4D Printing of Complex Structures with a Fast Response Time to Magnetic Stimulus

Pengfei Zhu,^{† ‡ #} Weiyi Yang,^{† #} Rong Wang,[§] Shuang Gao,[§] Bo Li,[§] and Qi Li*[†]

[†]Environment Functional Materials Division

Shenyang National Laboratory for Materials Science

Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China [‡]School of Materials Science and Engineering

University of Science and Technology of China, Wenhua Road, Shenyang 110016, P. R. China [§]Division of Energy and Environment

Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P. R. China

[#]These authors contributed equally to this work.

*Corresponding author: E-mail address: <u>qili@imr.ac.cn (Q. Li)</u>

Phone: +86-24-83978028, Fax: +86-24-23971215.

Postal address: 72 Wenhua Road, Shenyang, Liaoning Province, 110016, P. R. China.

1. Calculation of the Magnetic Force on a Model 3D Square Strip

As shown in Figure 2b, the non-uniform, external magnetic field intensity at position x of the square strip (H_x) could be calculated by Eq. (S1):

$$H_x = H_0 + H' \cdot x \tag{S1}$$

where H_0 is the magnetic field intensity at the strip's top end, and H' is the magnetic field gradient constant. Thus, the external magnetic field induced magnetization intensity of Fe particle at position *x* of the square strip (M_x (Fe)) could be calculated by Eq. (S2):

$$M_x(Fe) = 0.028 (H_0 + H' \cdot x)(\frac{emu}{oe \cdot g})$$
 (S2)

Because PDMS component in the PDMS/Fe composite ink is non-magnetic, the external magnetic field induced magnetization intensity of the ink at position x of the square strip (M_x) could be calculated by Eq. (S3):

$$M_{x} = 0.028 (H_{0} + H' \cdot x) \rho'(\frac{emu}{oe \cdot cm^{3}}) \xrightarrow{\left(\frac{emu}{oe \cdot cm^{3}}\right) = 4\pi} 0.112\pi\rho' \cdot (H_{0} + H' \cdot x)$$
(S3)

where $\rho'(g/cm^3)$ is the equivalent density of Fe particle in the PDMS/Fe composite ink.

In a non-uniform, external magnetic field, the magnetic force acted on magnetic dipoles could be calculated by Eq. (S4):^[1]

$$F = m \frac{\partial B_x}{\partial x} \tag{S4}$$

where *m* is the magnetic dipoles' magnetic moments, and $\frac{\partial B_x}{\partial x}$ represents the gradient of magnetic flux density at position *x*. For the square strip with the cross section area of *S*, the magnetic dipoles' magnetic moments of a length of *dx* at position *x* could then be calculated by $M_x \cdot S \cdot d_x$. Thus, the magnetic force on it could be calculated by Eq. (S5):

dF =

$$M_{x} \cdot S \cdot d_{x} \xrightarrow{dB_{x}} \xrightarrow{(B_{x}=\mu H_{x})} = \mu \cdot M_{x} \cdot S \cdot d_{x} \xrightarrow{dH_{x}} \xrightarrow{dH_{x}=H'} = \mu \cdot M_{x} \cdot S \cdot d_{x} \cdot H' \xrightarrow{M_{x}=0.112\pi (H_{0}+H' \cdot x)\rho'} = 0.112\pi \cdot \mu (H_{0}+H' \cdot x)\rho' \cdot S \cdot H' \cdot d_{x}$$
(S5)

where μ is the relative magnetic permeability. μ could be calculated by Eq. (S6):

$$\mu = \mu_0 (1 + X_m) \tag{S6}$$

where μ_0 is the permeability of vacuum, and X_m is the magnetic susceptibility of the PDMS/Fe composite square strip. X_m could be further determined by Eq. (S7):

$$X_m = \frac{M}{H} = 0.112\pi\rho' \tag{S7}$$

Thus, the magnetic force F_m on the whole square strip could be calculated by Eq. (S8):

$$F_m = \int_0^L dF = \int_0^L 0.112\pi \cdot \mu \cdot (H_0 + H' \cdot x)\rho' \cdot S \cdot H' d_x \xrightarrow{\mu = \mu_0(1 + X_m) = \mu_0(1 + 0.112\pi\rho')} = \mu_0(1 + 0.112\pi\rho') 0.112\pi \cdot \rho' SH' \left(H_0 \cdot L + H' \cdot \frac{L^2}{2}\right)$$
(S8)

2. THz Properties of 3D-TPC Samples

Figure S1 The transmission THz spectra of (a) 3D-TPCs created by the PDMS/Fe composite inks of different Fe particle contents (from 10 wt% to 50 wt%) with the same geometry (12-layers, $D \sim 200 \ \mu\text{m}$, $w \sim 160 \ \mu\text{m}$, and $d \sim 500 \ \mu\text{m}$), (b) 3D-TPCs created by the PDMS/Fe composite ink of 30 wt% Fe particle content with different rod spacing values of ~ 300 μm , 400 μm , and 500 μm (12-layers, $D \sim 200 \ \mu\text{m}$, $w \sim 160 \ \mu\text{m}$). (c) 3D-TPCs created by the PDMS/Fe composite ink of 50 wt% Fe particle content with 4, 8, and 12 layers ($D \sim 200 \ \mu\text{m}$, $w \sim 160 \ \mu\text{m}$, and $d \sim 500 \ \mu\text{m}$).