Supporting Information For

Pyridyl-Directed C-H and C-Br Bond Activations Promoted by Dimer Iridium-Olefin Complexes

Pierre-Luc T. Boudreault,[†] Miguel A. Esteruelas, *, [‡] Erik Mora,[‡] Enrique Oñate,[‡] and Jui-Yi Tsai[†]

[‡]Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain

[†]Universal Display Corporation, 375 Phillips Boulevard, Ewing, New Jersey 08618, United States

*Corresponding author's e-mail address: maester@unizar.es

CONTENTS

Instrumental methods	S3
ORTEP Diagram for complexes 11 and 12.	S4
7Structural Analysis of Complexes 5, 6, 9, 10, 11 and 12.	S5-S7
MALDI-TOF spectrums for complexes 3 and 5	S8
MALDI-TOF of the fragments of the reaction of 1 with	
2-(2-bromophenyl)pyridine at 135°C	S9-S10
¹ H-NMR and for complex 5	S11
¹ H-NMR and ¹³ C{ ¹ H} APT NMR for complex 6	S12-S13
¹ H-NMR and ¹³ C{ ¹ H} APT NMR for complex 8	S14-S15
¹ H-NMR and ¹³ C{ ¹ H} APT NMR for complex 9	S16-S17
¹ H-NMR and ¹³ C{ ¹ H} APT NMR for complex 10	S18-S19
¹ H-NMR and ¹³ C{ ¹ H} APT NMR for complex 11	S20-S21
¹ H-NMR and ¹³ C{ ¹ H} APT NMR for complex 12	S22-S23
¹ H-NMR and ¹³ C{ ¹ H} APT NMR for complex 13	S24-S25
References	S26

Instrumental methods. Solvents were dried using standard procedures and distilled under argon atmosphere or obtained dry from an MBraun solvent purification apparatus. NMR spectra were recorded on either a Bruker Avance 300 MHz or 400 MHz instrument. Signals were assigned using also bidimensional NMR experiments (¹H-¹H COSY, ¹H-¹³C{¹H} HMBC and ¹H-¹³C{¹H} HSQC). Elemental analyses were carried out using a Perkin-Elmer 2400 CHNS/O analyzer, and IR spectra were measured using a PerkinElmer Spectrum 100 FT-IR spectrometer, equipped with an ATR accessory, as pure solids. High-resolution electrospray mass spectra were acquired using a MicroTOF-Q hybrid quadrupole time-of-flight spectrometer (Bruker Daltonics, Bremen, Germany). MALDI-TOF mass spectra were acquired using a Bruker Autoflex III, MALDI-TOF/TOF equipped with a DCTB matrix.

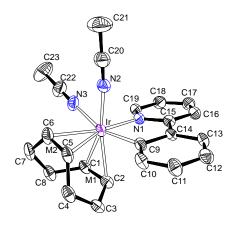
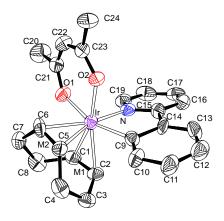



Figure S1. ORTEP diagram of complex 11 (50% probability ellipsoids). Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Ir-N(1) = 2.077(4), Ir-N(2) = 2.044(5), Ir-N(3) = 2.132(6), Ir-C(9) = 2.078(6), Ir-C(1) = 2.195(6), Ir-C(2) = 2.215(6), Ir-C(5) = 2.256(6), Ir-C(6) = 2.265(6), N(3)-Ir-C(9) = 160.7(2), N(2)-Ir-M(1) = 175.5(2), N(1)-Ir-M(2) = 176.8(2).

Figure S2. 12 crystallizes with two chemically equivalent molecules in the asymmetric unit. ORTEP of complex **12** (50% probability ellipsoids). Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Ir-N = 2.082(10), 2.059(11), Ir-O(2) = 2.068(8), 2.062(9), Ir-O(1) = 2.139(9), 2.137(9), Ir-C(9) = 2.068(13), 2.077(13), Ir-C(1) = 2.185(13), 2.171(13), Ir-C(2) = 2.218(13), 2.210(12), Ir-C(5) = 2.236(13), 2.240(14), Ir-C(6) = 2.193(13), 2.205(13), O(1)- Ir-C(9) = 160.0(4), 159.9(4), O(2)- Ir-M(1) = 174.7(5), 174.3(5), N-Ir-M(2) = 177.3(5), 177.1(5).

Structural Analysis of Complexes 5, 6, 9, 10, 11 and 12. X-ray data were collected for the complexes on a Bruker Smart APEX and Bruker Smart APEX DUO diffractometer equipped with a normal focus, and 2.4 kW sealed tube source (Mo radiation, 1 = 0.71073 Å). Data were collected over the complete sphere covering 0.3° in w. Data were corrected for absorption by using a multiscan method applied with the SADABS program.¹ The structures were solved by Patterson or direct methods and refined by full-matrix least squares on F² with SHELXL2016,² including isotropic and subsequently anisotropic displacement parameters. The hydrogen atoms were observed in the least Fourier Maps or calculated, and refined freely or using a restricted riding model. The disordered molecules were refined with different moieties, restrained geometries, and complementary occupancy factors.

