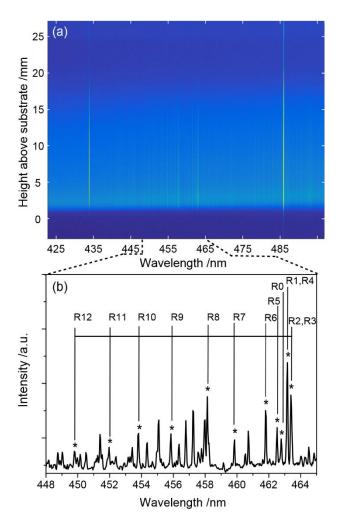
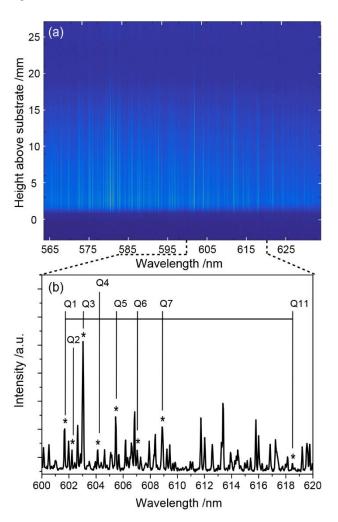
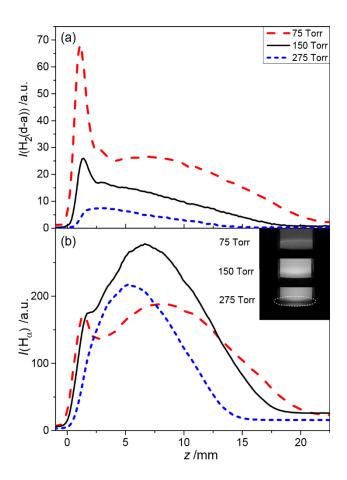
Supplementary Information to accompany:

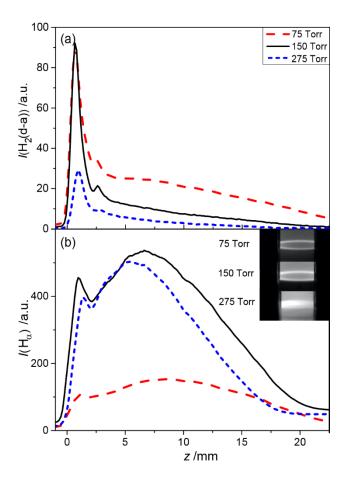

Spatially Resolved Optical Emission and Modelling Studies of Microwave-Activated Hydrogen Plasmas Operating under Conditions Relevant for Diamond Chemical Vapor Deposition

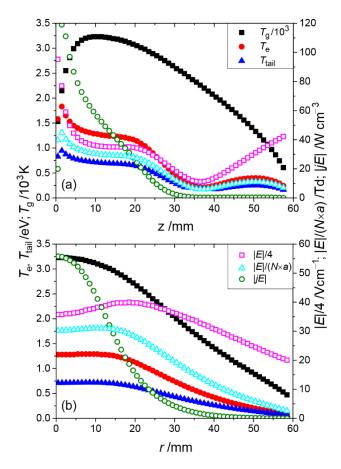
Edward J.D. Mahoney,^{1,2} Benjamin S. Truscott,^{1,a} Sohail Mushtaq,¹ Michael N.R. Ashfold,¹ and Yuri A. Mankelevich ³

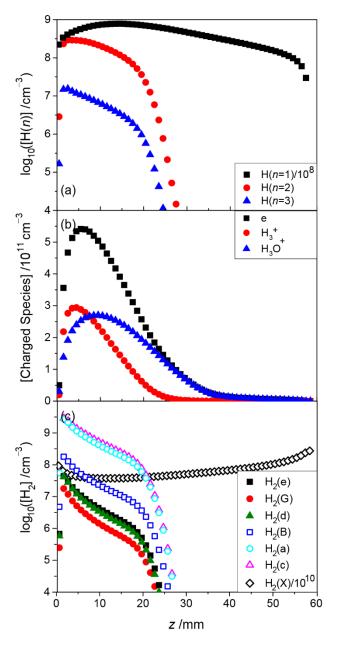

 ¹ School of Chemistry, University of Bristol, Bristol, U.K. BS8 1TS
² Centre for Doctoral Training in Diamond Science and Technology, University of Warwick, Gibbet Hill Road, Coventry, U.K., CV4 7AL
³ Skobel'tsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie gory, Moscow, 119991 Russia

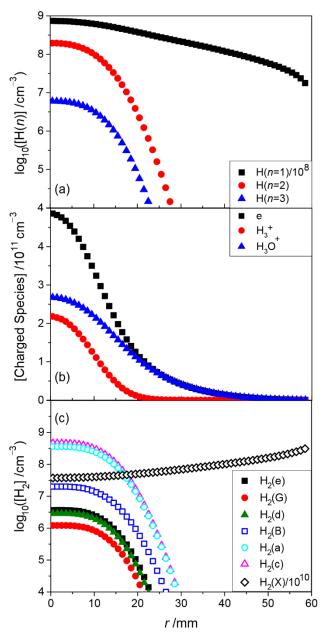
^a Present address: Element Six Global Innovation Centre, Harwell Campus, Fermi Ave, Didcot, U.K., OX11 0QR


