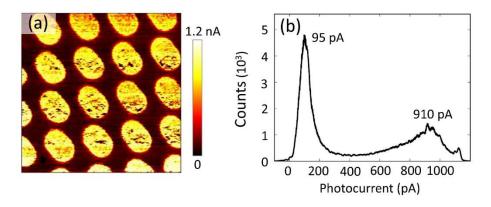
Supporting Information

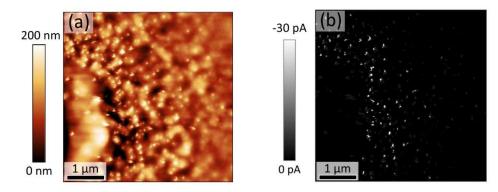
Nanoscale Insight into Performance Loss Mechanisms in P3HT:ZnO Nanorod Solar Cells

Haian Qiu¹, Jong Hyun Shim², Junghyun Cho^{2,3}, Jeffrey M. Mativetsky^{1,2*}


¹Department of Physics, Applied Physics, and Astronomy, Binghamton University, Binghamton, NY, 13902, USA

²Materials Science and Engineering Program, Binghamton University, Binghamton, NY, 13902, USA ³Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA

*Email: <u>imativet@binghamton.edu</u>


1. Photocurrent Density Calibration	.S-2
2. Piezo-Induced Current	.S-2
3. Short-Circuit Current	S-4
4. Histograms	.S-5
5. Saturated Photocurrent	.S-6
6. Charge Collection Probability	.S-7

1. Photocurrent Density Calibration

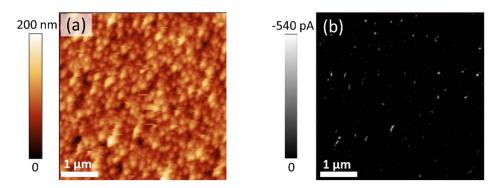


Figure S1. (a) Photocurrent map ($10 \mu m \times 10 \mu m$) of a P3HT:ZnO nanorod active layer with micropatterned Au electrodes on top, measured under short circuit conditions (0 V) and 4.5 suns. The area of the micropatterned electrodes was measured to be $1.9 \mu m^2$ (elongated shape due to evaporation geometry). (b) Corresponding photocurrent histogram showing two distinct peaks, one peak centered at 95 pA due to direct contact between the C-AFM probe and the active layer, and another peak at 910 pA due to C-AFM probe contact to the Au microelectrodes.

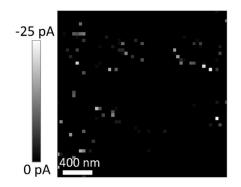

2. Piezo-Induced Current

Figure S2. (a) Contact mode topography and (b) piezo-induced current map of a P3HT:ZnO nanorod sample with an incomplete P3HT coating, under short-circuit conditions (0 V) and 4.5 sun illumination (positive currents truncated at 0 pA). Negative piezo-induced current is clearly observed at locations where ZnO nanorods protrude.

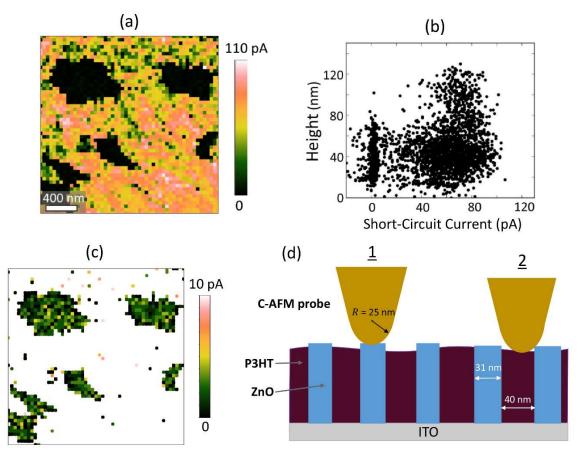


Figure S3. (a) Contact mode topography and (b) piezo-induced current map for a P3HT:ZnO nanorod sample with an incomplete P3HT coating, under short-circuit (0 V) and dark conditions (positive currents truncated at 0 pA).

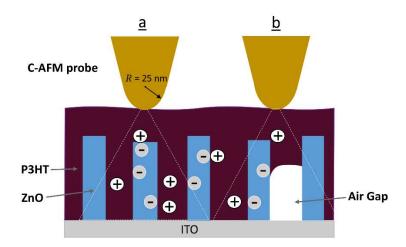


Figure S4. Negative piezo-induced current recorded during point-by-point current-voltage (PPIV) mapping of a P3HT:ZnO nanorod active layer under short circuit conditions and 4.5 sun illumination (sample area corresponds to Figure 4, 5 in main text, positive currents truncated at 0 pA). Piezo-induced currents were observed within the low-performance regions, indicating direct contact between the C-AFM probe and the ZnO nanorods within these regions.

