Supporting Information

Methionine-Containing Rhabdopeptide/Xenortide-like Peptides from Heterologous Expression of the Biosynthetic Gene Cluster *kj12ABC* in *Escherichia coli*

Lei Zhao,^{†,‡} Xiaofeng Cai,[†] Marcel Kaiser,^{§,⊥} and Helge B. Bode^{†, ∥,*}

[†]Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438
Frankfurt am Main, Germany
[‡]Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, 210014 Nanjing, China
[§]Parasite Chemotherapy, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
[⊥]University of Basel, 4003 Basel, Switzerland
[∥]Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, 60438
Frankfurt am Main, Germany

*Corresponding author: E-mail: h.bode@bio.uni-frankfurt.de

Supplementary Methods

Chemical synthesis

The synthesis was performed manually using stepwise solid phase peptide synthesis (SPPS) method.^{1,2} For a schematic overview see Scheme 1. Synthesis of compound 1 was shown as an example. At step a, the attachment of the C-terminal amine phenylethylamine (PEA) on the 2-(3,5dimethoxy-4-formylphenoxy)ethyl (DFPE) resin was carried out. A mixture of PEA (126 μ L, 1.0 mmol, 10 eq.) in 1.4 mL N,N-dimethylformamide (DMF)/MeOH/AcOH (80:19:1), NaBH₃CN (62.8 mg, 1.0 mmol, 10 eq.) and DFPE resin (95.2 mg, 0.1 mmol, 1 eq.) were placed in a 2 mL Eppendorf tube and incubated in a thermoshaker at 60 °C overnight. The resin was filtered, and subsequently washed with DMF (5 \times) and dichloromethane (DCM) (5 \times), and dried. At step **b**, acylation of N-Me-L-Val was conducted. A solution of Fmoc-N-Me-Val-OH (353.4 mg, 1.0 mmol, 10 N-[(dimethylamino)-1H-1,2,3-triazolo[4,5-b]-pyridino-1-ylmethylene]-Neq.), methylmethanaminium hexafluorophosphate (HATU) (381 mg, 1.0 mmol, 10 eq), 1-hydroxy-7azabenzotriazole (HOAt) (136 mg, 1.0 mmol, 10 eq) and N,N-diisopropylethylamine (DIPEA) (0.34 mL, 2.0 mmol, 20 eq.) in 2.0 mL DMF was added to resin. The resulting mixture was incubated in a plastic reactor vessel equipped with a Teflon frit at room temperature overnight. The resin was washed with DMF (5 \times) and DCM (5 \times) and treated with 20% piperidine in DMF (3 \times 10 min, 2 mL) to remove the Fmoc protecting group. Afterwards the resin was washed with DCM $(5 \times)$ and dried. At step c, N-Me-L-Met was coupled to peptide sequence. The coupling of Fmoc-*N*-Me-Met-OH was mediated by using the efficient and rapid BTC coupling reagent. The dried peptidyl resin (25 μ mol) was swollen with dry tetrahydrofuran (THF) (1 mL) for 15 min; meantime, in a separate flask, bis-(trichloromethyl)carbonate (BTC) (8.5 mg, 28.3 µmol, 1.15 eq.) was dissolved in dry THF (0.7 mL), and the Fmoc-N-Me-Met-OH (28.9 mg, 75 µmol, 3 eq.) was added to it, which resulted in a clear amino acid solution. Collidine $(34 \,\mu\text{L}, 250 \,\mu\text{mol}, 10 \,\text{eg.})$ was added to this clear solution, and a precipitate was immediately formed. This precipitate was added to the resin beads, which were pre-mixed with DIPEA (35 μ L, 200 μ mol, 8 eq.), and the whole reaction mixture was shaken at room temperature for 2 h. The resin was washed with DMF (5 \times) and DCM $(5 \times)$ and treated with 20% piperidine in DMF (3 \times 10 min, 2 mL) to remove the Fmoc protecting group. Afterwards the resin was washed with DCM (5 \times) and dried. At step d, The L-Val was coupled by using the HATU/HOAt coupling reagent. The dried peptidyl resin (25 μ mol) was swollen in DMF. A solution of Fmoc-Val-OH (25.5 mg, 75 μmol, 3 eq.), HATU (28.6 mg, 75 μmol, 3 eq.), HOAt (10.2 mg, 75 μ mol, 3 eq.) and DIPEA (25.5 μ L, 150 μ mol, 6 eq.) in 0.5 mL DMF was added to resin and shaken at room temperature overnight. The resin was washed with DMF (5 ×) and DCM (5 ×) and treated with 20% piperidine in DMF (3 × 10 min, 2 mL) to remove the Fmoc protecting group. Afterwards the resin was washed with DCM (5 ×) and dried. At step **e**, *N*-Me-L-Val was coupled to peptide sequence using the same method as step **c**. At the final step **f**, the peptide was cleaved from the resin. A total of 1 mL trifluoroacetic acid (TFA)/triisopropylsilane (TIS)/water (95:2.5:2.5) was added to the peptidyl resin (25 μ mol) and the mixture was agitated for at least 2 h at room temperature. The resin was removed by filtration and washed twice with TFA. The solution was concentrated *in vacuo*. The residue was purified by Agilent HPLC system. The structures of pure compounds were confirmed by HR-MS, 1D and 2D NMR.

Supplementary Tables

aammaumd	aum formula		natural		synthetic	
compound	sum formula	m/z calcd. $[M + H]^+$	m/z found $[M + H]^+$	Δ ppm	m/z found $[M + H]^+$	Δ ppm
1	$C_{31}H_{53}N_5O_4S$	592.3891	592.3887	0.7	592.3878	2.2
2	$C_{31}H_{53}N_5O_4S$	592.3891	592.3887	0.7	592.3886	0.8
3	$C_{31}H_{53}N_5O_4S$	592.3891	592.3882	1.5	592.3885	1.0
4	$C_{36}H_{62}N_6O_5S$	691.4575	691.4559	2.3	691.4564	1.6
5	$C_{37}H_{64}N_6O_5S$	705.4732	705.4717	2.1	705.4717	2.1
6	$C_{37}H_{64}N_6O_5S$	705.4732	705.4717	2.1	705.4723	1.2
7	$C_{37}H_{64}N_6O_5S$	705.4732	705.4727	0.7	705.4723	1.2
10	$C_{31}H_{53}N_5O_4$	560.4170	560.4164	1.2	560.4165	0.9
12	C37H64N6O5	673.5011	673.5000	1.7	673.5003	1.2

 Table S1. HR-MS data of natural and synthetic 1–7, 10 and 12

Table S2. ¹H (500 MHz) and ¹³C (125 MHz) NMR Data of 1 in Methanol- d_4 (δ in ppm, J in Hz)

	\mathbb{I}_{3}^{2} H		4 6
	5 4	4	5
		_S	
subunit	position	δς	$\delta_{ m H}$
N-Me-L-Val	1	168.1 (C)	011
	2	68.2 (CH)	3.68, d (5.5)
	$\frac{2}{3}$	31.7 (CH)	2.24–2.14, m
	4	18.8 (CH ₃)	1.07, d(6.3)
	5	18.7 (CH ₃)	1.03, d (6.9)
	N-CH ₃	33.3	2.65, s
L-Val	1	173.8 (C)	2.00, 5
L V WI	2	56.9 (CH)	4.70, d (7.6)
	3	31.6 (CH)	2.13–2.04, m
	4	18.6 (CH ₃)	1.01, d (6.8)
	5	19.9 (CH ₃)	0.99, d (6.8)
N-Me-L-Met	1	172.8 (C)	
	2	53.8 (CH)	5.64, dd (8.4, 6.1)
	3	29.5 (CH ₂)	2.04–1.96, 1.96–1.88, m
	4	31.4 (CH ₂)	2.39, t (7.2)
	S-CH ₃	15.4	2.07, s
	N-CH ₃	31.7	3.11, s
N-Me-L-Val	1	171.7 (C)	,
	2	64.0 (CH)	4.53, d (11.1)
	3	27.6 (CH)	2.24–2.14, m
	4	19.9 (CH ₃)	0.87, d (6.4)
	5	19.2 (CH ₃)	0.76, d (6.6)
	N-CH ₃	31.5	2.95, s
PEA	1	41.6 (CH ₂)	3.54–3.47, 3.41–3.33, m
	2	36.5 (CH ₂)	2.84–2.72, m
	3	140.5 (C)	
	4	130.0 (CH)	7.19, overlap
	5	129.7 (CH)	7.27, overlap
	6	127.6 (CH)	7.19, overlap
	7	129.7 (CH)	7.27, overlap
	8	130.0 (CH)	7.19, overlap

HN = 1 + N =

Table S3. ¹H (500 MHz) and ¹³C (125 MHz) NMR Data of 2 in Methanol- d_4 (δ in ppm, J in Hz)

