalimide (1.1 equiv, $4.01 \mathrm{~g}, 24.6 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(1.1$ equiv, $6.45 \mathrm{~g}, 24.6 \mathrm{mmol}$) in anhydrous THF (45.0 ml) was added diisopropyl azodicarboxylate (1.1 equiv, $4.85 \mathrm{~mL}, 24.6$ mmol) dropwise. After 3 hours neat hydrazine (1.2 equiv, $0.85 \mathrm{~mL}, 26.9 \mathrm{mmol}$) was added dropwise. At this point, the formation of milky precipitation was observed. After 30 min acetone was added (10 mL , excess). After 1 hour the resulting mixture was filtered through Celite to remove precipitate, washed with acetone and the filtrate was concentrated under reduced pressure. Flash chromatography on silica gel (ethyl acetate/hexanes 1:9) affords the desired unsaturated acetone-derived oxime ether $3(3.50 \mathrm{~g}, 83 \%)$ as a clear, colorless oil: TLC analysis (ethyl acetate/hexanes 1:9) $\mathrm{R}_{f}=0.7$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.48$ (2 H , m, aryl), 7.41-7.27 ($3 \mathrm{H}, \mathrm{m}$, aryl), $5.56(1 \mathrm{H}, \mathrm{s}, \mathrm{e}), 5.37\left(1 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}, \mathrm{e}^{\prime}\right), 1.91(3 \mathrm{H}, \mathrm{s}$, a or a'), $1.87 \mathrm{ppm}(3 \mathrm{H}, \mathrm{s}, \mathrm{a}$ or a'); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.53$ (b), 144.38 (d), 138.96 (f), 128.39 (h), 127.79 (i), 126.21 (g), 114.32 (e), 75.15 (c), 21.98 (a'), $15.86 \mathrm{ppm}(\mathrm{a})$; IR (neat) 3084, 3056, 3031, 2916 (CH), 1631 (C=C), 1438 (C=N), 1367, 1070, 1027, 905 (C-O, N-O); HRMS (EI) calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}=189.1154$, found $189.1157 \mathrm{~m} / \mathrm{z}$.

Procedure for the CAHB-Oxidation sequence for oxime-substrate 3: A stock solution of Rhodium-ligand complex was prepared by dissolving $\mathrm{Rh}(\mathrm{nbd})_{2} \mathrm{BF}_{4}(2.0 \mathrm{mg}, 5.35 \mu \mathrm{~mol})$ and (R, R) $\mathbf{T 1}(7.5 \mathrm{mg}, 10.7 \mu \mathrm{~mol})$ in THF $(1.0 \mathrm{~mL})$ (room temperature, 1 h). A 0.5 mL aliquot of the resulting yellow solution was added to an unsaturated oxime ether 3 ($50.3 \mathrm{mg}, 266 \mu \mathrm{~mol}$). Solution of pinacolborane ($\mathrm{pinBH}, 51.1 \mathrm{mg}, 399 \mu \mathrm{~mol}$) in THF (0.75 mL) was added and reaction mixture was stirred $\left(40{ }^{\circ} \mathrm{C}\right)$ for 12 h . Oxidation step: The reaction mixture was cooled $\left(0^{\circ} \mathrm{C}\right)$, diluted with $\mathrm{MeOH}(3.0 \mathrm{~mL})$ and 3 M aq $\mathrm{NaOH}(4.0 \mathrm{~mL})$ followed by dropwise addition of 30% aq $\mathrm{H}_{2} \mathrm{O}_{2}(0.5$ $\mathrm{mL})$. The resulting mixture was warmed to room temperature by removing the ice bath and stirred for additional 2 h . Afterwards the mixture was diluted with brine (5.0 mL) and extracted with ethyl acetate ($3 \times 15 \mathrm{~mL}$). The combined organic layers were dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered, and concentrated under reduced pressure. Flash chromatography on silica (progressing from 10:90 to 30:70 ethyl acetate/hexanes) affords the Υ-hydroxylated product (S) $\mathbf{- 4 - O H}(38.6 \mathrm{mg}, 70 \%)$ as a colorless oil: TLC analysis (ethyl acetate/hexanes 3:7) $\mathrm{R}_{f}=0.4$; Chiral HPLC analysis of alcohol (Chiralpak-IC, 70:30 hexanes/isopropanol@ $1.0 \mathrm{~mL} / \mathrm{min}$) showed peaks at 10.09 (R-enantiomer, $5 \%) 13.77 \mathrm{~min}(S$-enantiomer, $95 \%) ;[\alpha]_{\mathrm{D}}{ }^{210}=-8.0^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 7.38-7.25(5 \mathrm{H}, \mathrm{m}$, aryl $), 4.39-4.31(2 \mathrm{H}, \mathrm{m}, \mathrm{c}), 3.99-3,85(2 \mathrm{H}, \mathrm{m}, \mathrm{e}), 3.23(1 \mathrm{H}$, quin, J $=6.4 \mathrm{~Hz}$, d), $2.47(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{OH}), 1.92(3 \mathrm{H}, \mathrm{s}, \mathrm{a}), 1.88 \mathrm{ppm}(3 \mathrm{H}, \mathrm{s}, \mathrm{a}) ; 155.56$ (b), 140.27 (f), 128.67 (g), 128.30 (h), 127.00 (i), 74.77 (c), 64.82 (e), 48.14 (d), 21.94 (a'), 15.75 ppm (a); IR (neat) 3378 (O-H), 3028, 2919, $2872(\mathrm{C}-\mathrm{H}), 1495,1453,1437,1367(\mathrm{C}=\mathrm{N}), 1069,1029,1005,910 \mathrm{~cm}^{-1}(\mathrm{C}-$ $\mathrm{O}, \mathrm{N}-\mathrm{O}$); HRMS (ESI) calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{Na}^{+}=230.1157$, found $230.1154 \mathrm{~m} / \mathrm{z}$.

