Supporting information

Three isomers in equilibrium: Phosphine exchange of coordinated and pendant phosphines

in a unique complex, (OC)5WL (L = 1,2-bis(diphenylphosphino)-1-di-*p*-tolylphosphino-

ethane). Implications for understanding the k_2 term in the rate law for phosphine

substitution in group 6 metal carbonyl complexes.

Bret R. Van Ausdall,[†] Michael F. Cuddy,[‡] Joel S. Southern,[†] Kraig A. Wheeler,[§] Ellen A. Keiter,[†] Edward M. Treadwell,^{†*} Richard L. Keiter.^{†*⊥}

[†]Department of Chemistry, Eastern Illinois University, Charleston, Illinois 61920, United States
 [‡]Department of Chemistry, Northwest College, Powell, Wyoming 82435, United States
 [§] Department of Chemistry, Whitworth University, Spokane, Washington 99251, United States

Table of Contents

1. Synthetic Scheme to Prepare Linkage Isomers 3a , 3b , and 3c	S2
2. ³¹ P and ¹ H NMR Data for (Ph ₂ P)[(<i>p</i> -tol) ₂ P]C=CH ₂	S3
3. ³¹ P and ¹ H NMR Data for $[Cl_2Pt{\kappa^2-(PPh_2)[P(p-tol)_2]C=CH_2}]$	S4
4. ³¹ P NMR Data for [(OC) ₅ W{ κ^1, κ^2 -PPh ₂ CH ₂ CH[(P(<i>p</i> -tol) ₂](PPh ₂)}PtCl ₂]	S5
5. ³¹ P, ¹ H, and ¹³ C NMR Data for $[(OC)_5W{\kappa^1-P(p-tol)_2CH(PPh_2)CH_2PPh_2}]$ 3b	
6. High-Resolution Mass spectrum of $[(OC)_5W{\kappa^1-P(p-tol)_2CH(PPh_2)CH_2PPh_2}]$ 3b:	S9
7. IR spectrum of $[(OC)_5W{\kappa^1-P(p-tol)_2CH(PPh_2)CH_2PPh_2}]$ 3b	S10
8. Kinetic Analysis	S11
9. Graphs of NMR Intensities vs Time for all Four Temperatures	S13
10. Crystallographic Data for $[(OC)_5W{\kappa^1-P(p-tol)_2CH(PPh_2)CH_2PPh_2}]$ 3b	S14

1. Synthetic Scheme to Prepare Linkage Isomers 3a, 3b, and 3c

Spectroscopy

NMR data for the precursors leading to the three linkage isomers, $[(OC)_5W{\kappa^1 - P(p-tol)_2 - CH(PPh_2)CH_2 PPh_2}]$, $[(OC)_5W{\kappa^1 - PPh_2CH[P(p-tol)_2]CH_2 PPh_2}]$ and $[(OC)_5W{\kappa^1 - PPh_2CH_2CH(PPh_2)[P(p-tol)_2]}]$

2. ³¹P and ¹H NMR Data for (Ph₂P) [(*p*-tol)₂P]C=CH₂

³¹P{¹H} NMR of (Ph₂P)[(*p*-tol)₂P]C=CH₂, (Ph₂P)₂C=CH₂ and [(*p*-tol)₂P]₂C=CH₂:

Figure S2.1. ³¹P {¹H} NMR spectrum of a mixture of $(Ph_2P)_2C=CH_2$, $(Ph_2P)[(p-tol)_2P]C=CH_2$, and $[(p-tol)_2PC=CH_2]$. $(Ph_2P)_2C=CH_2$, δ -3.29; $(Ph_2P)[(p-tol)_2P]C=CH_2$, AB spectrum: δ_{PPh_2} -4.32, δ_{PPh_2} -4.47, ²J_{PP} 92.5; $[(p-tol)_2PC=CH_2]$, δ -5.49.

Analysis of the (AB) portion of the ABXY spectrum of pure (Ph₂P) [(*p*-tol)₂P]C=CH₂ gave δ_{PPh2} = -4.32 ppm, $\delta_{P(p-tolyl)2}$ = -4.47 ppm, ²J_{PP} = 92.5 Hz. Minor components, (Ph₂P)₂C=CH₂ and [(*p*-tol)₂P]₂C=CH₂, observed in mixtures, gave signals at -3.29 ppm and -5.49 ppm, respectively.

Figure S2.2. ³¹P {¹H} NMR spectrum of isolated (Ph₂P)[(*p*-tol)₂P]C=CH₂.