		0 3 2 1	$H_{N} \stackrel{2}{\sim} \stackrel{8}{\sim} =$
	$\stackrel{1}{\underset{3}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset$		1 3 7
	5 4	0 0	4 5
			5
subunit	position	$\delta_{ m c}$	$\delta_{ m H}$
N-Me-L-Val	1	168.0 (qC)	
	2	68.2 (CH)	3.67, d (5.4)
	3	31.7 (CH)	2.20–2.12, m
	4	18.7 (CH ₃)	1.03, d (7.0)
	5	18.5 (CH ₃)	1.00, overlap
	N-CH ₃	33.3 (CH ₃)	2.63, s
L-Val	1	174.1 (qC)	
	2	56.7 (CH)	4.72, d (7.9)
	3	31.8 (CH)	2.11–2.01, m
	4	18.8 (CH ₃)	1.00, overlap
	5	19.8 (CH ₃)	0.95, d (6.8)
N-Me-L-Val	1	173.0 (qC)	
	2 3	59.7 (CH)	5.18, d (10.8)
		28.7 (CH)	2.45–2.25, m
	4	19.9 (CH ₃)	0.88, d (6.4)
	5	19.2 (CH ₃)	0.79, d (6.6)
	N-CH ₃	31.4 (CH ₃)	3.12, s
N-Me-L-Met	1	172.1 (qC)	
	2	57.3 (CH)	5.09, dd (9.7, 5.8)
	3	29.3 (CH ₂)	2.11–2.01, 1.92–1.82, m
	4	31.5 (CH ₂)	2.29, t (7.4)
	S-CH ₃	15.4 (CH ₃)	2.04, s
	N-CH ₃	32.2 (CH ₃)	2.97, s
PEA	1	41.9 (CH ₂)	3.42, t (7.2)
	2	36.6 (CH ₂)	2.77, t (7.2)
	3	140.5 (qC)	
	4	130.0 (CH)	7.19, overlap
	5	129.7 (CH)	7.26, overlap
	6	127.6 (CH)	7.19, overlap
	7	129.7 (CH)	7.26, overlap
	8	130.0 (CH)	7.19, overlap

Table S4. ¹H (500 MHz) and ¹³C (125 MHz) NMR Data of **3** in Methanol- d_4 (δ in ppm, J in Hz)

	H ₂ N	$\begin{array}{c c} 3 & 1 & 0 \\ 2 & 1 & N & 1 \end{array}$	H 2 8
	$\mathbb{N}_{\underline{\mathbb{Z}}}^{1}$	$ \underbrace{\prod_{i=3}^{2} 1 N^{i}}_{i=3} $	
	5 4	$0_{5}^{-3} 0$	4 6
	о _т	о т Т	5
subunit	position	$\delta_{ m c}$	$\delta_{ m H}$
L-Val	1	171.0 (qC)	
	2	57.1 (CH)	4.27, d (4.5)
	3	30.9 (CH)	2.24–2.16, m
	4	19.6 (CH ₃)	1.11, d (7.0)
	5	16.9 (CH ₃)	0.99, d (6.9)
N-Me-L-Met	1	172.6 (qC)	
	2	53.7 (CH)	5.73, t (7.3)
	3	29.0 (CH ₂)	2.16–2.09, 2.00–1.91, m
	4	31.4 (CH ₂)	2.54–2.41, m
	S-CH ₃	15.2 (CH ₃)	2.07, s
	N-CH ₃	31.7 (CH ₃)	3.08, s
N-Me-L-Val	1	172.5 (qC)	
	2	60.1 (CH)	5.09, d (10.8)
	3	28.7 (CH)	2.35–2.27, m
	4	20.0 (CH ₃)	0.88, d (6.5)
	5	19.0 (CH ₃)	0.79, d (6.7)
	N-CH ₃	31.1 (CH ₃)	3.03, s
N-Me-L-Val	1	171.8 (qC)	
	2	63.9 (CH)	4.57, d (11.1)
	3	27.8 (CH)	2.24–2.16, m
	4	19.9 (CH ₃)	0.86, d (6.6)
	5	19.2 (CH ₃)	0.76, d (6.7)
	N-CH ₃	31.5 (CH ₃)	2.99, s
PEA	1	41.7 (CH ₂)	3.50–3.35, m
	2	36.6 (CH ₂)	2.79–2.74, m
	3	140.4 (qC)	
	4	129.9 (CH)	7.19, overlap
	5	129.7 (CH)	7.26, overlap
	6	127.6 (CH)	7.19, overlap
	7	129.7 (CH)	7.26, overlap
	8	129.9 (CH)	7.19, overlap

S

Table S5. ¹H (500 MHz) and ¹³C (125 MHz) NMR Data of 4 in Methanol- d_4 (δ in ppm, J in Hz)

5	4 5	4 2 5	4
	$ \int_{2}^{3} \int_{1}^{1} \int_{N}^{0} \int_{M}^{0} $	$ \underbrace{)}_{2}^{3} \underbrace{ }_{1} \underbrace{N} \underbrace{)}_{2} \underbrace{)}_{1}^{3} \underbrace{)}_{2} \underbrace{)}_{2}^{3} \underbrace{)}_{2} \underbrace{)}_{2}$	$H_{1,N} \stackrel{2}{\sim} \stackrel{8}{\sim} -$
H_2N^2		$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\$	
	0 3	0_{5}^{-3} -3_{4}^{-3} -0_{5}^{-3}	
	,S		5
	/		
subunit	position	$\delta_{ m c}$	$\delta_{ m H}$
L-Val	1	171.5 (qC)	
	2	57.1 (CH)	4.22, d (5.0)
	3	31.1 (CH)	2.25–2.13, m
	4	19.5 (CH ₃)	1.11, d (7.0)
	5	17.1 (CH ₃)	1.01, d (6.9)
N-Me-L-Met	1	172.0 (qC)	
	2	57.5 (CH)	5.20, d (7.1)
	3	$29.7 (CH_2)$	2.25–2.13, 2.00–1.91, m
	4	31.4 (CH ₂)	2.43, t (7.4)
	S-CH ₃	15.4 (CH ₃)	2.09, s
r Vol	N-CH ₃	$32.0 (CH_3)$	3.09, s
L-Val	$\frac{1}{2}$	174.6 (qC)	160 + (91)
	2 3	56.5 (CH)	4.60, d (8.4)
	3 4	31.7 (CH) 18.8 (CH ₃)	2.08–2.00, m 0.93, overlap
	5	19.9 (CH ₃)	0.93, overlap
N-Me-L-Val	1	172.8 (qC)	0.91, 0venap
IN-INIC-L- V al	2	59.8 (CH)	5.18, d (10.7)
	3	29.0 (CH)	2.36–2.27, m
	4	19.9 (CH ₃)	0.87, overlap
	5	18.9 (CH ₃)	0.81, d (6.7)
	N-CH ₃	31.4 (CH ₃)	3.11, s
N-Me-L-Val	1	171.8 (qC)	5.11, 5
1 1 1 1 2 1 1 1	2	63.8 (CH)	4.58, d (11.1)
	3	27.7 (CH)	2.25–2.13, m
	4	19.8 (CH ₃)	0.87, overlap
	5	19.0 (CH ₃)	0.74, d (6.7)
	N-CH ₃	31.6	3.03, s
PEA	1	41.7 (CH ₂)	3.49–3.36, m
	2	36.7 (CH ₂)	2.77, t (7.2)
	3	140.4 (qC)	
	4	129.9 (CH)	7.19, overlap
	5	129.7 (CH)	7.26, overlap
	6	127.6 (CH)	7.19, overlap
	7	129.7 (CH)	7.26, overlap
	8	129.9 (CH)	7.19, overlap

8

-		S	/
5	$ \begin{array}{c} \begin{array}{c} 4 \\ 3 \\ 2 \\ 1 \\ \end{array} \begin{array}{c} 4 \\ H \\ \end{array} \begin{array}{c} 0 \\ 1 \\ \end{array} \end{array} $	$\begin{array}{c c} 3 \\ 3 \\ 2 \\ N \\ \end{array} $ $\left \begin{array}{c} 0 \\ 1 \\ 3 \\ 2 \\ \end{array} \right $	H 2 8
HN	12 1 N 1 N		H 2 8 7
	5 4	5 4	5
subunit	position	$\delta_{ m c}$	$\delta_{ m H}$
N-Me-L-Val	1	168.0 (qC)	
	2	68.3 (CH)	3.68, d (5.3)
	3	31.7 (CH)	2.21–2.12, m
	4	18.7 (CH ₃)	1.05, d (7.0)
	5	18.5 (CH ₃)	1.02, d (6.9)
	N-CH ₃	33.3 (CH ₃)	2.65, s
L-Val	1	174.1 (qC)	
	2	56.7 (CH)	4.76, d (7.6)
	3	31.7 (CH)	2.11–2.03, m
	4	18.7 (CH ₃)	1.02, d (6.9)
	5	19.9 (CH ₃)	0.99, d (6.7)
N-Me-L-Val	1	172.3 (qC)	
	2	59.8 (CH)	5.20, d (10.8)
	3	28.7 (CH)	2.37–2.25, m
	4	20.0 (CH ₃)	0.88, d (6.4)
	5	19.1 (CH ₃)	0.81, overlap
	N-CH ₃	31.3 (CH ₃)	3.16, s
N-Me-L-Val	1	172.8 (qC)	
	2	59.9 (CH)	5.17, d (10.8)
	3	28.7 (CH)	2.37–2.25, m
	4	20.1 (CH ₃)	0.92, d (6.4)
	5	18.8 (CH ₃)	0.79, overlap
	N-CH ₃	31.5 (CH ₃)	3.02, s
N-Me-L-Met	1	172.2 (qC)	
	2	57.5 (CH)	5.10, dd (9.8, 5.6)
	3	29.2 (CH ₂)	2.11–2.03, 1.96–1.80, m
	4	31.5 (CH ₂)	2.37–2.25, m
	S-CH ₃	$15.4 (CH_3)$	2.06, s
	N-CH ₃	$32.2 (CH_3)$	2.96, s
PEA	1	$42.0 (CH_2)$	3.46-3.41, m
	2	$36.6 (CH_2)$	2.79, dd (8.8, 5.5)
	3	140.5 (qC)	7.20 overlar
	4	130.0 (CH) 120.7 (CH)	7.20, overlap
	5	129.7 (CH)	7.28, overlap
	6	127.6 (CH) 120.7 (CH)	7.20, overlap
	7 8	129.7 (CH) 130.0 (CH)	7.28, overlap
	0	130.0 (CH)	7.20, overlap