HPLC traces: Chiralpak-IC, 70:30 hexanes/isopropanol@ $1.0 \mathrm{~mL} / \mathrm{min}$

Racemic mixture:

(S)-4-0H: CAHB of $\mathbf{3}$ with (R, R)-T1, followed by oxidation:

(11) References

(1) Ohmura, T.; Masuda, K.; Takase, I.; Suginome, M. Palladium-Catalyzed Silylene-1,3-Diene $[4+1]$ Cycloaddition with Use of (Aminosilyl)boronic Esters as Synthetic Equivalents of Silylene. J. Am. Chem. Soc. 2009, 131, 16624-16625.
(2) Kim, D. D.; Lee, S. J.; Beak, P. Asymmetric Lithiation-Substitution Sequences of Substituted Allylamines. J. Org. Chem. 2005, 70, 5376-5386.
(3) Lautens, M.; Colucci, J. T.; Hiebert, S.; Smith, N. D.; Bouchain, G. Total Synthesis of Ionomycin Using Ring-Opening Strategies. Org. Lett. 2002, 4, 1879-1882.
(4) Garzan, A.; Jaganathan, A.; Marzijarani, N. S.; Yousefi, R.; Whitehead, D. C.; Jackson, J. E.; Borhan, B. Solvent-Dependent Enantiodivergence in the Chlorocyclization of Unsaturated Carbamates. Chem. Eur. J. 2013, 19, 9015-9021.
(5) Orimoto, K.; Oyama, H.; Namera, Y.; Niwa, T.; Nakada, M. Catalytic Asymmetric [4 + 2] Cycloadditions and Hosomi-Sakurai Reactions of α-Alkylidene β-Keto Imides. Org. Lett. 2013, 15, 768-771.
(6) Chakrabarty, S.; Takacs, J. M. Synthesis of Chiral Tertiary Boronic Esters: PhosphonateDirected Catalytic Asymmetric Hydroboration of Trisubstituted Alkenes. J. Am. Chem. Soc. 2017, 139, 6066-6069.
(7) Wegmann, M.; Bach, T. Stereoselective Synthesis of a Highly Oxygenated δ-Lactone Related to the Core Structure of (-)-Enterocin. Synthesis 2017, 49, 209-217.
(8) Bagutski, V.; Ros, A.; Aggarwal, V. K. Improved method for the conversion of pinacolboronic esters into trifluoroborate salts: facile synthesis of chiral secondary and tertiary trifluoroborates Tetrahedron 2009, 65, 9956-9960.
(9) Nave, S.; Sonawane, R. P.; Elford, T. G.; Aggarwal, V. K. Protodeboronation of Tertiary Boronic Esters: Asymmetric Synthesis of Tertiary Alkyl Stereogenic Centers. J. Am. Chem. Soc. 2010, 132, 17096-17098.
(10) Bonet, A.; Odachowski, M.; Leonori, D.; Essafi, S.; Aggarwal, V. K. Enantiospecific $\mathrm{sp}^{2}-\mathrm{sp}^{3}$ coupling of secondary and tertiary boronic esters. Nat. Chem. 2014, 6, 584-589.
(11) Sonawane, R. P.; Jheengut, V.; Rabalakos, C.; Larouche-Gauthier, R.; Scott, H. K.; Aggarwal, V. K. Enantioselective Construction of Quaternary Stereogenic Centers from Tertiary Boronic Esters: Methodology and Applications. Angew. Chem. Int. Ed. 2011, 50, 3760-3763.
(12) Pogatchnik, D. M.; Weimer, D. F. Enantioselective Synthesis of α-Hydroxy Phosphonates via Oxidation with (Camphorsulfonyl)oxaziridines. Tett. Lett. 1997, 38, 3495-3498.
(13) Rowe, B. J.; Spilling, C. D. Stereospecific Pd(0)-Catalyzed Arylation of an Allylic Hydroxy Phosphonate Derivative: Formal Synthesis of (S)-(+)-ar-Turmerone. J. Org. Chem. 2003, 68, 9502-9505.
(14) Jang, K. P.; Hutson, G. E.; Johnston, R. C. McCusker, E. O.; Cheong, P. H. Y.; Scheidt, K. A. Asymmetric Homoenolate Additions to Acyl Phosphonates through Rational Design of a Tailored N-Heterocyclic Carbene Catalyst. J. Am. Chem. Soc. 2014, 136, 76-79.