¹**H NMR of (Ph₂P)[(***p***-tol)₂P]C=CH₂: The proton portion (XY) of the ABXY of the spectrum was analyzed as first-order, with each hydrogen atom giving rise to a doublet of doublet of doublets to give a total of 16 lines for the two hydrogen atoms. The H atom trans to Ph₂P is found at 5.81 ppm. {}^{3}J_{PH(trans)} = 27 Hz; {}^{3}J_{PH(cis)} = 12 Hz; {}^{2}J_{HH'} = 1.5 Hz. The H atom trans to (***p***-tol)₂P is at 5.77 ppm. {}^{3}J_{PH(trans)} = 28 Hz; {}^{3}J_{PH(cis)} = 11.5 Hz; {}^{2}J_{HH'} = 1.5 Hz.**

Figure S2.3. ¹H NMR spectrum of $(Ph_2P)[(p-tol)_2P]C=CH_2$. δ 5.81 (trans to Ph_2P -), ³J_{HP(trans)} 27, ³J_{HP(cis)} 12, ²J_{HH} 1.5; δ 5.77 (trans to $[(p-tol)_2P-]$, ³J_{HP(trans)} 28, ³J_{HP(cis)} 11.5, ²J_{HH} 1.5; δ_{Me} 2.3; δ_{Ph} 6.9-7.4

3. ³¹P and ¹H NMR Data for [Cl₂Pt{k²-(PPh₂)[P(*p*-tol)₂]C=CH₂}]

³¹P{¹H} NMR of [Cl₂Pt{ κ^2 -(PPh₂)[P(*p*-tol)₂]C=CH₂}]:

 $\delta_A = -31.52 \text{ ppm}; \ \delta_B = -32.55 \text{ ppm}; \ ^2J_{P(A)P(B)} = 2 \text{ Hz}; \ ^1J_{PtP(A)} = 3276 \text{ Hz}, \ ^1J_{PtP(B)} = 3239 \text{ Hz}$

Figure S3.1. ³¹P {¹H} NMR spectrum of $[Cl_2Pt{\kappa^2-(Ph_2P_a)[(p-tol)_2P_b]C=CH_2}]$. δ_a 31.52, δ_b 32.55, ²J_{PP} 2, ¹J_{PtP(a)} 3276, ¹J_{PtP(b)} 3239.

¹H NMR of <u>[Cl₂Pt{ κ^2 -(PPh₂)[P(*p*-tol)₂]C=CH₂}]</u>: The proton portion (XY) of the ABXY of spectrum was analyzed as first-order, with each hydrogen atom giving rise to a doublet of doublet of doublets to give a total of 16 lines for the two hydrogen atoms. The H atom trans to Ph₂P is found at 6.30 ppm. ³J_{PH(trans)} = 39 Hz; Hz; ³J_{PH(cis)} = 25 Hz; ²J_{HH'} = 1.5 Hz. The H atom trans to (*p*-tolyl)₂P is at 6.20 ppm. ³J_{PH(trans)} = 28 Hz; ³J_{PH(cis)} = 25 Hz; ²J_{HH'} = 1.5 Hz. δ_{CH3} = 2.38 ppm.

Figure S3.2. ¹H NMR spectrum of $[Cl_2Pt\{\kappa^2-(Ph_2P_a)[(p-tol)_2P_b]C=CH_2\}]$. δ 6.30 (trans to Ph_2P-), ³J_{HP(trans)} 39, ³J_{HP(cis)} 25, ²J_{HH} 1.5; δ 6.20 (trans to $[(p-tol)_2P-]$, ³J_{HP(trans)} 28, ³J_{HP(cis)} 25, δ_{Me} 2.39; δ_{Ph} 6.9-7.4.

4. ³¹P NMR Data for [(OC)₅W{κ¹,κ²-PPh₂CH₂CH[P(*p*-tol)₂](PPh₂)}PtCl₂]

³¹P{¹H} NMR of (OC)₅WPPh₂CH₂CH(PPh₂)[P(p-tol)₂]PtCl₂: The ³¹P spectrum is an example of an ABXKL spectrum in which A and B phosphorus atoms are bound to platinum (K), and X is bound to tungsten (L). The X portion will appear as a triplet if J_{AX} and J_{BX} are of the same (or nearly the same) magnitude as is true in our example. The AB portion of the spectrum consists of two pseudo-AB quartets, the total intensities of which are equal.