Table S6. ¹H (500 MHz) and ¹³C (125 MHz) NMR Data of **5** in Methanol- d_4 (δ in ppm, J in Hz)

Table S7. ¹H (500 MHz) and ¹³C (125 MHz) NMR Data of 6 in Methanol- d_4 (δ in ppm, J in Hz)

	$ \begin{array}{c} 5 \\ 3 \\ HN \end{array} \begin{array}{c} 4 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$S = \begin{bmatrix} S \\ 3 \\ 2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 2 \\ 1 \\ 0 \end{bmatrix}$	H 2 8 7
		0 <u>=</u> 3	
subunit	position	$\delta_{ m c}$	$\delta_{ m H}$
N-Me-L-Val	1	169.1 (qC)	
	2	68.6 (CH)	3.55, d (5.6)
	3	31.9 (CH)	2.24–2.01, m
	4 5	$19.0 (CH_3)$	1.04, overlap
	S N-CH ₃	18.8 (CH ₃) 33.5 (CH ₃)	1.02, overlap 2.60, s
L-Val	1	174.0 (qC)	2.00, 5
L- v ai	2	56.8 (CH)	4.70, d (8.0)
	3	31.6 (CH)	2.24–2.01, m
	4	18.8 (CH ₃)	1.02, overlap
	5	19.8 (CH ₃)	0.99, overlap
N-Me-L-Met	1	172.6 (qC)	, F
	2	53.3 (CH)	5.76, t (7.3)
	3	29.2 (CH ₂)	2.24–2.01, 1.93–1.84, m
	4	31.3 (CH ₂)	2.47–2.36, m
	S-CH ₃	15.2 (CH ₃)	2.03, s
	N-CH ₃	31.8 (CH ₃)	3.17, s
N-Me-L-Val	1	172.5 (qC)	
	2	60.1 (CH)	5.10, d (10.7)
	3	28.7 (CH)	2.36–2.27, m
	4	20.1 (CH ₃)	0.89, d (6.4)
	5	18.9 (CH ₃)	0.80, d (6.8)
	N-CH ₃	31.1 (CH ₃)	3.01, s
N-Me-L-Val	1	171.8 (qC)	
	2 3	63.9 (CH)	4.57, d (11.1)
	3 4	27.8 (CH)	2.24-2.01, m
	5	19.9 (CH ₃) 19.2 (CH ₃)	0.86, d (6.5) 0.76, d (6.6)
	N-CH ₃	31.5 (CH ₃)	2.99, s
PEA	1	41.7 (CH ₂)	3.51–3.35, m
	2	36.7 (CH ₂)	2.80–2.72, m
	3	140.4 (qC)	,
	4	129.9 (CH)	7.19, overlap
	5	129.7 (CH)	7.26, overlap
	6	127.6 (CH)	7.19, overlap
	7	129.7 (CH)	7.26, overlap
	8	129.9 (CH)	7.19, overlap

Table S8. ¹H (500 MHz) and ¹³C (125 MHz) NMR Data of 7 in Methanol- d_4 (δ in ppm, J in Hz)

	54 5	4 5	4
	3 1 0	$\int_2^3 \int 0$	
Н	$_{2}N$ $\stackrel{-1}{\underset{}{1}}N$ $\stackrel{-1}{\underset{}{2}}1$ $\stackrel{-1}{N}$		$\frac{1}{1}$ N $\frac{1}{3}$ $\frac{1}{1}$ $\frac{1}{7}$
	4	5 4	5
	_S		
subunit	position	$\delta_{ m c}$	$\delta_{ m H}$
L-Val	1	171.1 (qC)	
	2	57.1 (CH)	4.26, d (4.5)
	2 3	30.9 (CH)	2.24–2.04, m
	4	19.6 (CH ₃)	1.11, d (7.0)
	5	16.9 (CH ₃)	0.99, d (6.9)
N-Me-L-Met	1	172.7 (C)	
	2	53.7 (CH)	5.74, t (7.3)
	3	28.9 (CH ₂)	2.24–2.04, 2.02–1.93, m
	4	31.4 (CH ₂)	2.55–2.42, m
	S-CH ₃	15.2 (CH ₃)	2.08, s
	N-CH ₃	31.7 (CH ₃)	3.09, s
N-Me-L-Val	1	172.0 (qC)	
	2	60.1 (CH)	5.12, d (10.8)
	3	28.5 (CH)	2.37–2.27, m
	4	20.0 (CH ₃)	0.88, overlap
	5	18.9 (CH ₃)	0.79, overlap
	N-CH ₃	31.0 (CH ₃)	3.05, s
N-Me-L-Val	1	172.6 (qC)	
	2	59.9 (CH)	5.15, d (10.8)
	3	28.9 (CH)	2.37–2.27, m
	4	20.0 (CH ₃)	0.88, overlap
	5	$18.9 (CH_3)$	0.79, overlap
NTNG - 171	N-CH ₃	31.3 (CH ₃)	2.99, s
N-Me-L-Val	1	171.8 (C)	
	2 3	63.8 (CH)	4.57, d (11.1)
		27.7 (CH)	2.24–2.04, m
	4	19.9 (CH ₃)	0.86, overlap
	5 N CH	$18.9 (CH_3)$	0.73, d (6.7)
	N-CH ₃	31.6 (CH ₃)	3.02, s
PEA	1	41.7 (CH ₂) 36.7 (CH ₂)	3.50–3.35, m 2.80–2.72, m
	2 3	140.4 (qC)	2.00–2.72, 111
	3 4	140.4 (qC) 129.9 (CH)	7.19, overlap
	4 5	129.9 (CH) 129.7 (CH)	7.26, overlap
	6	129.7 (CH) 127.6 (CH)	7.19, overlap
	7	127.0 (CH) 129.7 (CH)	7.26, overlap
	8	129.7 (CH) 129.9 (CH)	7.19, overlap
	0	127.7 (011)	7.17, 0venap

Table S9. ¹H (500 MHz) and ¹³C (125 MHz) NMR Data of 10 in Methanol- d_4 (δ in ppm, J in Hz)

	HN, 1, 21	N \downarrow 2 1 N	2 8 -
	$\overset{2}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{$	\rightarrow $\stackrel{2}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{2}{\overset{1}{\overset{1}{\overset$	1 3 7
	5 <u>-3</u> <u>-</u> 0	5 4 0	4 6
	5 4	5 4	5
subunit	position	δc	$\delta_{ m H}$
N-Me-L-Val	1	168.8 (qC)	
	2	68.6 (CH)	3.58, d (5.4)
	3	31.8 (CH)	2.16–2.09, m
	4	18.8 (CH ₃)	1.03, d (6.5)
	5	18.7 (CH ₃)	1.00, overlap
	N-CH ₃	33.5 (CH ₃)	2.60, s
L-Val	1	174.2 (qC)	-
	2	56.6 (CH)	4.73, d (7.9)
	3	31.8 (CH)	2.09–2.02, m
	4	18.8 (CH ₃)	1.00, overlap
	5	19.8 (CH ₃)	0.95, d (6.8)
N-Me-L-Val	1	172.9 (qC)	
	2	59.6 (CH)	5.19, d (10.8)
	3	28.9 (CH)	2.35–2.27, m
	4	19.8 (CH ₃)	0.86, d (5.9)
	5	19.2 (CH ₃)	0.80, d (6.7)
	N-CH ₃	31.4 (CH ₃)	3.15, s
N-Me-L-Val	1	171.8 (qC)	
	2	63.8 (CH)	4.58, d (11.1)
	3	27.7 (CH)	2.24–2.16, m
	4	19.8 (CH ₃)	0.86, d (5.9)
	5	19.0 (CH ₃)	0.74, d (6.7)
	N-CH ₃	31.7 (CH ₃)	3.05, s
PEA	1	41.7 (CH ₂)	3.48–3.35, m
	2	36.7 (CH ₂)	2.76, t (7.3)
	3	140.4 (qC)	. ,
	4	129.9 (CH)	7.19, overlap
	5	129.7 (CH)	7.26, overlap
	6	127.6 (CH)	7.19, overlap
	7	129.7 (CH)	7.26, overlap
	8	129.9 (CH)	7.19, overlap

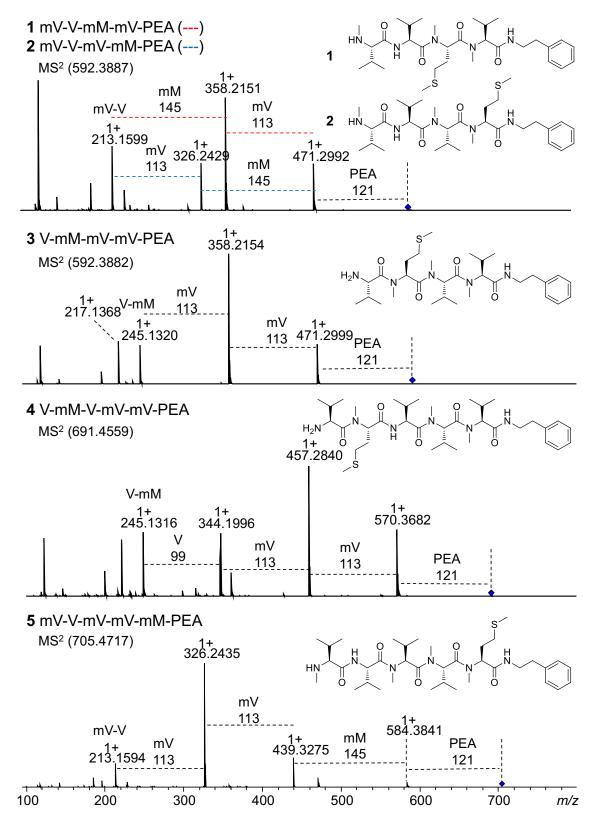
 $\begin{array}{c|c} 0 & 5 & 4 & 0 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 & 8 \end{array}$