(15) Tan, J.; Cheon, C-H.; Yamamoto, H. Catalytic Asymmetric Claisen Rearrangement of Enolphosphonates: Construction of Vicinal Tertiary and All-Carbon Quaternary Centers. Angew. Chem. Int. Ed. 2012, 51, 8264-8267.
(16) Gao, M.; Wang, D-X.; Zheng, Q-Y.; Huang, Z-T.; Wang, M-X. Remarkable Electronic and Steric Effects in the Nitrile Biotransformations for the Preparation of Enantiopure Functionalized Carboxylic Acids and Amides: Implication for an Unsaturated Carbon-Carbon Bond Binding Domain of the Amidase. J. Org. Chem. 2007, 72, 6060-6066.
(17) Liu, Y.; Liu, X.; Hu, H.; Guo, J.; Xia, Y.; Lin, L.; Feng, X. Synergistic Kinetic Resolution and Asymmetric Propargyl Claisen Rearrangement for the Synthesis of Chiral Allenes. Angew. Chem. Int. Ed. 2016, 55, 4054-4058.
(18) Zhu, Q.; Lu, Y. Chiral primary amine mediated conjugate addition of branched aldehydes to vinyl sulfone: asymmetric generation of quaternary carbon centers. Chem. Commun. 2010, 46, 2235-2237.
(19) Evans, P. A.; Oliver, S.; Chae, J. Rhodium-Catalyzed Allylic Substitution with an Acyl Anion Equivalent: Stereospecific Construction of Acyclic Quaternary Carbon Stereogenic Centers J. Am. Chem. Soc. 2012, 134, 19314-19317.
(20) Maeda, H.; Takahashi, K.; Ohmori, H. Reactions of acyl tributylphosphonium chlorides and dialkyl acylphosphonates with Grignard and organolithium reagents. Tetrahedron 1998, 54, 12233-12242.
(21) Hayashi, T.; Senda, T.; Takaya, Y.; Ogasawara, M. Rhodium-Catalyzed Asymmetric 1,4Addition to 1-Alkenylphosphonates. J. Am. Chem. Soc. 1999, 121, 11591-11592.
(22) Sahasrabudhe, K.; Gracias, V.; Furness, K.; Smith, B. T.; Katz, C. E.; Reddy, D. S.; Aube, J. Asymmetric Schmidt Reaction of Hydroxyalkyl Azides with Ketones. J. Am. Chem. Soc. 2003, 125, 7914-7922.
(23) Edmonds, M. K.; Abell, A. D. Design and Synthesis of a Conformationally Restricted Trans Peptide Isostere Based on the Bioactive Conformations of Saquinavir and Nelfinavir. J. Org. Chem. 2001, 66, 3747-3752.
(24) Faunce, J. A.; Grisso, B. A.; Mackenzie, P. B. Enantioselective aldol chemistry via alkyl enol ethers. Scope of the Lewis acid catalyzed condensation of optically active trimethylsilyl and methyl 2-[(E)-1-alkenyloxy]ethanoates with acetals. J. Am. Chem. Soc. 1991, 113, 3418-3426.
(25) Hoang, G. L.; Takacs, J. M. Enantioselective γ-borylation of unsaturated amides and stereoretentive Suzuki-Miyaura cross-coupling. Chem. Sci. 2017, 8, 4511-4516.
(26) Eno, M. S.; Lu, A.; Morken, J. P. Nickel-Catalyzed Asymmetric Kumada Cross-Coupling of Symmetric Cyclic Sulfates. J. Am. Chem. Soc. 2016, 138, 7824-7827.
(27) Lingam, V. S. P. R.; Thomas, A.; Dnyaneshwar-Harishchandra, D.; Rathi, V. E.; KhairatkarJoshi, N.; Mukhopadhyay, I. PCT Int. Appl. 2014, WO 2014016766 A1 Jan 30, 2014.
(28) Guo, K.; Chen, M. G.; Zhao, Y. Direct ortho-C-H Functionalization of Aromatic Alcohols Masked by Acetone Oxime Ether via exo-Palladacycle. Org. Lett. 2015, 17, 1802-1805.

