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1. Simulation Methods: 
 
1A. FPR simulations for rotational models 
Clathrin Simulation Parameters: For the clathrin trimer simulations, for an individual 

trimer, we used Dt=3nm2/𝜇s and DR=0.05rad2/𝜇s. For KD=100𝜇M, we used reaction rates 

of ka=0.0332nm3/𝜇s, kb=1.00022s-1. For KD=1𝜇M: ka=3.3971nm3/𝜇s, kb=1.0225s-1. For 

KD=0.2𝜇M: ka=18.67nm3/𝜇s, kb=1.124s-1. The binding radius 𝜎=1nm. 	

 

FPR Method: The Free Propagator Reweighting (FPR) algorithm has been described 

elsewhere 1-2, so we briefly review here the approach. As indicated in the name, particles 

or molecules are propagated according to free diffusion, with position updates explicitly 

defined below. Reaction probabilities are evaluated each time-step 𝛥t for every pair of 

reactive sites that are separated by r<Rmax, where 𝑅&'( = 𝜎 + 3 2𝑑𝐷/00Δ𝑡.  Smaller 

time-steps thus reduce Rmax and the number of pairs that could react per step. The 

reaction probabilities (eq 3) must be reweighted by the ratio  

 

𝜔5'678 𝑟, 𝑡 𝑟; = 𝑝=>> 𝑟, 𝑡 𝑟; /𝑝05//∗ 𝑟, 𝑡 𝑟;   (S1) 

 

of the proper GF (𝑝=>>) relative to the free GF (𝑝05//∗ ) used for position updates, where 

𝑝C>DD is the solution to Eq 2a,c,d, and	𝑝05//∗  is this same distribution after it has been 

renormalized to maintain excluded volume of a reactive pair (r cannot be < 𝜎) and 

rescaled by 𝑆 𝑡 𝑟;  to account for association events. If a reactive site has more than one 

partner that it could react with in the next step, then each pair is evaluated 

independently. Time-steps are chosen to minimize the frequency of these non-pairwise 

interactions, because when new positions are updated, all pairs must enforce excluded 

volume. 

Association events occur if the reweighted reaction probability is greater than a 

uniform random number (URN). Upon association, particles are placed at a contact 

separation of r𝜎=𝜎 along the vector r𝜎, with each molecule/complex moving by an amount 

proportional to its diffusion constant. If protein complex orientations are specified, rigid 

body rotations are used to ‘snap’ molecules into user-defined geometries, otherwise the 
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orientations remain unchanged. When complexes dissociate, the reactive sites are 

already at contact, which is the appropriate separation needed to recover detailed 

balance. Orientations are left unchanged after dissociation.   For molecules or 

complexes that do no undergo any reaction in 𝛥t, their positions are updated according 

to free diffusion, and updates that result in overlap (r<𝜎) with any possible reaction 

partners (pairs that had r<Rmax) are rejected and resampled.  

 

Macroscopic rates: For multi-site molecules, geometry could impact measured 

macroscopic rates. The relationship between the microscopic parameters and the 

macroscopic rates (e.g. eq 6) is based on the model of particles reacting at r𝜎=𝜎 over the 

full surface of a sphere with radius 𝜎. This access to binding is reduced by ½, for 

example, when particles in solution react with particles (e.g. lipids) embedded within a 

reflective surface. We therefore accordingly adjust the relationship between macroscopic 

rates and microscopic rates by a factor of ½. This example is easily re-adjusted, but the 

same occluded access could occur if a single molecule has multiple sites that are 

densely packed. Over small time-steps, a shared binding partner may only have partial 

access to each of the sites, which would reduce the net macroscopic rate of binding. 

Hence, the geometry of the molecules can alter measured macroscopic rates in these 

cases.  

 
Propagating Molecules: Molecules and complexes are moved according to free 

translational and rotational diffusion. For translational diffusion, we use simple Euler 

updates for each complex i 

𝑥7 𝑡 + ∆𝑡 = 𝑥7 𝑡 + 2𝐷7∆𝑡𝑅 (S2) 

and similarly in y and z, where R is a Gaussian distributed random number with mean 

zero and standard deviation of one. For rotational diffusion, each molecule (or complex) 

with rotational diffusion constant 𝐷I7 is rotated around the global (motionless) x, y and z 

axis each by 

𝛼7 = 2𝐷I7∆𝑡𝑅. (S3) 

The rotation matrix from these three rotations is applied to each vector within a complex 

connecting a site to the center of mass of the complex, as validated in Figure 2. This 
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includes the reactive sites (p1) and the molecule centers (c1), which may be displaced 

from the center of a multi-protein complex.  

 

Transport properties of complexes: Once two proteins form a complex, we update the 

diffusion coefficients of the rigid complex to reflect its larger hydrodynamic radius, a. 

Based on the standard Einstein Stokes relations, where 𝐷6 = 𝑘L𝑇/6𝜋𝜂𝑎 and 𝐷I =

𝑘L𝑇/8𝜋𝜂𝑎S with 𝜂 the viscosity, kB Boltzmann’s constant, and T temperature, we use for 

a complex made of Npro proteins: 

𝐷6,T8&UV/(WX = 𝐷YWX
Z[\]
Y^X   (S4) 

and  

𝐷I,T8&UV/(WX/S = 𝐷IYWX/S
Z[\]
Y^X . (S5) 

 

This defines the complex’s hydrodynamic radius as the sum over all the molecular 

components. An alternative method would be to re-calculate a from the geometry of the 

complex, or to sum over the component masses, M and assume, for example, a~M1/3. 