(a) $I_{em}(\lambda, z)$ Image (where z = 0 defines the substrate surface) in the wavelength range 423-497 nm from a hydrogen plasma operating under base conditions: p = 150 Torr, P = 1.5 kW, $F(H_2) = 300$ sccm, $d_{sub} = 32$ mm and $d_{wire} = 0.01$ ". The strong lines at 434.0 nm and 486.1 nm are the H Balmer- γ and Balmer- β emissions. (b) $I_{em}(\lambda)$ plot of the summed emission intensities in the height range $3 \le z \le 6$ mm over the wavelength range $448 \le \lambda \le 465$ nm, with R branch lines of the G-B (0,0) band identified.

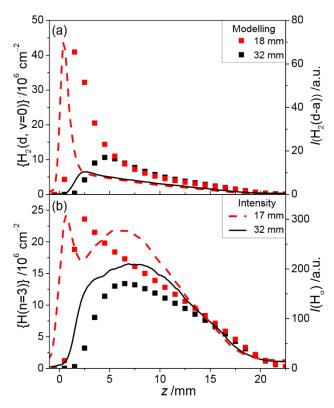

(a) $I_{em}(\lambda, z)$ image (where z = 0 defines the substrate surface) in the wavelength range 563-636 nm from a hydrogen plasma operating under base conditions: p = 150 Torr, P = 1.5 kW, $F(H_2) = 300$ sccm, $d_{sub} = 32$ mm and $d_{wire} = 0.01$ ". (b) $I_{em}(\lambda)$ plot of the summed emission intensities in the height range $3 \le z \le 6$ mm over the range $600 \le \lambda \le 620$ nm, with the utilised H₂ d-a (0,0) Q branch lines identified.


Spatial profiles of (a) $I_{em}(H_2^*, d-a)$ emission and (b) $I_{em}(H_\alpha)$ emission for a MW activated hydrogen plasma operating at three pressures with a substrate diameter $d_{sub} = 17$ mm, $d_{wire} = 0.004$ " and P = 0.9 kW. The relative intensities in any given plot are displayed on a common vertical scale. Tilt view images of the plasma above the substrate (indicated by the ellipse superposed on the p = 275 Torr image), aperture by the slot shaped viewing port, are shown in the inset in (b). The T_{sub} values at all three pressures were below our detection limit.


Spatial profiles of (a) $I_{em}(H_2^*, d-a)$ emission and (b) $I_{em}(H_\alpha)$ emission from a MW activated hydrogen plasma operating at three pressures with a substrate diameter $d_{sub} = 17$ mm, $d_{wire} = 0.004$ ", and P = 1.85 kW. The relative intensities in any given plot are displayed on a common vertical scale. The inset in (b) shows tilt view images of the plasma above the substrate, apertured by the slot shaped viewing port. The measured T_{sub} values are, respectively, below detection limit, 1020 °C and 1070 °C for p = 75 Torr (red), 150 Torr (black) and 275 Torr (blue).


Calculated (a) axial (z, r = 0) and (b) radial (z = 10.5 mm, r) distributions of T_g , T_e and T_{tail} (left hand axis) and the average absorbed MW power density |jE|, and electric |E| and reduced electric $|E|/(N \times a)$ fields (right hand axis) for $d_{sub} = 18 \text{ mm}$ and base conditions of p and P.

Calculated axial (*z*, r = 0) concentration distributions of (a) H(n = 1, 2, 3) atoms, (b) the dominant charged species and (c) the ground and selected excited states of H₂ for $d_{sub} = 18$ mm and base conditions of *p* and *P*. Note that the distributions in (a) and (c) are plotted on a logarithmic scale.


Calculated radial (z = 10.5 mm, r) concentration distributions of (a) H(n = 1, 2, 3) atoms, (b) the dominant charged species and (c) the ground and selected excited states of H₂ for $d_{sub} = 18$ mm and base conditions of p and P. Note that the distributions in (a) and (c) are plotted on a logarithmic scale.

Comparisons of the calculated column densities (symbols) and measured emission intensities (lines) of (a) H₂(G, v = 0) and (b) H₂(d, v = 0) molecules for p = 75 Torr (red), 150 Torr (black) and 250 Torr (blue), with P = 1.5 kW and $d_{sub} = 32$ mm.

Comparisons of the calculated column densities (symbols) and measured emission intensities (lines) of (a) H₂(d, v = 0) and (b) H(n = 3) atoms for $d_{sub} = 17(18)$ mm (in the experiment (in the modelling), in red) and $d_{sub} = 32$ mm (black), with P = 1.5 kW, p = 150 Torr and $d_{wire} = 0.01$ ".