Table S10. ¹H (500 MHz) and ¹³C (125 MHz) NMR Data of **12** in Methanol- d_4 (δ in ppm, J in Hz)

	$\begin{array}{c} 5 \\ HN \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	$ \overset{4}{\underset{0}{\overset{1}{\underset{1}{\overset{1}{\underset{1}{\overset{3}{\underset{1}{\overset{3}{\underset{5}{\overset{3}}{\underset{5}{\overset{3}{\underset{5}{\overset{3}{\underset{5}{\overset{3}}{\underset{5}{\overset{3}{\underset{5}{\overset{3}}{\underset{5}{\overset{3}{\underset{5}{\overset{3}{\underset{5}{\overset{3}}{\underset{5}{\overset{3}{\underset{5}{\overset{3}{\atop5}{\underset{5}{\atop5}{\overset{3}}{\underset{5}{\atop5}{\overset{3}}{\underset{5}{\atop5}{\overset{3}}{\underset{5}{\atop5}{\overset{3}}{\underset{5}{\atop5}{\overset{3}}{\underset{5}{\atop5}{\atop5}{\atop5}{\atop5}{\atop5}{\atop5}{\\5}}}}}}}}} } } } $
subunit	position	$\delta_{ m c}$	$\delta_{ m H}$
N-Me-L-Val	1	168.6 (qC)	
	2	68.5 (CH)	3.61, d (5.3)
	3	31.8 (CH)	2.24–2.12, m
	4	18.7 (CH ₃)	1.01, overlap
	5	18.6 (CH ₃)	1.01, overlap
	N-CH ₃	33.5 (CH ₃)	2.61, s
L-Val	1	174.2 (qC)	
	2	56.6 (CH)	4.76, d (7.7)
	3	31.7 (CH)	2.11–2.03, m
	4	18.8 (CH ₃)	1.01, overlap
	5	20.0 (CH ₃)	0.98, overlap
N-Me-L-Val	1	172.4 (qC)	
	2	59.8 (CH)	5.20, d (10.8)
	3	28.7 (CH)	2.37–2.26, m
	4	19.9 (CH ₃)	0.86, overlap
	5	19.0 (CH ₃)	0.78, overlap
	N-CH ₃	31.3 (CH ₃)	3.15, s
N-Me-L-Val	1	172.7 (qC)	
	2	59.7 (CH)	5.18, d (10.8)
	3	28.9 (CH)	2.37–2.26, m
	4	19.9 (CH ₃)	0.86, overlap
	5 N CH	19.0 (CH ₃)	0.78, overlap
	N-CH ₃	31.5 (CH ₃)	3.04, s
N-Me-L-Val	1	171.8 (qC)	4 57 4 (11 1)
	2	63.8 (CH)	4.57, d (11.1)
	3	27.7 (CH)	2.24–2.12, m
	4 5	19.9 (CH ₃)	0.86, overlap 0.74, d (6.66)
		19.1 (CH ₃)	. ,
PEA	N-CH ₃	$31.6 (CH_3)$	3.04, s 3.49–3.35, m
I LA	$\frac{1}{2}$	41.7 (CH ₂) 36.7 (CH ₂)	2.76, m
	3	140.4 (qC)	2.70, 111
	4	129.9 (CH)	7.19, overlap
	5	129.9 (CH) 129.7 (CH)	7.19, overlap 7.26, overlap
	6	129.7 (CH) 127.6 (CH)	7.19, overlap
	7	129.7 (CH)	7.26, overlap
	8	129.9 (CH)	7.19, overlap
	0	127.7 (011)	7.12, 0venap

strain	relevant Genotype	reference
E. coli DH10B MtaA	F-mcrA, Δ (<i>mrr-hsd</i> RMS- <i>mcr</i> BC), Φ 80 <i>lac</i> Z Δ M15, Δ <i>lac</i> X74,	3,4
	recA1, endA1, araD139, Δ (ara leu)7697, galU, galK, rpsL,	
	$nupG, \lambda$ -, $entD::mtaA$	
Xenorhabdus KJ12.1	wild type	3

Table S11. Bacterial strains used in this study


Table S12. Plasmids used in this study

plasmid	description	reference
pCOLA-ara-tacI	3,345 bp, modified from pCOLA_tacI/I that contains	3
	arabinose-inducible promotor and kanamycin resistance gene	
	(Km ^R)	
pCDF-ara-tacI	3,404 bp, modified from pCDF_tacI/I that contains arabinose-	3
	inducible promoter and spectinomycin resistance gene (Sm ^R)	
pCX3	16,107 bp, kj12ABC gene cluster from Xenorhabdus KJ12.1	3
	genomic DNA assembled into pCOLA-ara-tacI, Km ^R	
pLZ59	3566 bp, MbtH gene from Xenorhabdus KJ12.1 genomic DNA	this work
	assembled into pCDF-ara-tacI, Sm ^R	
pLZ60	3566 bp, MbtH gene from E. coli DH10B MtaA genomic DNA	this work
	assembled into pCDF-ara-tacI, Sm ^R	

Table S13. Primers used in this study

primer	sequence (5'-3')	targeting DNA fragment	plasmid
XC252-Fw XC252-Rv	AATTCCATGGAACAATTAACCGGAAATG ATGATTAATTGTTAGTGCATATCAGTCTGCT TTTTAG	<i>MbtH</i> from <i>Xenorhabdus</i> KJ12.1 (218 bp)	pLZ59
XC253-Fw XC253-Fw	AGACTGATATGCACTAACAATTAATCATCG GCTCGTATAATG ATTTCCGGTTAATTGTTCCATGGAATTCCTC CTGTTAGC	pCDF-ara-tacI vector backbone (3,403 bp)	
LZ_160 LZ_161	ATGGCATTCAGTAATCCCTTCGATG TCATTGTGCCTCCTGCAACTG	<i>MbtH</i> from <i>E. coli</i> DH10B MtaA (219 bp)	pLZ60
LZ_162 LZ_163	AATTTTACCCAGTTGCAGGAGGCACAATGA CAATTAATCATCGGCTCGTATAATG TGCGGATCATCGAAGGGATTACTGAATGCC ATGGAATTCCTCCTGTTAGCCC	pCDF-ara-tacI vector backbone (3,427 bp)	