Complex **5** has two bromophenyl-pyridine (C₆H₃Br-py) and an acac ligands so the molecule has a symmetry axis C2 over the iridium atom and crystallizes in the monoclinic C2/c space system (Z'=0.5). Complex **6** has a very similar structure with one bromophenyl-pyridine (C₆H₄-py), one pyridine (C₆H₃Br-py) and one acac ligands. This molecule lacks any kind of symmetry but crystallizes in a unit cell similar to **5** with two possible space groups C2/c (Z'=0.5) or Cc (Z'=1). Two alternative refinements were performed. One with the symmetric C2/c space system with occupancy 0.5 in the bromine position, and other in the asymmetric Cc space group with the bromine atoms in two positions with final occupancies 0.88/0.12. The refinement in the asymmetric space group was more consistent and then selected (agreement factors, positive and negative residuals...).

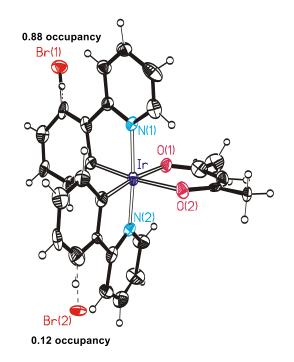


Figure S3. ORTEP of complex 6.

Crystal data for **5**: C₂₇H₂₁Br₂IrN₂O₂, M_W 757.48, yellow, irregular block (0.252 x 0.024 x 0.023 mm³), monoclinic, space group C2/c, *a*: 12.506(2) Å, *b*: 26.238(5) Å, *c*: 7.2648(13) Å, β : 100.937(2)°, V = 2340.4(7) Å³, Z = 4, Z' = 0.5, D_{calc}: 2.150 g cm⁻³,

F(000): 1440, T = 100(2) K, m 9.148 mm⁻¹. 10195 measured reflections (20: 3-57°, w scans 0.3°), 2797 unique ($R_{int} = 0.0743$); min./max. transm. Factors 0.627/0.862. Final agreement factors were $R^1 = 0.0517$ (2236 observed reflections, I > 2s(I)) and w $R^2 = 0.1220$; data/restraints/parameters 2797/0/156; GoF = 1.091. Largest peak and hole 1.728 (close to iridium atoms) and -2.165 e/ Å³.

Crystal data for **6**: C₂₇H₂₂BrIrN₂O₂, M_W 678.57, yellow, irregular block (0.289 x 0.055 x 0.048 mm³), monoclinic, space group Cc, *a*: 12.050(2) Å, *b*: 26.622(5) Å, *c*: 7.2732(12) Å, β : 103.606(2)°, V = 2267.8(7) Å³, Z = 4, Z' = 1, D_{calc}: 1.987 g cm⁻³, F(000): 1304, T = 100(2) K, m 7.678 mm⁻¹. 19588 measured reflections (20: 3-57°, w scans 0.3°), 4848 unique (R_{int} = 0.0414); min./max. transm. Factors 0.546/0.862. Final agreement factors were R¹ = 0.0375 (4302 observed reflections, I > 2s(I)) and wR² = 0.0965; data/restraints/parameters 4848/3/310; GoF = 1.042. Largest peak and hole 2.210 (close to iridium atoms) and -2.522 e/ Å³.

Crystal data for **9**: C₁₉H₂₀BrClIrN, M_w 569.92, colourless, irregular block (0.155 x 0.142 x 0.107 mm³), monoclinic, space group P2₁/c, *a*: 8.5359(4) Å, *b*: 12.9219(7) Å, *c*: 15.7951(8) Å, β : 104.5600(10)°, V = 1686.25(15) Å³, Z = 4, Z' = 1, D_{calc}: 2.245 g cm⁻³, F(000): 1080, T = 100(2) K, m 10.444 mm⁻¹. 16452 measured reflections (20: 3-57°, w scans 0.3°), 4078 unique (R_{int} = 0.0267); min./max. transm. Factors 0.603/0.862. Final agreement factors were R¹ = 0.0199 (3721 observed reflections, I > 2s(I)) and wR² = 0.0467; data/restraints/parameters 4078/0/220; GoF = 1.041. Largest peak and hole 1.456 (close to iridium atoms) and -0.668 e/ Å³.

Crystal data for **10**: C₂₉H₃₄IrNO₄, M_W 652.77, yellow, irregular block (0.234 x 0.091 x 0.055 mm³), monoclinic, space group P2₁/n, *a*: 9.4133(5) Å, *b*: 20.0386(12) Å, *c*: 13.5666(8) Å, β : 94.6470(10)°, V=2550.6(3) Å³, Z=4, Z'=1, D_{calc}: 1.700 g cm⁻³, F(000):

1296, T = 100(2) K, m 5.270 mm⁻¹. 44848 measured reflections (20: 3-57°, w scans 0.3°), 6285 unique ($R_{int} = 0.0349$); min./max. transm. Factors 0.560/0.862. Final agreement factors were $R^1 = 0.0193$ (5545 observed reflections, I > 2s(I)) and w $R^2 = 0.0439$; data/restraints/parameters 6285/0/332; GoF = 1.040. Largest peak and hole 1.052 (close to iridium atoms) and -0.508 e/ Å³.