<u>Tungsten region (X)</u> $\delta_{\rm X} = 22.10$ ppm

It is not possible to determine J_{AX} or J_{BX} separately but the average $\frac{1}{2}(^{3}J_{(AX + BX)}) = 5$ Hz. This value is consistent with that found previously in (OC)₅WPPh₂CH₂CH(PPh₂)₂PtCl₂ for which $^{3}J_{PP}$ is 5 Hz and $^{1}J_{WP} = 251$ Hz. In (OC)₅WPPh₂CH₂CH(PPh₂)[P(*p*-tol)₂]PtCl₂, a value of 246 Hz was found.

Platinum region (AB)

The AB portion $({}^{2}J_{PP})$ of the spectrum presents the appearance of an AB quartet, each line of which is split into a doublet. It is tempting to take these doublet spacings as a measure of J_{AX} and J_{BX} . This is correct, however, only when $J_{AX} = J_{BX}$. While this is nearly true in this case, the spacings are best treated as $\frac{1}{2}({}^{3}J_{(AX + BX)})$ to give a best value of 5 Hz.

 ${}^{2}J_{PP}$ is given by the outer spacings of the pseudo-AB quartets. This spacing appears four times to give an average best value of 67 Hz.

The platinum-phosphorus coupling constants could not be determined with accuracy from this spectrum. Assuming that the most intense signal of the pseudo-quartets goes with the weak signal at -46.31 ppm, we have ${}^{1}J_{Pt-P} = 2922$ Hz. This value is in the ballpark was shown by comparison to (OC)₅ WPPh₂CH₂CH(PPh₂)₂PtCl₂ which has a value of 3027 Hz. There should, of course, be two Pt-P satellites but we were not able to sort things out from the low intensity signals.

The chemical shifts for the AB portion may be calculated from the equation

$$\Delta v = [(v_1 - v_4)(v_2 - v_3)]^{1/2}$$

 $^{\delta}_{PtP(Ph)} = 33.17 \text{ ppm}; \ \delta_{PtP(tol)} = 34.65 \text{ ppm}$

Figure S4.1. ³¹P {¹H} NMR spectrum of $[(OC)_5W \{\kappa^1, \kappa^2 - P_xPh_2CH_2CH[P_a(p-tol)_2](P_bPh_2)\}PtCl_2]$. ABX spin system. $\delta_{P(x)} 22.10, \frac{1}{2}(J_{[P(a)P(x) + P(b)(x)}) 5, {}^1J_{WP} 246; \delta_{P(b)} - 33.17, \delta_a - 34.65, {}^2J_{P(a)P(b)} 67, \frac{1}{2}(J_{[P(a)P(x) + P(b)(x)}) 5, {}^1J_{Pt(a)} 2932, {}^1J_{Pt(a)} 3027.$

5. ³¹P, ¹H, and ¹³C NMR Data for [(OC)5W{k¹-P(p-tol)2CH(PPh₂)CH₂PPh₂}]

³¹P{¹H} NMR of [(OC)₅W{ κ^1 -P(*p*-tol)₂CH(PPh₂)CH₂PPh₂}]:

¹H NMR of [(OC)5W{κ¹-P(*p*-tol)₂CH(PPh₂)CH₂PPh₂}]:

Figure S5.2. ¹H NMR spectrum of $[(OC)_5W{\kappa^1-P(p-tol)_2CH(PPh_2)CH_2PPh_2}]$ **3b**. Diastereotopic methyl and methylene groups.

¹³C{¹H} NMR of [(OC)₅W{ κ ¹-P(*p*-tol)₂CH(PPh₂)CH₂PPh₂]:

Figure S5.3. ¹³C{¹H} NMR spectrum of $[(OC)_5W{\kappa^1-P(p-tol)_2CH(PPh_2)CH_2PPh_2}]$ **3b**.

³¹P{¹H} NMR of mixture:

Figure S5.4 ³¹P{¹H} NMR spectrum of mixture of $[(OC)_5W{\kappa^1-PPh_2CH_2CH(PPh_2)[P(p-tol)_2]}]$ **3a**, $[(OC)_5W{\kappa^1-P(p-tol)_2CH(PPh_2)CH_2PPh_2}]$ **3b**, and $[(OC)_5W{\kappa^1-PPh_2CH[P(p-tol)_2]CH_2PPh_2}]$ **3c**

6. High-Resolution Mass spectrum of $[(OC)_5W{\kappa^1-P(p-tol)_2CH(PPh_2)CH_2PPh_2}]$ 3b:

Figure S6.1. Mass spectrum of $[(OC)_5W{\kappa^1-P(p-tol)_2CH(PPh_2)CH_2PPh_2}]$ **3b.**

7. IR spectrum of [(OC)5W{κ¹-P(*p*-tol)₂CH(PPh₂)CH₂PPh₂}] 3b

Figure S7.1. Carbonyl region of the IR spectrum of $[(OC)_5W{\kappa^1-P(p-tol)_2CH(PPh_2)CH_2PPh_2}]$ **3b**.