Supplementary Figures

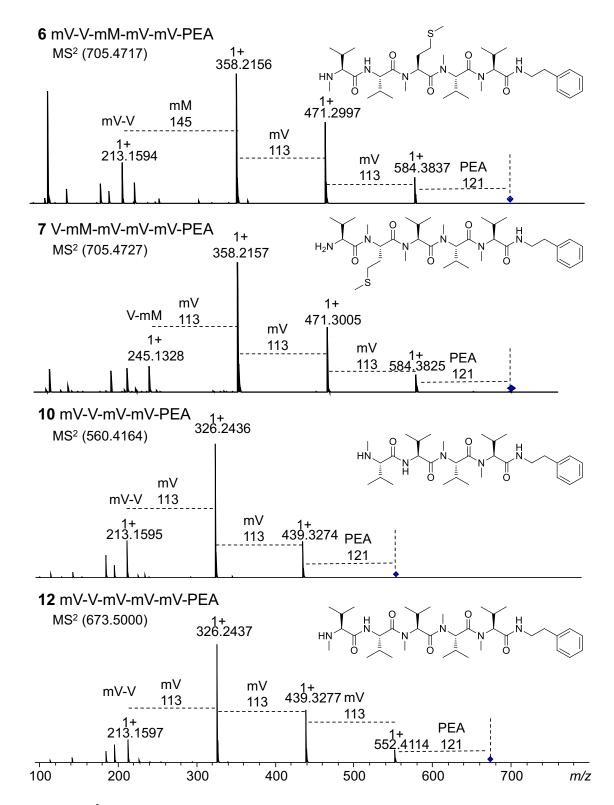
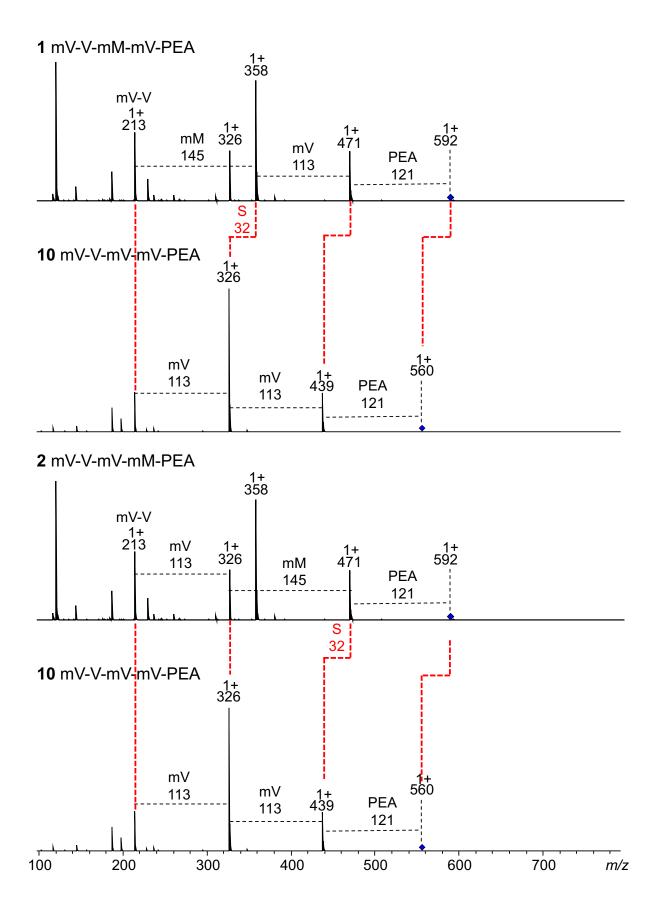
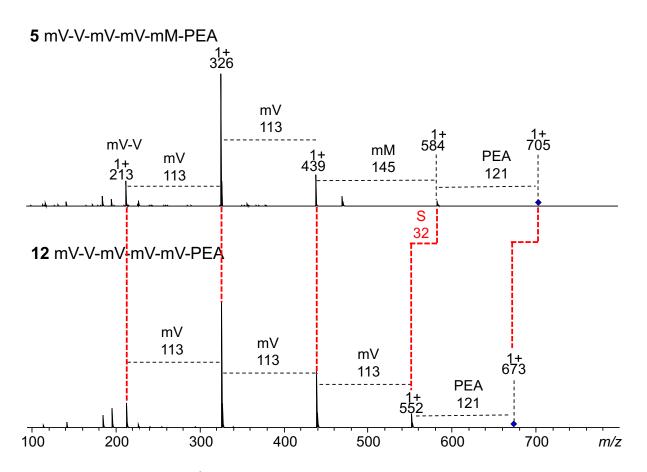
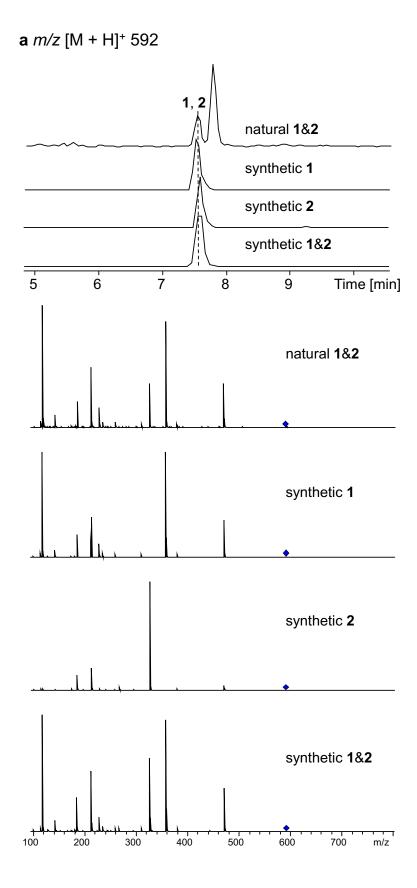
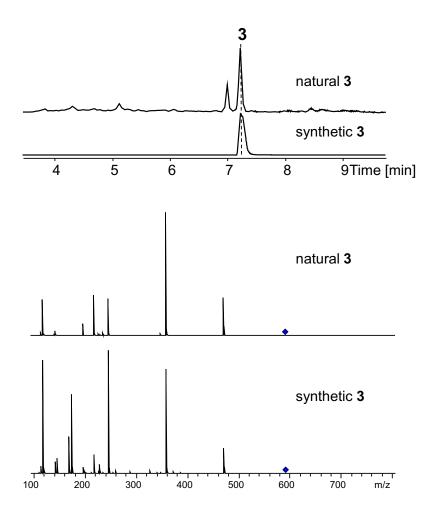
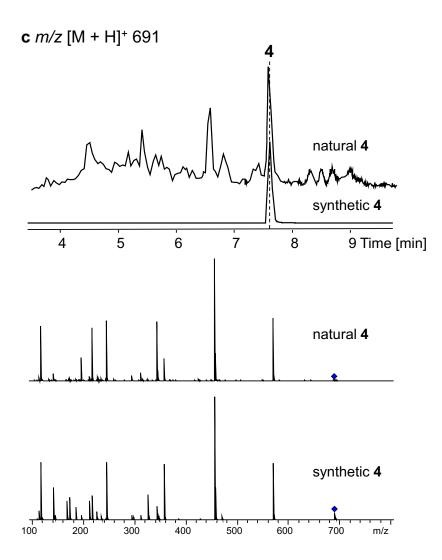
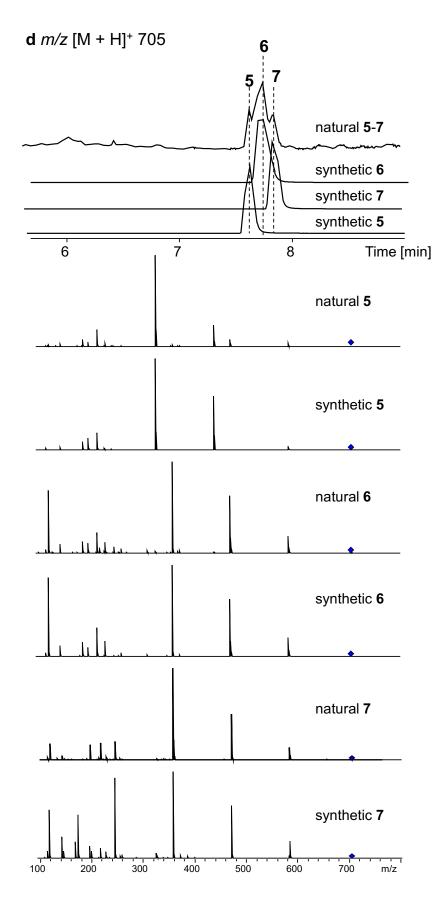
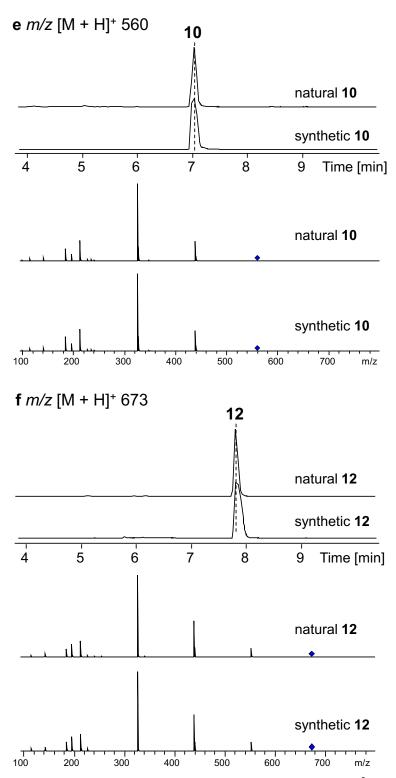
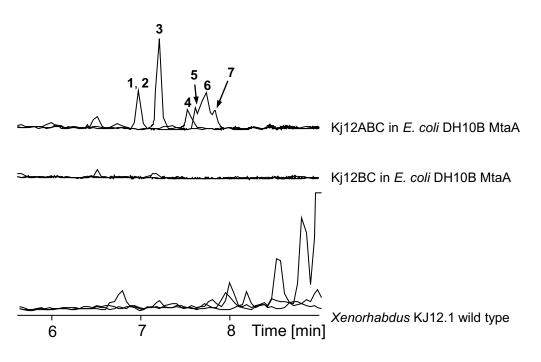



Figure S1. MS² fragmentation patterns of natural 1–7, 10 and 12.


Figure S2. Comparative MS² fragmentation patterns of methionine-containing compounds 1, 2 and 5 with corresponding value-substituted compounds 10 and 12.



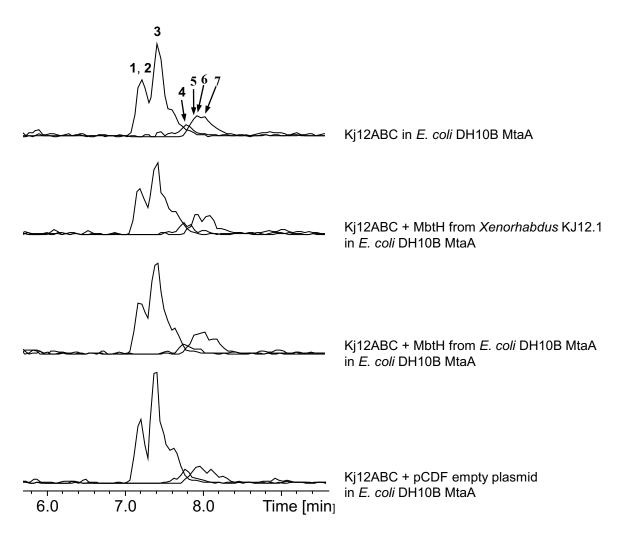


Figure S3. Extracted ion chromatograms (EICs) and the corresponding MS² fragmentation patterns of natural and synthetic 1–7, 10 and 12 by HPLC-HR-MS/MS analysis. (a) m/z [M + H]⁺ 592 for compounds 1 and 2 (EIC from HPLC-ESI-MS analysis). (b) m/z [M + H]⁺ 592 for compound 3; (c) m/z [M + H]⁺ 691 for compound 4; (d) m/z [M + H]⁺ 705 for compounds 5–7; (e) m/z [M + H]⁺ 560 for compound 10; (f) m/z [M + H]⁺ 673 for compound 12.