Crystal data for **11**: C₂₃H₂₆IrN₃, 2(BF₄), 1.2(CH₂Cl₂), M_W 812.20, colourless, irregular block (0.168 x 0.120 x 0.100 mm³), monoclinic, space group C2/c, *a*: 18.7877(10) Å, *b*: 10.7248(6) Å, *c*: 31.060(2) Å, β : 103.5140(10)°, V = v Å³, Z = 8, Z' = 1, D_{calc}: 1.773 g cm⁻³, F(000): 3155, T = 100(2) K, m 4.668 mm⁻¹. 42894 measured reflections (20: 3-57°, w scans 0.3°), 7401 unique (R_{int} = 0.0526); min./max. transm. Factors 0.713/0.862. Final agreement factors were R¹ = 0.0441 (5917 observed reflections, I > 2s(I)) and wR² = 0.1165; data/restraints/parameters 7401/29/366; GoF = 1.038. Largest peak and hole 1.944 (close to iridium atoms) and -1.838 e/ Å³.

Crystal data for **12**: C₂₄H₂₇IrNO₂, BF₄, 0.5(C₄H₁₀O), M_w 677.53, brown, irregular block (0.126 x 0.124 x 0.100 mm³), hexagonal, space group P6/5, *a*: 10.9926(6) Å, *b*: 10.9926(6) Å, *c*: 72.259(4) Å, V = 7561.7(9) Å³, Z = 12, Z' = 2, D_{calc}: 1.785 g cm⁻³, F(000): 3996, T = 100(2) K, m 5.353 mm⁻¹. 136315 measured reflections (20: 3-57°, w scans 0.3°), 12694 unique (R_{int} = 0.1186); min./max. transm. Factors 0.687/0.862. Final agreement factors were R¹ = 0.0507 (10006 observed reflections, I > 2s(I)) and wR² = 0.0824; data/restraints/parameters 12694/45/646; GoF = 1.073. Largest peak and hole 0.850 (close to iridium atoms) and -0.952 e/ Å³.

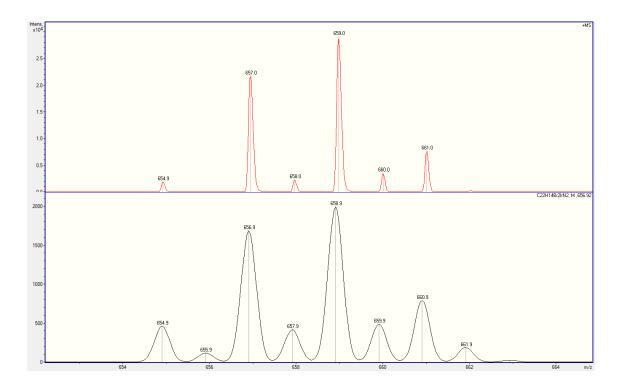
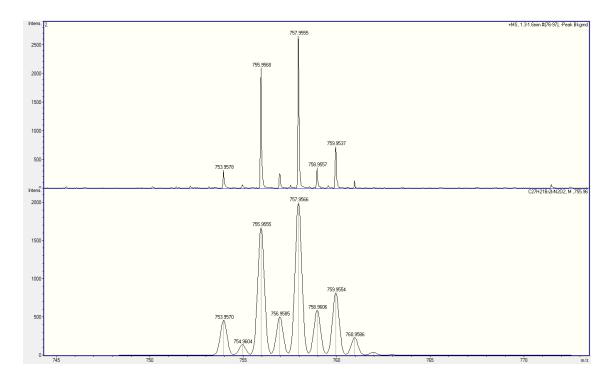



Figure S4. MALDI-TOF of complex $(\eta^2-C_8H_{14})_2 Ir(\mu-Cl)_2 Ir \{\kappa^2-C_8H_3-py\}_2$ (3).

Figure S5. MALDI-TOF of complex $Ir(acac) \{\kappa^2 - C, N - [C_6BrH_3 - py]\}_2$ (5)

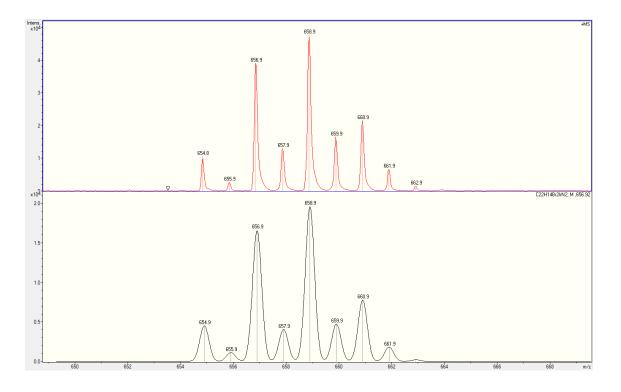
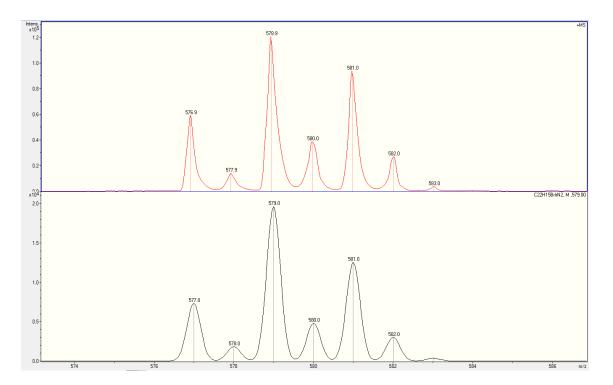



Figure S6. MALDI-TOF of $Ir \{\kappa^2-C, N-[C_6BrH_3-py]\}_2$ fragment.

