Supporting Information

NiCoP/CoP nanoparticles supported on Ti₄O₇ as the electrocatalyst possessing an excellent catalytic performance towards hydrogen evolution reaction

Dan Ma^{†,‡}, Ruihao Li[§], Zhilin Zheng[†], Zhijun Jia[†], Kai Meng[†], Yi Wang^{†,*},

Guangming Zhu^{‡,*}, Hui Zhang[†], Tao Qi[†]

[†]National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, No.1 North 2nd Road, Haidian District, Beijing 100190, China

*School of Natural and Applied sciences, Northwestern Polytechnical University, No. 1
Dongxiang Road, Chang'an District, Xi'an 710072, China

§High School Affiliated to Fudan University, No. 383 Guoquan Road, Yangpu District, Shanghai 200433, China

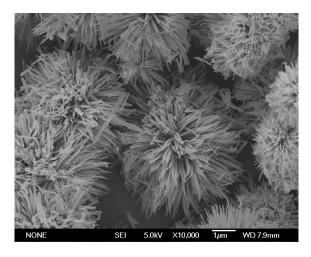
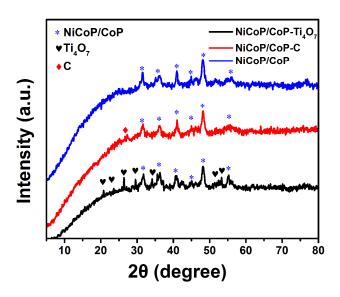
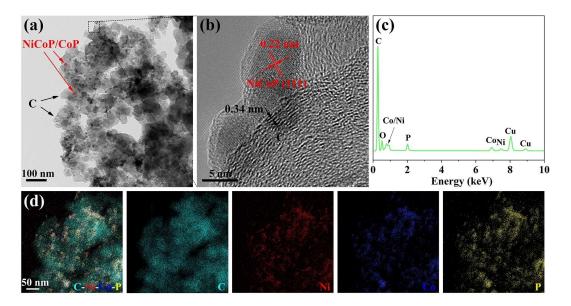
*Corresponding Authors: Y. Wang, Fax: (+86) 10 82544848-802, Tel: (+86) 10 82544967, E-mail: wangyi@ipe.ac.cn; G. Zhu, E-mail: gmzhu@nwpu.edu.cn

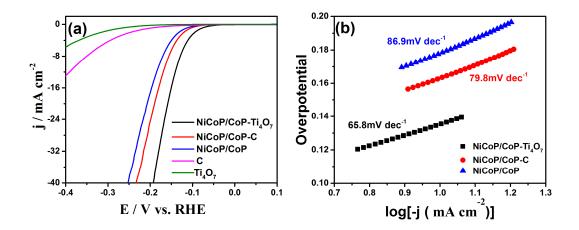
This file include:

Figure S1-S9 S2-S6

Table S1 S7

Experimental section S7-S8


Figure S1. SEM image of NiCo₂O₄.

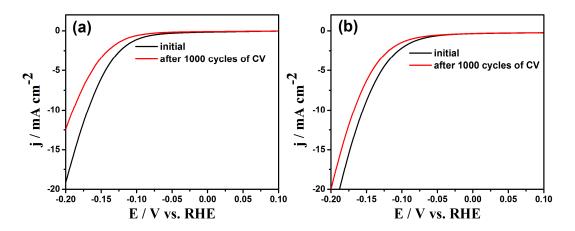

Figure S2. XRD patterns of NiCoP/CoP-Ti₄O₇, NiCoP/CoP-C and NiCoP/CoP.

Figure S3. (a) TEM image, (b) HRTEM image, (c) EDX spectra and (d) EDX elemental mapping images of NiCoP/CoP-C.

Figure S4. (a) LSV curves, (b) Tafel plots of NiCoP/CoP-Ti₄O₇, NiCoP/CoP-C and NiCoP/CoP (using carbon rod as the counter electrode).

Figure S5. LSV curve comparison before and after 1000 cycles of CV for (a) NiCoP/CoP and (b) NiCoP/CoP-C.

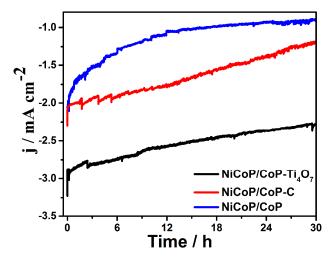


Figure S6. I-t curves of NiCoP/CoP-Ti₄O₇, NiCoP/CoP-C and NiCoP/CoP.

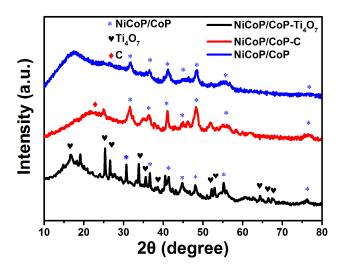
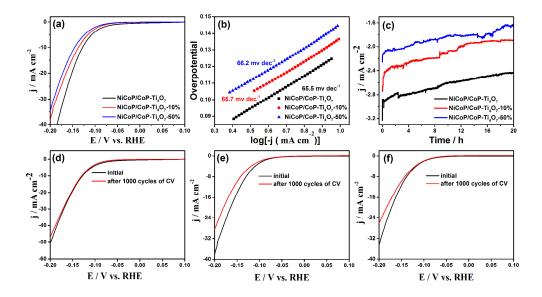
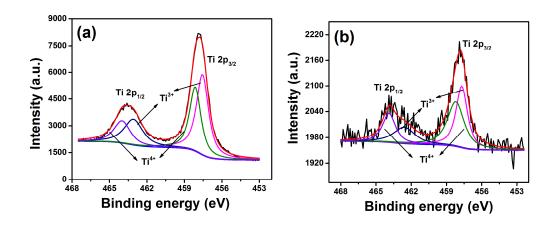




Figure S7. XRD patterns of NiCoP/CoP-Ti₄O₇, NiCoP/CoP-C and NiCoP/CoP after 30 h of I-t measurements.