Figure S4. Extracted ion chromatograms (EICs) for methionine-containing rhabdopeptide/xenortide-like peptides (1–7) produced from the expression of Kj12ABC and Kj12BC in *E. coli* DH10B MtaA and wild type strains by HPLC-HR-MS analysis.

Figure S5. Extracted ion chromatograms (EICs) for methionine-containing rhabdopeptide/xenortide-like peptides (1–7) produced from the overexpression of *mbtH* of *Xenorhabdus* KJ12.1 and *E. coli* DH10B MtaA in *E. coli* DH10B MtaA strain by HPLC-ESI-MS analysis. All chromatograms were drawn to the same scale.

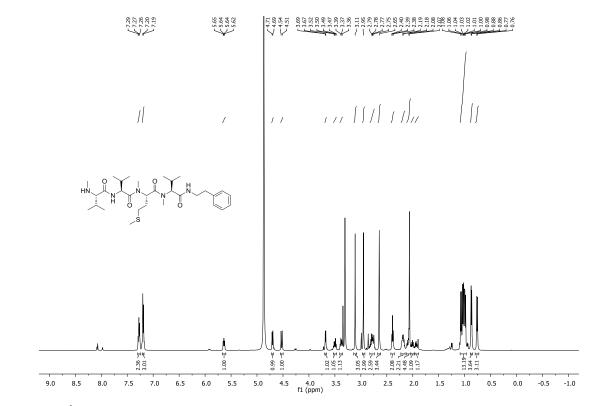


Figure S6. ¹H NMR (500 MHz, methanol-*d*₄) spectrum of 1

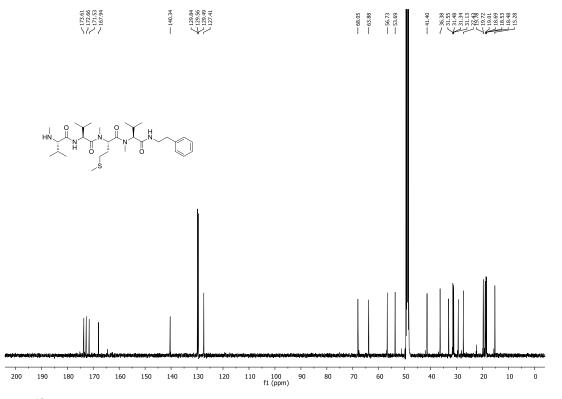


Figure S7.¹³C NMR (125 MHz, methanol-*d*₄) spectrum of 1

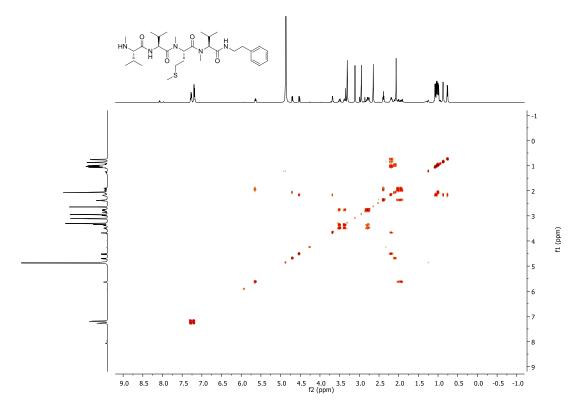


Figure S8. COSY (methanol-*d*₄) spectrum of 1

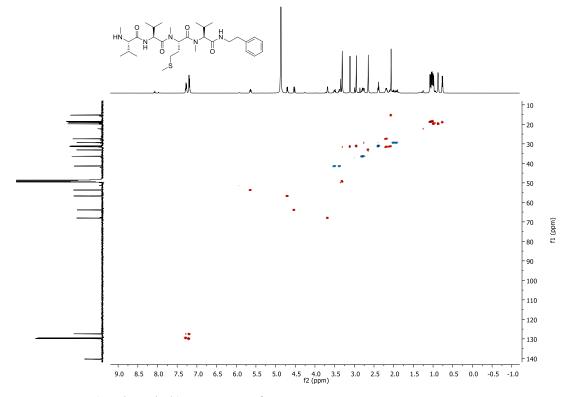


Figure S9. HSQC (methanol-d₄) spectrum of 1

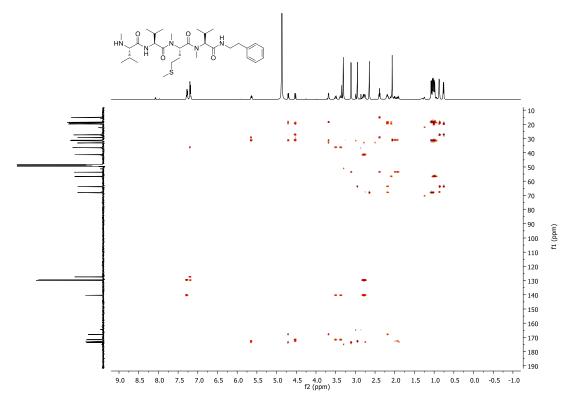


Figure S10. HMBC (methanol-*d*₄) spectrum of 1

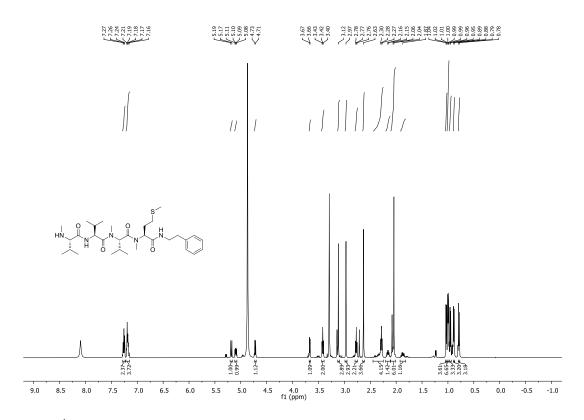


Figure S11. ¹H NMR (500 MHz, methanol-*d*₄) spectrum of 2

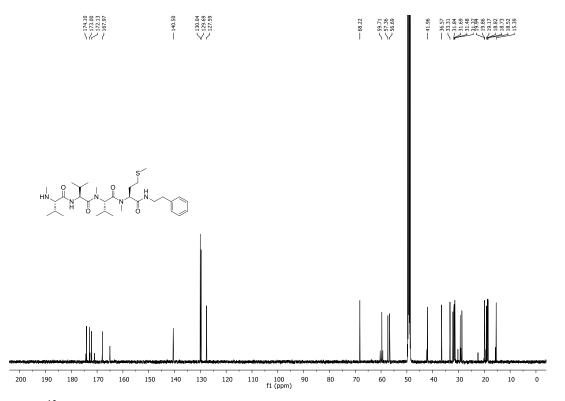


Figure S12. ¹³C NMR (500 MHz, methanol-*d*₄) spectrum of 2