 $\label{eq:Figure S7.} Figure \ S7. \ MALDI-TOF \ of \ Ir \{\kappa^2-{\it C}, N\ [C_6BrH_3-py]\} \{\kappa^2-{\it C}, N\ [C_6H_4-py]\} fragment.$

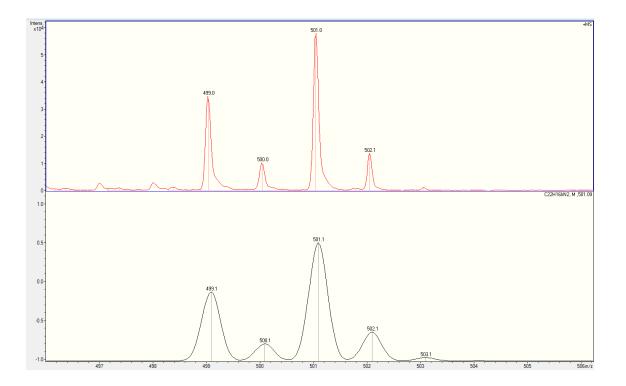
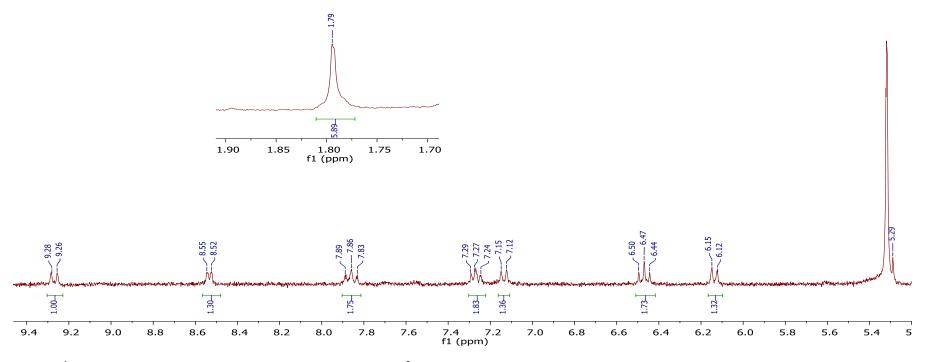



Figure S8. MALDI-TOF of $Ir \{\kappa^2-C, N-[C_6H_4-py]\}_2$ fragment.

Figure S9. ¹H-NMR (300 MHz, CD₂Cl₂, 298 K) spectra of $Ir(acac){\kappa^2-C, N-[C_6BrH_3-py]}_2(5)$

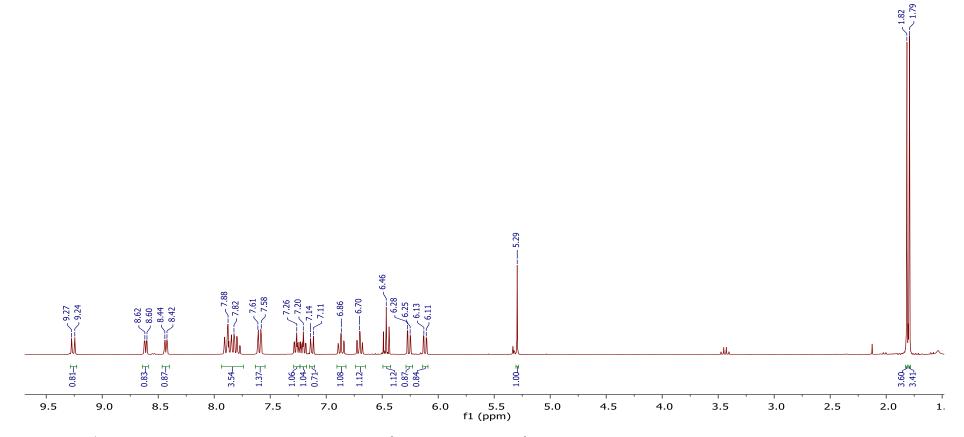


Figure S10. ¹H-NMR (300 MHz, CD₂Cl₂, 298 K) of Ir(acac){ κ^2 -*C*,*N*-[C₆BrH₃-py]}{ κ^2 -*C*,*N*-[C₆H₄-py]} (6)