 

Hexagonal loop closure probability: For reactive sites that are not diffusing relative to one 

another because they are in the same rigid complex, Dtot=0, and the reaction probability 

for association is either 1 if r𝜎=𝜎, or 0 otherwise. When we use preact=1 for these 

reactions, the hexagon closure is irreversible; even when dissociation occurs after loop 

closure, only two simultaneous dissociation events can release a trimer from being held 

within the complex, and this has a miniscule probability. To allow for reversible loop 

closure, we also used a detailed balance expression for transitioning between unbound 

(u) and bound (b) states, where 𝑝_→a(Δ𝑡) = 𝑝a→_(Δ𝑡)
Ub
Uc

.  The transition probability 

𝑝a→_(Δ𝑡) is simply the dissociation probability of eq 4. The ratio Ub
Uc

 describing the 

equilibrium states should be dependent only on ka and kb. Based on the equilibrium for 

A+A⇌C, we chose Ub
Uc

=dZe,fg
Zh,fg

, which is larger than the thermodynamic expression Ub
Uc

= Ze,fg
Zh,fgi

, 

but still produced an overrepresentation of un-closed hexagons. This ad-hoc definition 
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could be improved upon in future work by, for example, models for pairwise interactions 

defined for specific equilibrium assembly geometries3.  
 

1B. BD simulations of full rotational model 
To calculate the GFs (Figure 5) and the reaction probabilities (Figure 4) for the full model 

of Figure 1, we used Brownian Dynamics (BD) simulations with the algorithm of Zhou4. 

Simulations are initialized by placing the reactive particles at a separation r𝜎= r0 and an 

initial orientation Ω; = [𝜃m;, 𝜃L;, ψ;]. We considered 5 unique values of 𝜃m; and 𝜃L; each, 

over the range 0 to 𝜋,  and 5 unique values of ψ;, also over the range 0 to 𝜋 due to 

symmetry, totaling 125 initial relative orientations (colorful curves in Figures 4-5). 

Position updates follow the free diffusion propagation described above. For BD, 

reactions can occur only in the region from 𝜎<r𝜎<𝜎+𝜖 with rate given by 𝜅. The reaction 

probability is given by 𝑝5/'T6(𝑟, ∆𝑡|𝑟;) = 1 − exp	(− ∆6
d

x 5y
z
+ x 5

z
), which is more 

accurate as 𝜖 →0.  We used a small 𝜖 to ensure very high accuracy, setting 𝜖 =

0.001𝐷/00/𝜅 and the time-step in the reaction region to ∆𝑡 = 0.001𝜖d/2𝐷/00, which was 

typically on the order of 10-16s. Time-steps lengthened outside this region. If particles 

reacted, the trajectory was terminated and re-initialized. Time-dependent rates were 

simulated out to a total of 1ms (Fig 6), with typically 100 repetitions performed for each 

initial orientation, which were then averaged over. Each GF/survival probability 

simulation was for a total of 0.01𝜇s, and typically calculated over 500,000 repetitions for 

each initial orientation, taking about a day on 120 processors.  These time-consuming 

numerical calculations are not feasible for many-body simulations, where GFs would be 

needed for all initial separations and orientations and for all changes to reaction 

parameters.  
 

1C. Gillespie Simulations 
 
For Gillespie simulations, each trimer had three sites, A1, A2, and A3 with the same 

binding properties.  For all reactions, we used koff=1s-1.  For identical site interactions, 

Ai+Ai →C, kon=koff/KD. To recover the proper equilibrium for non-identical sites (Ai+Ak 

→C, i≠k) one must define kon=2koff/KD because they are treated by the algorithm as 
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distinct species rather than a self-interaction. This ensures the same equilibrium is 

reached as one expects from simulating just A1 species with three times the copy 

numbers. This feature is naturally captured in the FPR simulations, as the same value 

of ka produces a macroscopic rate twice as large for distinct versus self-binding 

partners.  

 For the Gillespie simulations, when a binding event occurs Ai+Ak →C: i≠k, two 

free sites are selected to bind, with the only requirement that they are not within the 

same molecule. The propensity for a distinct binding reaction is normally given by 

h=NAi*NAk. Neither this propensity nor h=NAi*(NAk-1) perfectly captures the 

combinatorial binding possibilities under the requirement that a molecule not bind to 

itself.  We use the latter propensity; it is nearly correct and is simpler than enumerating 

all the prohibited binding events each step.  

 

2. Optimal hexagonal tiling 
For a hexagonal tiling, each vertex represents a clathrin trimer. The first hexagon 

formed has 6 trimers, and a second connected hexagon adds 4 trimers.  If the lattice 

grows as a compact cluster to maximize bonds/edges formed (rather than a long chain 

of hexagons) each hexagon requires an additional 3 or 2 trimers. For an ideal tiling this 

gives 𝑁657&/5} ≈ 10 + 2.5 𝑁�/( − 2 . Similarly, the total number of bonds formed 

between trimer legs is 𝑁a8��} ≈ 11 + 3.5 𝑁�/( − 2 . These equations work well to predict 

the maximum hexagons and bound legs possible given Ntrimers. For our simulations of 

100 trimers, one can verify that there are maximally 38 complete hexagons, with 137 

bonds, and 26 ‘sticky ends’ left unbound.  
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