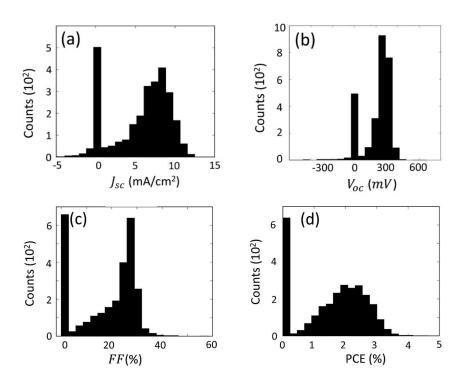
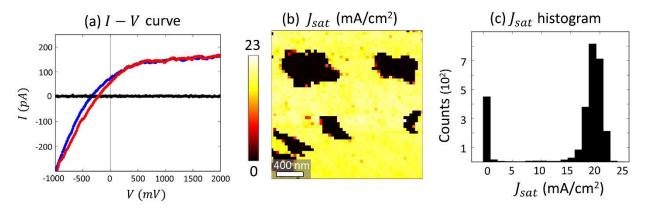
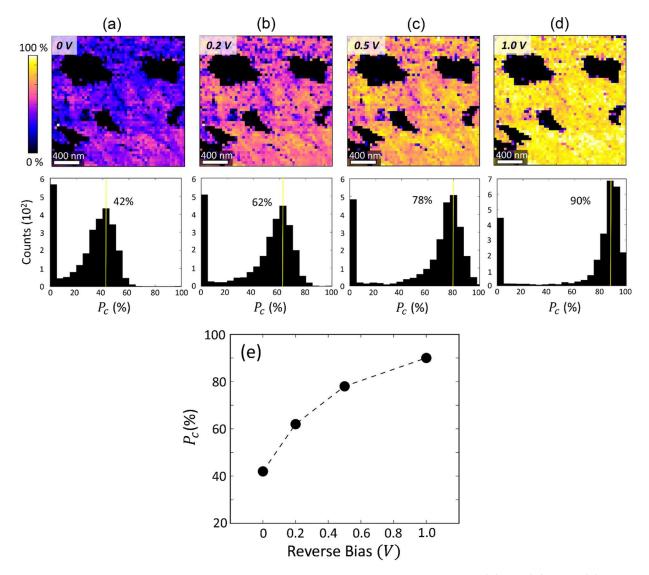

3. Short-Circuit Current

Figure S5. (a) Short-circuit current map of P3HT:ZnO nanorod active layer under 4.5 sun illumination (negative currents truncated at 0 pA). (b) Height versus short-circuit current scatter plot. (c) Truncated short-circuit current map with photocurrent ranging between 0 and 10 pA, showing small local photocurrent variations within the low-performance regions. (d) Schematic depicting the cause of current variations within low-lying regions. In case 1, the C-AFM probe makes direct contact with a nanorod, leading to piezo-generated current. In case 2, the probe makes contact with P3HT and a nearby nanorod simultaneously, resulting in the recombination of positive photocurrent and negative piezo-generated current.


Figure S6. Schematic depicting (a) current spreading during C-AFM, and (b) current spreading near a buried air gap. The dashed lines represent the charge collection area which broadens at lower active layer depths. If a buried air gap were present, current spreading would lead to spatial averaging of the buried features and a gradual transition in measured current between high and low-performing regions.

4. Histograms


Figure S7. Histograms corresponding to Figure 4: (a) short-circuit current density under 1 sun illumination, (b) open-circuit voltage, (c) fill factor, and (d) power conversion efficiency.

5. Saturated Photocurrent

Figure S8. (a) Current-voltage curves showing saturated photocurrent at a reverse bias of +2 V, under 4.5 suns. (b) Saturated photocurrent density, J_{sat} , map at +2 V bias, estimated for 1 sun and (c) corresponding histogram with a peak value of 20 mA/cm². The photocurrent density distribution in (b) is uniform, except at the low-performance regions, where there is near-zero photocurrent (negative piezo-induced current truncated at 0 mA/cm²).

6. Charge Collection Probability

Figure S9. Mapped charge collection probability P_c as the reverse bias is varied: (a) 0 V, (b) 0.2 V, (c) 0.5 V, (d) 1.0 V. The corresponding histograms are shown beneath the P_c maps. (e) Charge collection probability peak values versus reverse bias. Charge collection probability increases as reverse bias increases and approaches 90% at +1 V.