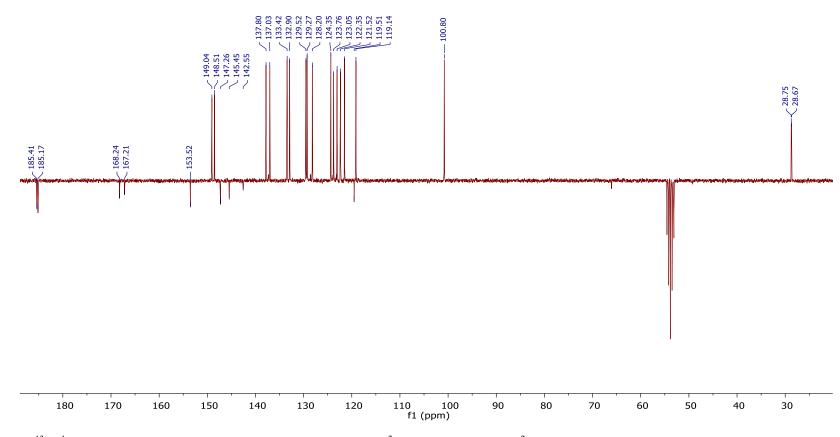
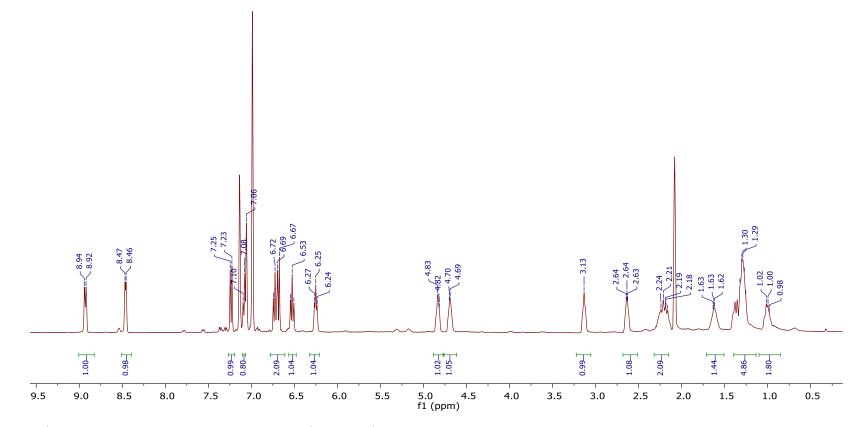
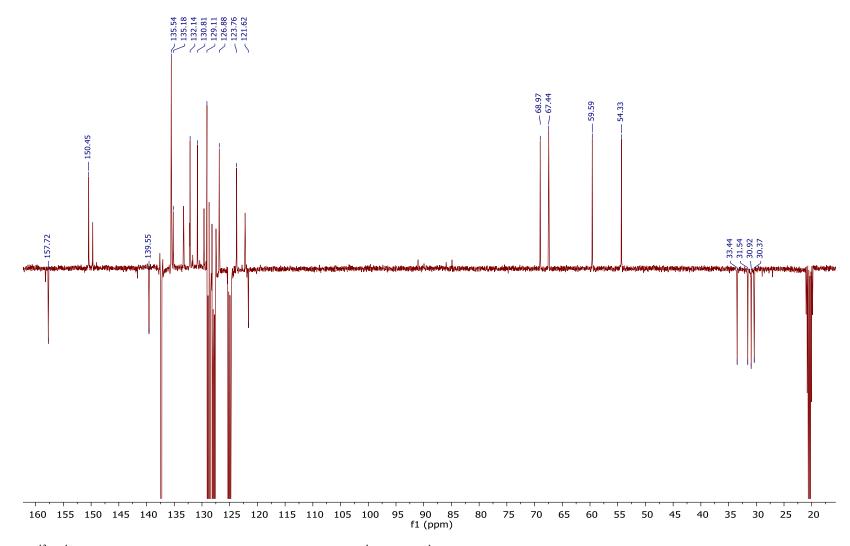




Figure S11. ¹³C{¹H} APT NMR (75 MHz, CD₂Cl₂, 298 K) of Ir(acac){ κ^2 -*C*,*N*-[C₆BrH₃-py]}{ κ^2 -*C*,*N*-[C₆H₄-py]} (6)

Figure S12. ¹H-NMR (400 MHz, tol-*d*₈, 223K) for IrCl(η^4 -C₈H₁₂){ κ^1 -*N*-[py-C₆BrH]}(8).

Figure S13. ¹³C{¹H} APT NMR (100 MHz, tol-*d*₈, 223K) for IrCl(η^4 -C₈H₁₂){ κ^1 -*N*-[py-C₆BrH]}(8).