Figure S8. (a) LSV curves, (b) Tafel plots, (c) I-t curves of NiCoP/CoP-Ti₄O₇, NiCoP/CoP-10% and NiCoP/CoP-50%, LSV curve comparison before and after 1000 cycles of CV for (d) NiCoP/CoP-Ti₄O₇, (e) NiCoP/CoP-Ti₄O₇-10% and (f) NiCoP/CoP-Ti₄O₇-50%.

Figure S9. (a-b) XPS spectra of Ti (2p) for Ti₄O₇ and NiCoP/CoP-Ti₄O₇, respectively.

Table S1. The catalytic performance of NiCoP/CoP-Ti₄O₇, NiCoP/CoP-C, NiCoP/CoP and other reported electrocatalysts towards HER in 0.5 M H₂SO₄.

	Loading mass	E _{onset}	E _{10mA cm-2}	Tafel slope	Ref.
	(mg cm ⁻²)	(mV)	(mV)	(mV dec ⁻¹)	
NiCoP/CoP-Ti ₄ O ₇	0.199	48	128	65.5	
NiCoP/CoP-C	0.199	75	156	79.3	this work
NiCoP/CoP	0.199	92	171	86.3	
CoS ₂ film	/	/	190	51.4	
CoS ₂ MW	25	/	158	58	(S1)
CoS ₂ NW	1.7	/	145	51.6	
MoS ₂ /CNFs	/	64	190	110	(S2)
WS _{2(1-x)} Se _{2x} -CFs	0.21	190	250	105	(S3)
MoS ₂ /CoS ₂	18.6	/	87	73.4	(S4)

Synthesis of NiCo₂O₄-Ti₄O₇-10% and NiCo₂O₄-Ti₄O₇-50%

NiCo₂O₄ nanowires were synthesized by the hydrothermal method and calcination. First of all, 291 mg of Co(NO₃)₂·6H₂O, 145 mg of Ni(NO₃)₂·6H₂O and 300 mg of urea were dissolved in 35 mL deionized water and stirred for 30 min to form a homogeneous solution. After that, 13.7 or 123 mg of Ti₄O₇ was uniformly dispersed in the solution and sonicated for 30 min. Next, the as-prepared compounds were transferred into a 50 mL Teflon-lined stainless autoclave and heated at 120 °C for 6 h. Afterward, the autoclave was naturally cooled down to room temperature. The black

precipitate was washed four to five times with deionized water and ethanol, respectively, and then dried in a vacuum oven at 60 °C for 8 h. Finally, it was annealed at 250 °C in N_2 for 2 h with a heating rate of 2 °C min⁻¹. The obtained materials were denoted as $NiCoP/CoP-Ti_4O_7-10\%$ and $NiCoP/CoP-Ti_4O_7-50\%$, respectively.

Synthesis of NiCoP/CoP-Ti₄O₇-10% and NiCoP/CoP-Ti₄O₇-50%

100 mg of NiCo₂O₄-Ti₄O₇-10% and NiCo₂O₄-Ti₄O₇-50% were mixed with 500 mg sodium hypophosphite using a mortar to grind into powder, respectively. Subsequently, the samples were heated at 300 °C for 120 min under N₂ atmosphere. The obtained catalysts were denoted as NiCoP/CoP-Ti₄O₇-10% and NiCoP/CoP-Ti₄O₇-50%, respectively.

References

- (S1) Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S.; High-Performance Electrocatalysis Using Metallic Cobalt Pyrite (CoS₂) Micro and Nanostructures. *J. Am. Chem. Soc.* **2014**, *136* (28), 10053-10061.
- (S2) Zhu, H.; Zhang, J. F.; Du, M. L.; Wang, Q. F.; Gao, G. H.; Wu, J. D.; Wu, G. M.; Zhang, M.; Liu, B.; Yao, J. M.; Zhang, X. W. When cubic cobalt sulfide meets layered molybdenum disulfide: a core-shell system toward synergetic electrocatalytic water splitting. *Adv. Mater.* **2015**, *27* (32), 4752-4759.
- (S3) Xu, K.; Wang, F. M.; Wang, Z. X.; Zhan, X. Y.; Wang, Q. S.; Cheng, Z. Z.; Safdar, M.; He, J. Component-Controllable WS_{2(1-x)}Se_{2x} Nanotubes for Efficient Hydrogen Evolution Reaction. *Acs Nano* **2018**, *8* (8), 8468-8476.
- (S4) Huang, J. L.; Hou, D. M.; Zhou, Y. C.; Zhou, W. J.; Li, G. Q.; Tang, Z. H.; Li, L.G.; Chen, S. W. MoS₂ nanosheet-coated CoS₂ nanowire arrays on carbon cloth as three-dimensional electrodes for efficient electrocatalytic hydrogen evolution. *J. Mater. Chem. A* **2015**, *3* (45), 22886-22891.