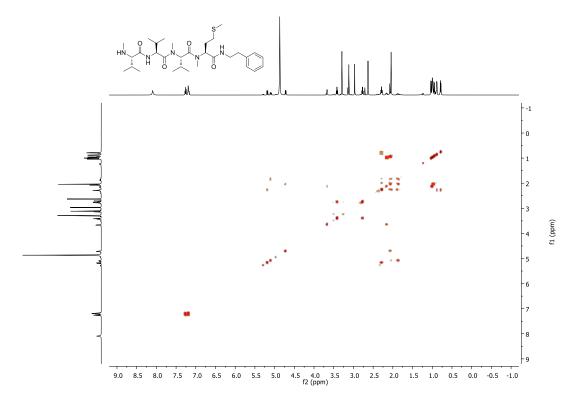


Figure S13. COSY (methanol-d₄) spectrum of 2



Figure S14. HSQC (methanol-d₄) spectrum of 2

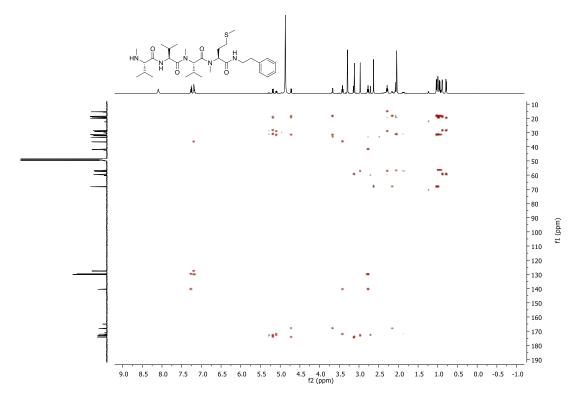


Figure S15. HMBC (methanol-*d*₄) spectrum of 2

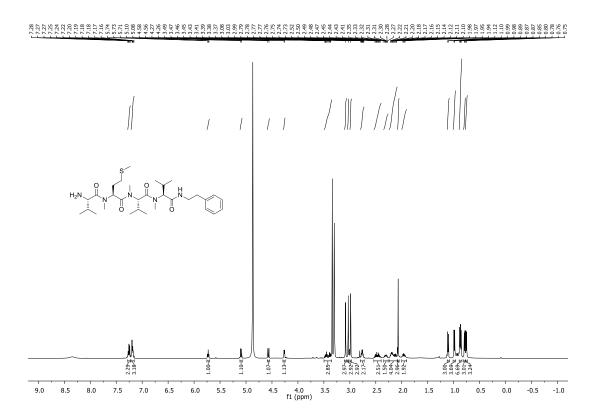


Figure S16. ¹H NMR (500 MHz, methanol-*d*₄) spectrum of **3**

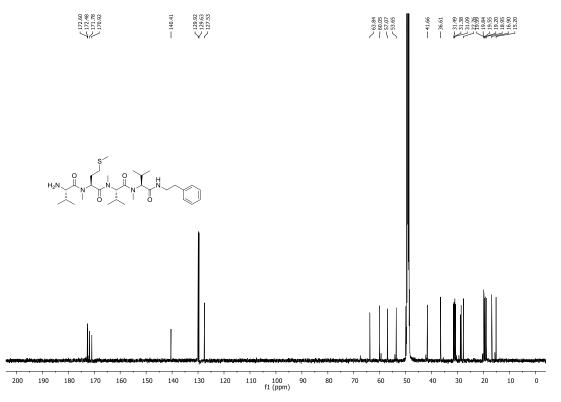


Figure S17. ¹³C NMR (125 MHz, methanol-*d*₄) spectrum of **3**

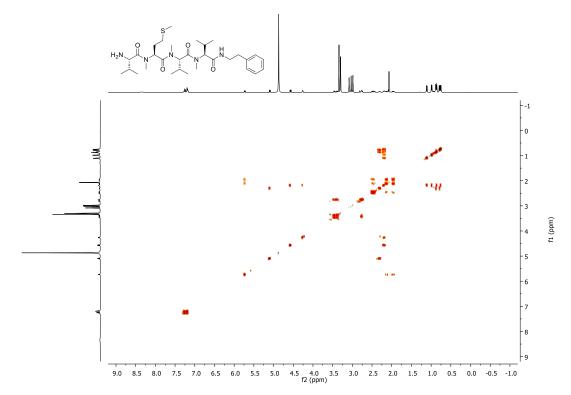


Figure S18. COSY (methanol-d₄) spectrum of 3

Figure S19. HSQC (methanol-*d*₄) spectrum of 3

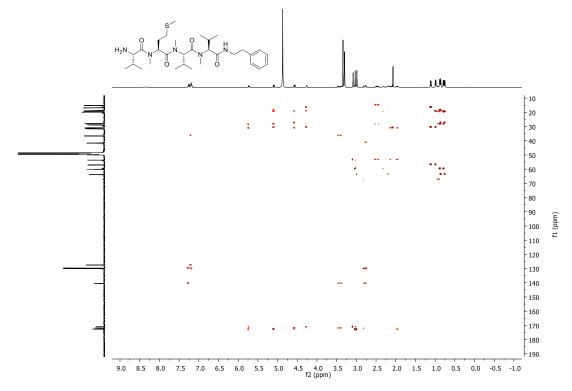


Figure S20. HMBC (methanol-*d*₄) spectrum of 3

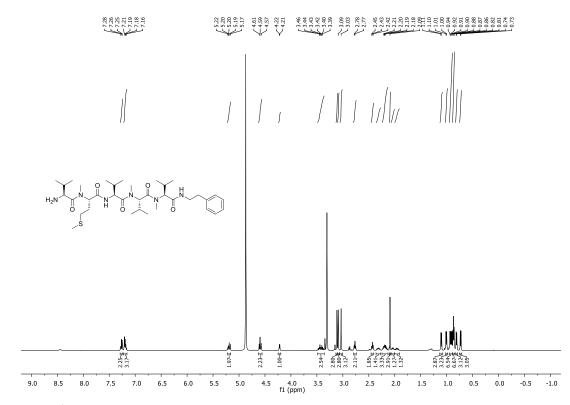


Figure S21. ¹H NMR (500 MHz, methanol-*d*₄) spectrum of 4

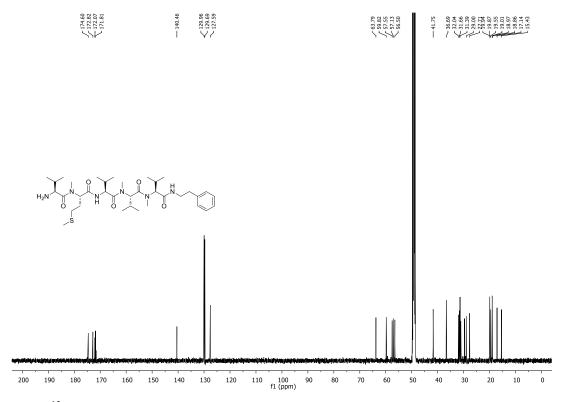


Figure S22. ¹³C NMR (125 MHz, methanol-*d*₄) spectrum of 4

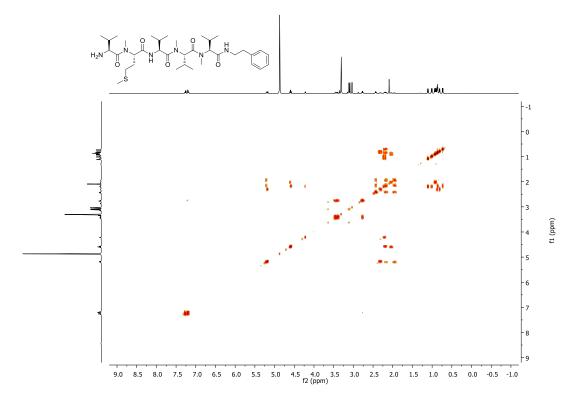


Figure S23. COSY (methanol-d₄) spectrum of 4

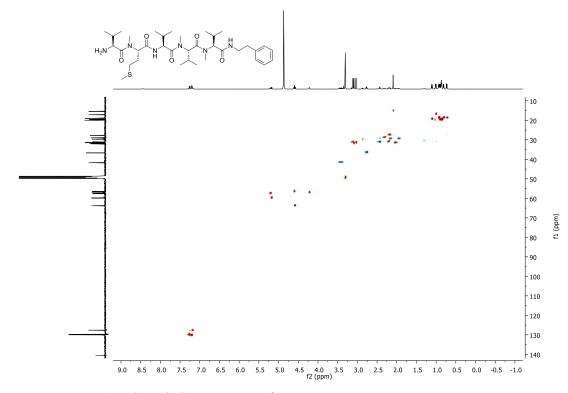


Figure S24. HSQC (methanol-*d*₄) spectrum of 4

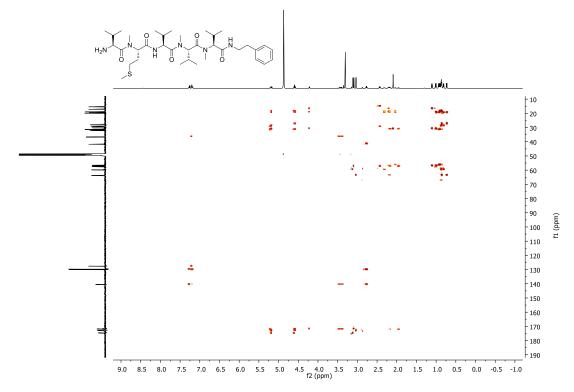


Figure S25. HMBC (methanol-*d*₄) spectrum of 4

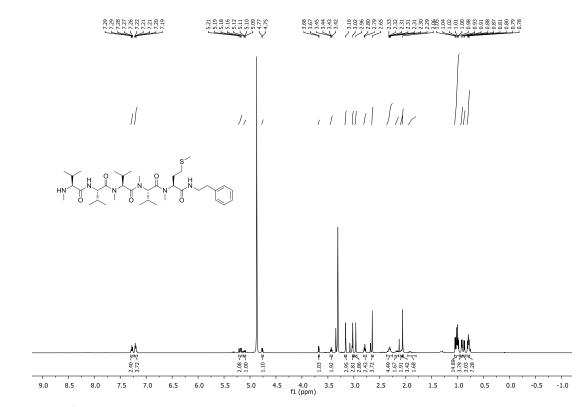


Figure S26. ¹H NMR (500 MHz, methanol-*d*₄) spectrum of 5