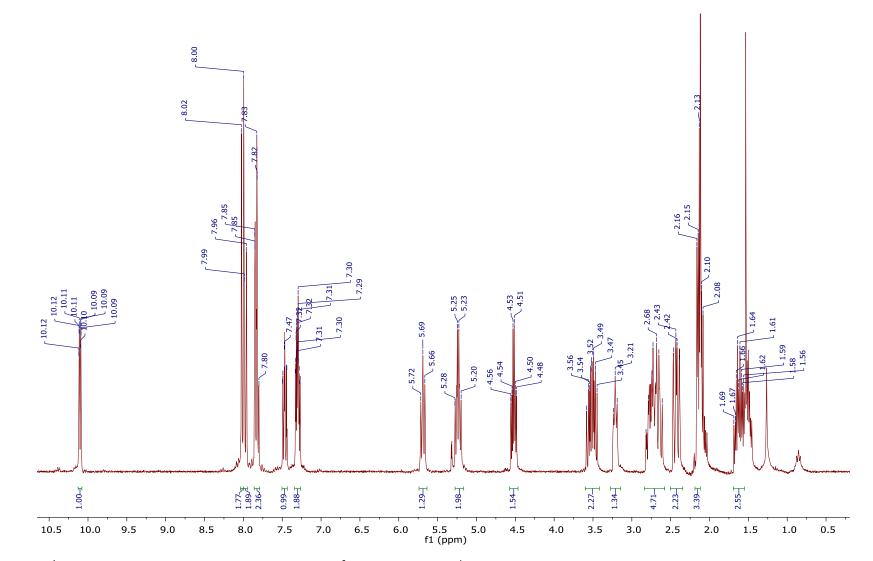


Figure S14. ¹H-NMR (300 MHz, CD₂Cl₂, 298 K) of IrClBr{ κ^2 -*C*,*N*-[C₆H₄-py]}(η^4 -C₈H₁₂) (9).

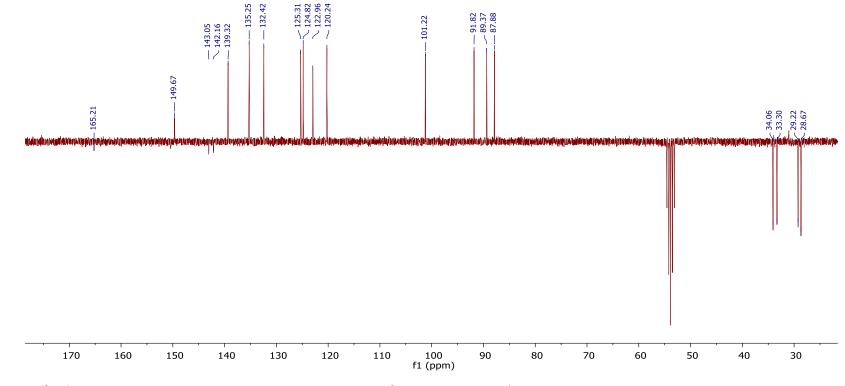


Figure S15. ¹³C{¹H} APT NMR (75 MHz, CD₂Cl₂, 298 K) for IrClBr{ κ^2 -*C*,*N*-[C₆H₄-py]}(η^4 -C₈H₁₂) (9).

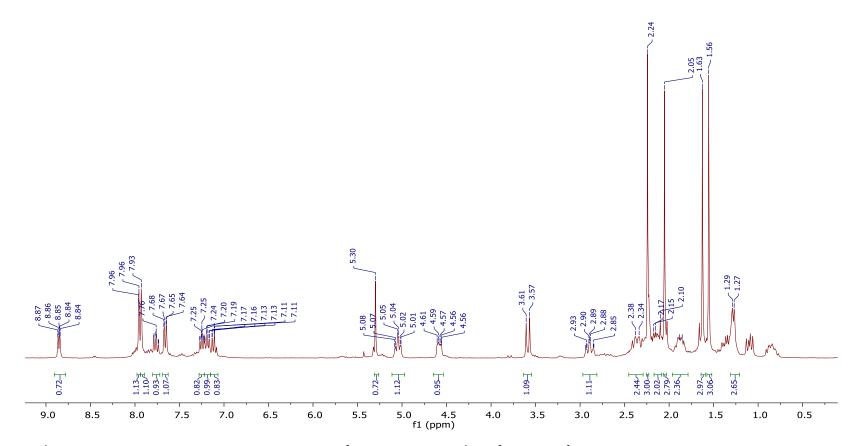


Figure S16. ¹H-NMR (300 MHz, CD₂Cl₂, 298 K) for Ir(acac){ κ^2 -*C*,*N*-[C₆H₄-py]}{ κ^1 -*C*, η^2 -[C₈H₁₂-(C³-acac)]} (10)