8. Kinetic Analysis

The consecutive two-step reversible reaction of the form

$$A \xrightarrow{k_1}_{k_{-1}} B \xrightarrow{k_2}_{k_{-2}} C \tag{1}$$

has rate equations given by the following:

$$-\frac{d[A]}{dt} = k_1[A] - k_{-1}[B]$$
(2)

$$\frac{d[B]}{dt} = k_1[A] - k_{-1}[B] - k_2[B] + k_{-2}[C]$$
(3)

$$\frac{d[C]}{dt} = k_2[B] - k_{-2}[C] \tag{4}$$

Note that, for the purposes of this work, the conversion of isomer C to A is ignored. This is a valid assumption if the rate of inter-conversion of $A \leftarrow \rightarrow C$ is small. Given the experimental data, a steady-state approximation for the system of rate equations is not valid for isomer B because its concentration is rather close to those of A and C and changes appreciably. Thus, the differential equations in (2)-(4) must be solved explicitly. The exact solutions to these equations are:

$$A(t) = A_0 \left[\frac{k_{-1}k_{-2}}{mn} + \frac{k_1(m-k_2-k_{-2})}{m(m-n)} * e^{-mt} + \frac{k_1(k_2+k_{-2}-n)}{n(m-n)} * e^{-nt} \right]$$
(5)

$$B(t) = A_0 \left[\frac{k_1 k_{-2}}{mn} + \frac{k_1 (k_{-2} - m)}{m(m - n)} * e^{-mt} - \frac{k_1 (k_{-2} - n)}{n(m - n)} * e^{-nt} \right]$$
(6)

$$C(t) = A_0 \left[\frac{k_1 k_2}{mn} - \frac{k_1 k_2}{m(m-n)} * e^{-mt} + \frac{k_1 k_2}{n(m-n)} * e^{-nt} \right]$$
(7)

Where,

$$m = \frac{1}{2} \left(p + q \right) \tag{8}$$

$$n = \frac{1}{2} \left(p - q \right) \tag{9}$$

$$p = k_1 + k_{-1} + k_2 + k_{-2} \tag{10}$$

$$q = \left(p^2 - 4(k_1k_2 + k_{-1}k_{-2} + k_1k_{-2})\right)^{\frac{1}{2}}$$
(11)

The values of *m* and *n* generally differ by less than an order of magnitude within the range of rate constant values expected for Reaction (1). Thus, fits to time-dependent data in the form of $y(t) = y_0 + \Lambda e^{-\lambda t} + Ke^{-\kappa t}$ tend to converge to the form $y(t) = y_0 + \alpha e^{-\beta t}$. We take advantage of this to approximate k_1 by fitting data for isomer A with a single exponential such that equation (5) may be rearranged as:

$$A(t) = A_0 \left[\frac{k_{-1}k_{-2}}{k_1k_2 + k_{-1}k_{-2} + k_1k_{-2}} + \left[\frac{k_1k_2 + k_1k_{-2}}{k_1k_2 + k_{-1}k_{-2} + k_1k_{-2}} \right] * e^{-x_1t} \right]$$
(12)

Similarly, the integrated rate laws for isomers B and C may be rewritten as:

$$B(t) = A_0 \left[\frac{k_1 k_{-2}}{k_1 k_2 + k_{-1} k_{-2} + k_1 k_{-2}} + \left[\frac{k_1 k_{-2}}{k_1 k_2 + k_{-1} k_{-2} + k_1 k_{-2}} \right] * e^{-x_2 t} \right]$$
(13)

$$C(t) = A_0 \left[\frac{k_1 k_2}{k_1 k_2 + k_{-1} k_{-2} + k_1 k_{-2}} + \left[\frac{k_1 k_2}{k_1 k_2 + k_{-1} k_{-2} + k_1 k_{-2}} \right] * e^{-x_3 t} \right]$$
(14)