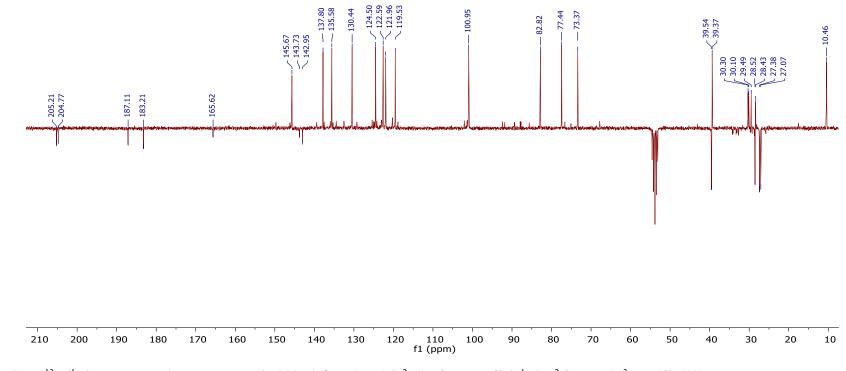
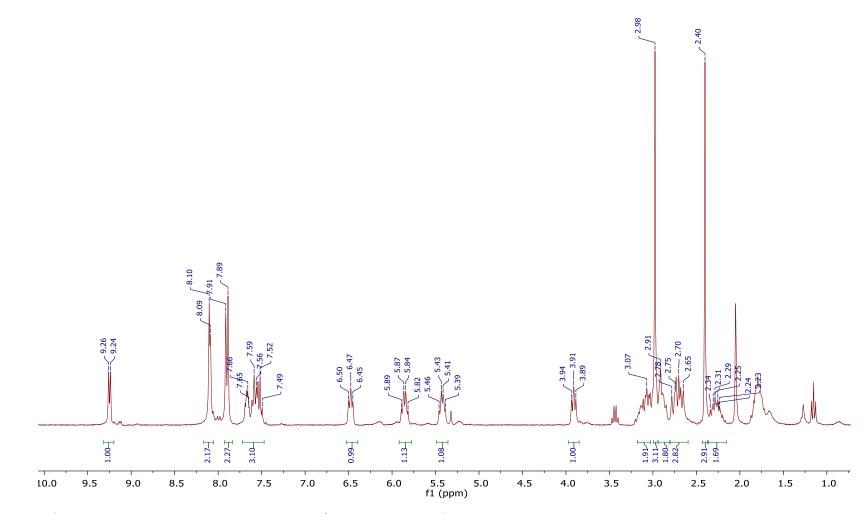



Figure S17. ¹³C{¹H} APT NMR (75 MHz, CD₂Cl₂, 298 K) for Ir(acac){ κ^2 -*C*,*N*-[C₆H₄-py]}{ κ^1 -*C*, η^2 -[C₈H₁₂-(C³-acac)]} (10).

Figure S18. ¹H-NMR (300 MHz, CD₂Cl₂, 298 K) for $[Ir {\kappa^2 - C, N-[C_6H_4-py]}(\eta^4 - C_8H_{12})(CH_3CN)_2](BF_4)_2(11)$

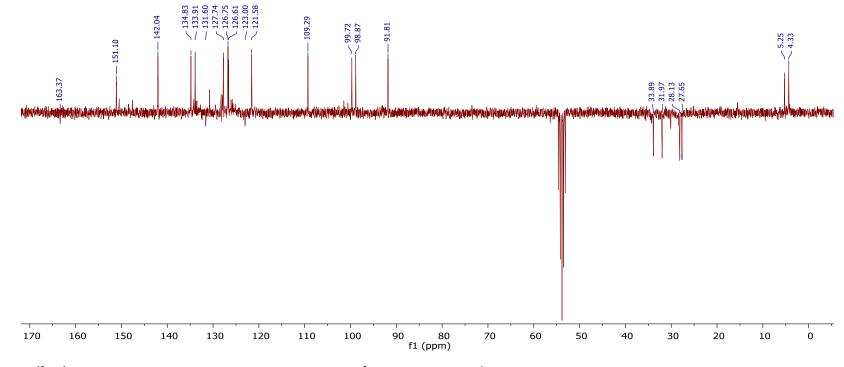
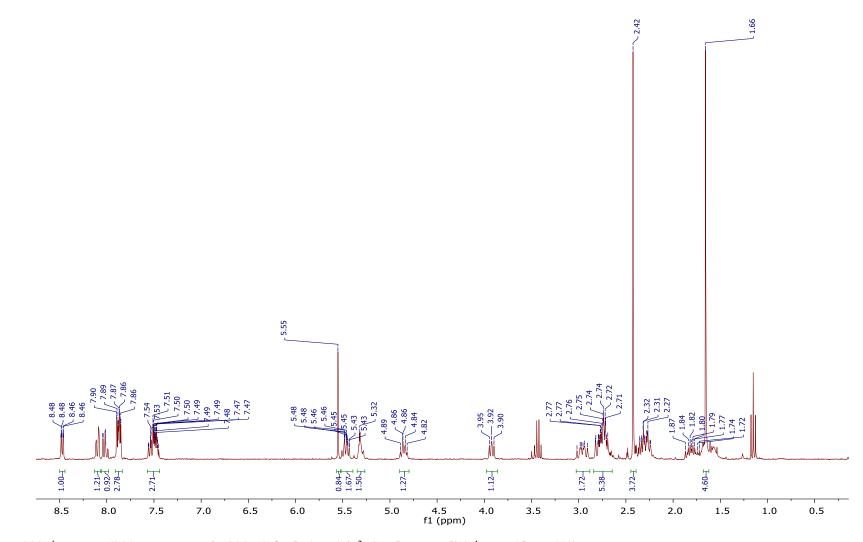



Figure S19. ¹³C{¹H} APT NMR (75 MHz, CD₂Cl₂, 298 K) for $[Ir{\kappa^2-C, N-[C_6H_4-py]}(\eta^4-C_8H_{12})(CH_3CN)_2](BF_4)_2$ (11)

Figure S20. ¹H-NMR (300 MHz, CD₂Cl₂, 298 K) for $[Ir(acac){\kappa^2-C, N-[C_6H_4-py]}(\eta^4-C_8H_{12})]BF_4$ (12).

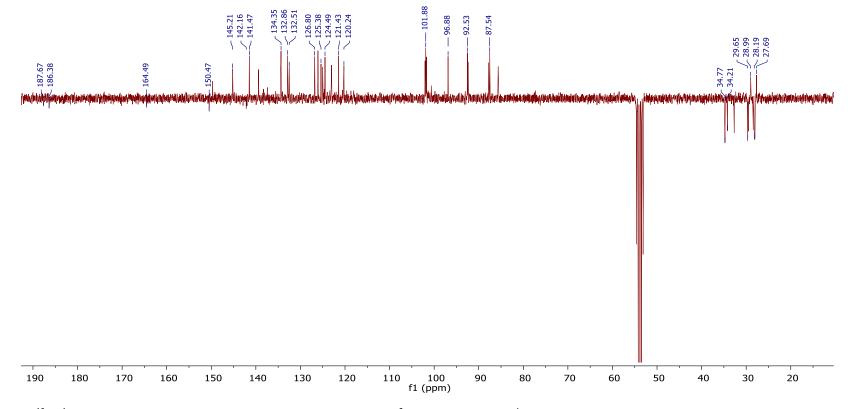
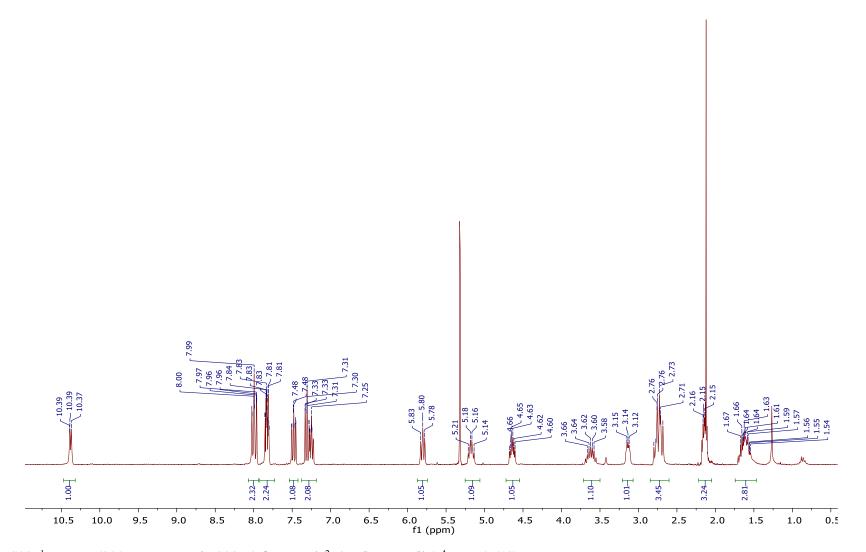
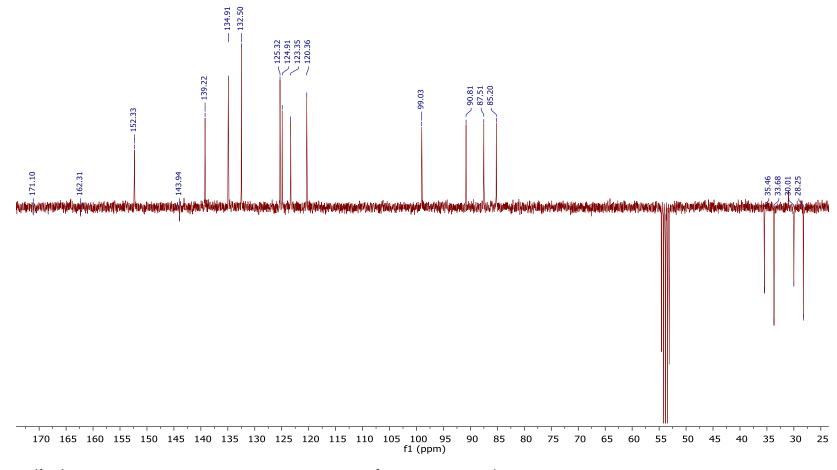




Figure S21. ¹³C{¹H} APT NMR (75 MHz, CD₂Cl₂, 298 K) for $[Ir(acac){\kappa^2-C, N-[C_6H_4-py]}(\eta^4-C_8H_{12})]BF_4$ (12).

Figure S22. ¹H-NMR (300 MHz, CD₂Cl₂, 298 K) for IrBr₂{ κ^2 -*C*,*N*-[C₆H₄-py]}(η^4 -C₈H₁₂) (**13**).

Figure S23. ¹³C{¹H} APT NMR (75 MHz, CD₂Cl₂, 298 K) for IrBr₂{ κ^2 -*C*,*N*-[C₆H₄-py]}(η^4 -C₈H₁₂) (13).

REFERENCES

(1) Blessing, R. H. Acta Crystallogr. **1995**, *A51*, 33. SADABS: Area-detector absorption correction; Bruker- AXS, Madison, WI, 1996.

(2) SHELXL-2016/6. Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.