Note that in equations (12) and (14), x_1 and x_3 are roughly equivalent to k_1 and k_{-2} , respectively. x_2 does not have an obvious analogue. At equilibrium, for a normalized data set, the following relations also hold:

$$1 = [A] + [B] + [C]$$
(15)

$$[A] = \frac{k_{-1}}{k_1}[B] = \frac{1}{K_1}[B]$$
(16)

$$[C] = \frac{k_2}{k_{-2}}[B] = K_2[B]$$
(17)

Where K_1 and K_2 are the equilibrium constants for the first and second step of Reaction (1), respectively. Substituting Eqns (16) and (17) into (15) and rearranging yields the following relationship:

$$[B]_e = \frac{k_1 k_{-2} A_0}{k_1 k_2 + k_{-1} k_{-2} + k_1 k_{-2}}$$
(18)

Then, in solving for Eqn (2) at equilibrium,

$$\frac{d[A]}{dt} = \frac{k_1 k_{-1} k_{-2}}{k_1 k_2 + k_{-1} k_{-2} + k_1 k_{-2}} + \frac{k_1 k_{-1} + k_1 k_{-2}}{k_1 k_2 + k_{-1} k_{-2} + k_1 k_{-2}} * e^{-k_1 t}$$
(19)

Thus, by inspection of Eqns (12) and (19), $x_1 \approx k_1$. Equation (4) may be similarly rearranged and integrated to solve assuming equilibrium conditions, where $x_3 \approx k_{-2}$. Unfortunately, equations (12)-(14) cannot be expressly used to determine exact values for k_1 , k_{-1} , k_2 , and k_{-2} explicitly because those variables are coupled (recall the simplifying assumption that a three-component exponential fit to the experimental data converges to a two-component exponential fit when values of *m* and *n* are similar). It is, however, relatively straightforward to determine K_1 and K_2 by fitting the experimental data with a function of the form $y(t) = y_0 + \alpha e^{-\beta t}$ to obtain y_0 and β for *A*, *B*, and *C* at each temperature. It then follows that

$$K_1 = \frac{y_o(B)}{y_o(A)}$$
(20)

and

$$K_2 = \frac{y_o(C)}{y_o(B)}$$
(21)

Finally, K_1 and K_2 may be used to estimate the remaining two unknowns, k_{-1} , k_2 , from the estimated values of k_1 , and k_{-2} .

Figure S8. Normalized NMR signal intensities as a function of elapsed experiment time at four temperatures: a) 10, b) 25, c) 40, d) 55° C. Empty circles correspond to the major isomer **3b**, the filled circles to the major isomer **3c**, and triangles to the minor isomer **3a**. Overlaid solid lines show the time dependence of each isomer at each temperature and are calculated from the integrated rate laws using the four rate constants determined by this work.

10. Crystallographic data for $[(OC)_5W[\{\kappa^1-P[(p-tol)_2]CH(PPh_2)CH_2PPh_2\}]$ 3b

Table S8.1 Crystallographic data for $[(OC)_5W[\{\kappa^1-P[(p-tol)_2]CH(PPh_2)CH_2PPh_2\}]$ **3b**

Crystal data	
CCDC deposit no.	1849765
Empirical formula	C45H37O5P3W
Crystal System, space group	Monoclinic $P2_1/n$
<i>M</i> _r	934.50
a, Å	13.5542(3)
b, Å	13.4842(3)
<i>c</i> , Å	22.5748(4)
α, deg	90
β , deg	104.841(1)
γ, deg	90
V, (Å ³)	3988.30(14)
Ζ, Ζ'	4, 1
D_{calc} (g cm ⁻³)	1.556
μ (mm ⁻¹), rad. type	6.873, Cu <i>Kα</i>
F000	1864
temp (K)	100(2)
Crystal form, color	rhomboid, colorless
Crystal size, mm	0.11 x 0.13 x 0.14
Data collection	
Diffractometer	Bruker Apex II
T_{\min}/T_{\max}	0.484 / 0.753
No. of refls. (meas., uniq., and obs.)	57132, 7297, 6720
R _{int}	0.0552
$ heta_{ m max}$ (°)	68.24
Refinement	
R/R^2_{ω} (obs data)	0.0280 / 0.0700
R/R^2_{α} (all data)	0.0310/0.0719
S	1.04
No. of refls.	7297
No. of parameters	489
$\Delta \rho_{\text{max/min}}$ (e·Å ⁻³)	0.613 / -0.242
Flack x	-