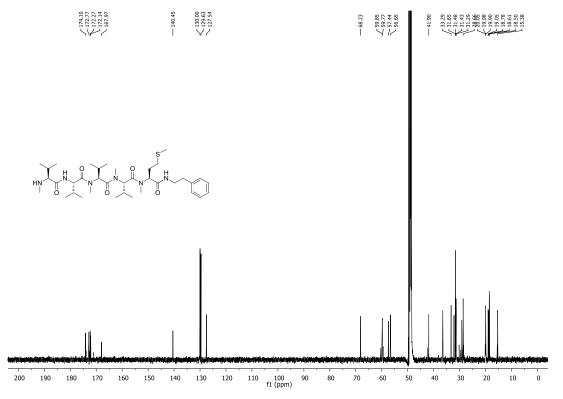


Figure S27. ¹³C NMR (125 MHz, methanol-*d*₄) spectrum of 5

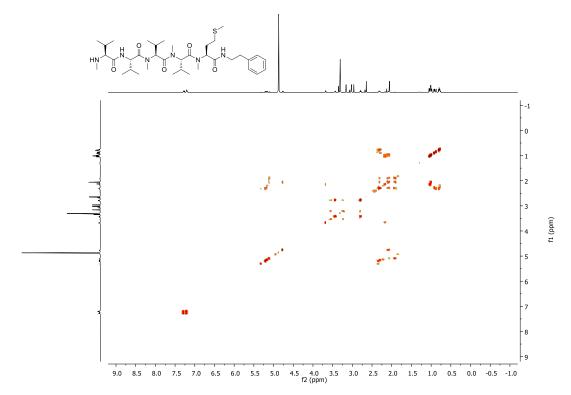


Figure S28. COSY (methanol-d₄) spectrum of 5

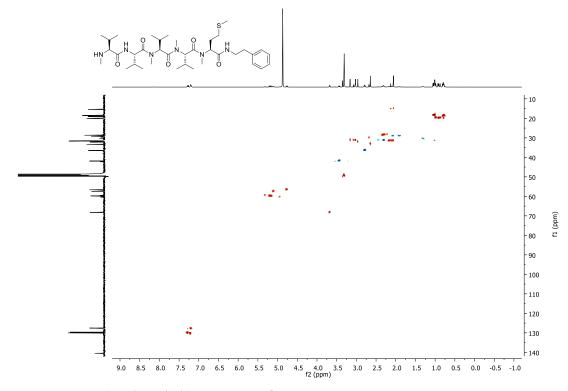


Figure S29. HSQC (methanol-*d*₄) spectrum of 5

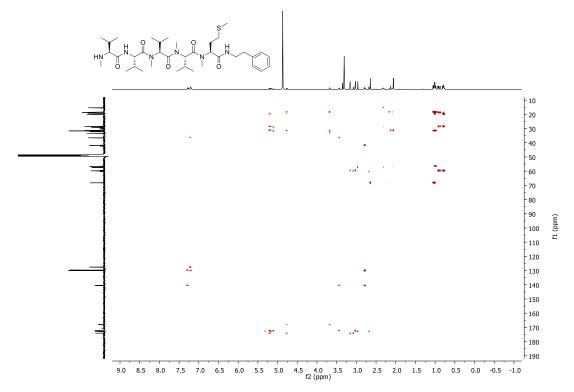


Figure S30. HMBC (methanol-*d*₄) spectrum of 5

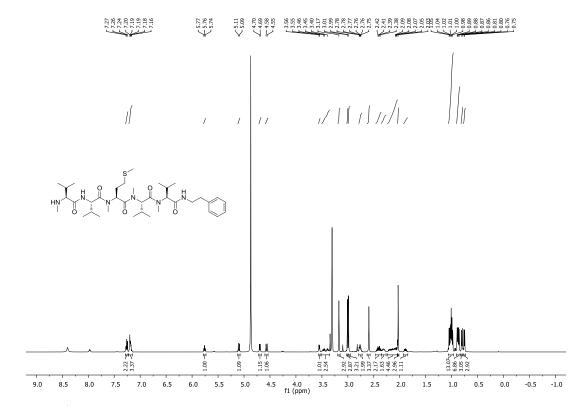


Figure S31. ¹H NMR (500 MHz, methanol-*d*₄) spectrum of 6

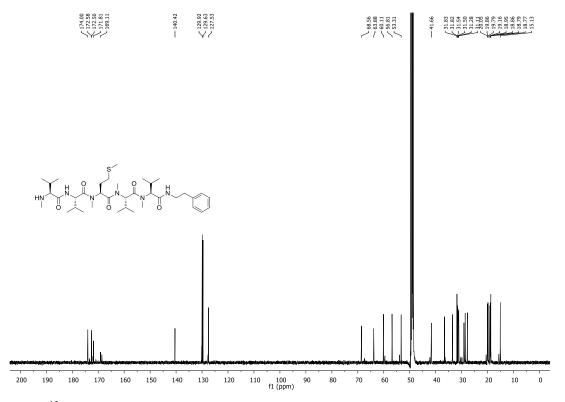


Figure S32. ¹³C NMR (125 MHz, methanol-*d*₄) spectrum of 6

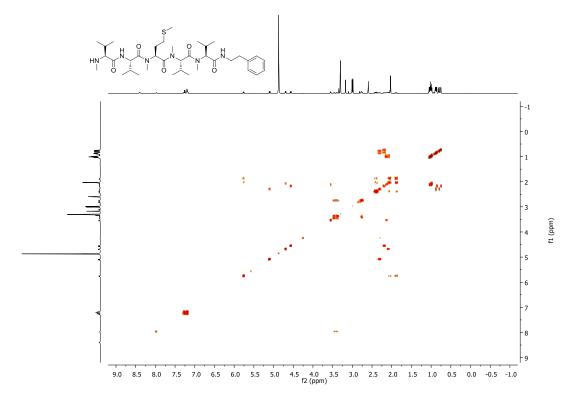


Figure S33. COSY (methanol-*d*₄) spectrum of 6

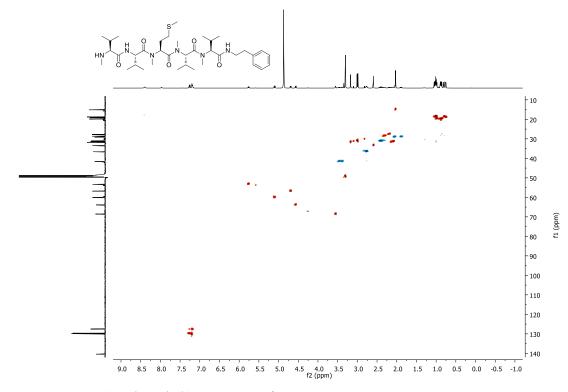


Figure S34. HSQC (methanol-*d*₄) spectrum of 6

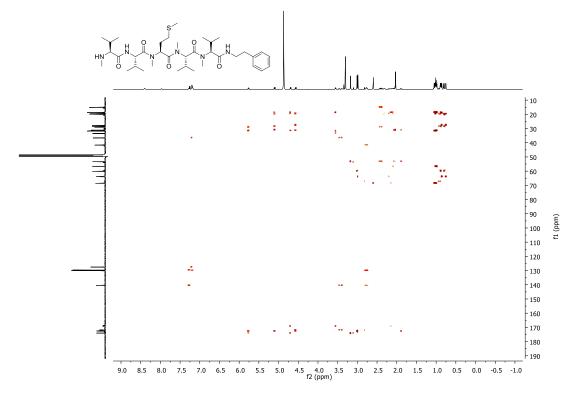


Figure S35. HMBC (methanol-*d*₄) spectrum of 6

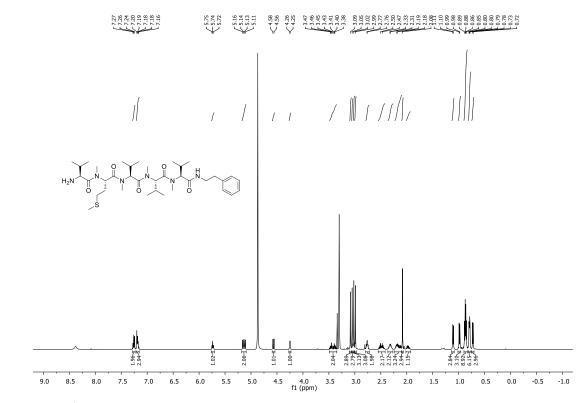


Figure S36. ¹H NMR (500 MHz, methanol-*d*₄) spectrum of 7

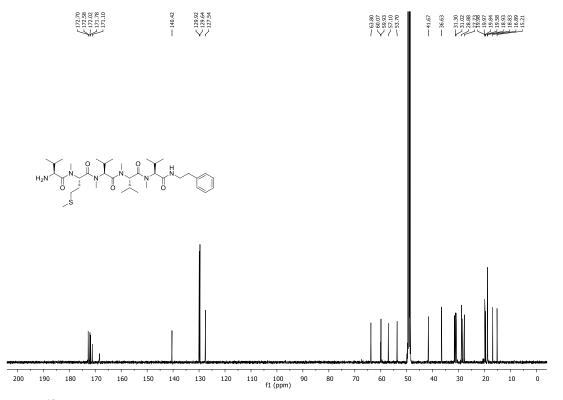


Figure S37. ¹³C NMR (125 MHz, methanol-*d*₄) spectrum of 7

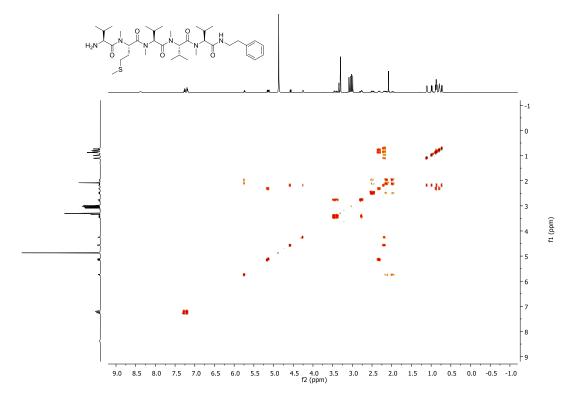


Figure S38. COSY (methanol-*d*₄) spectrum of 7

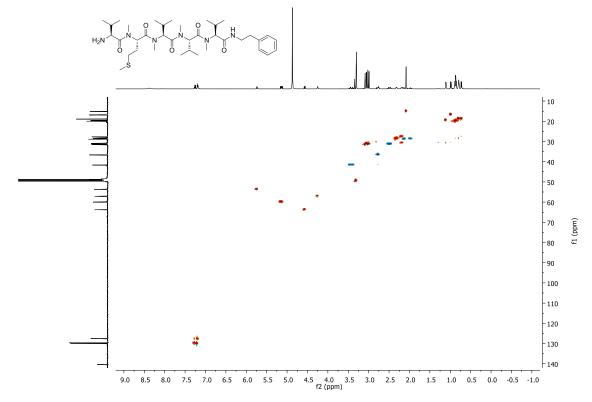


Figure S39. HSQC (methanol-*d*₄) spectrum of 7

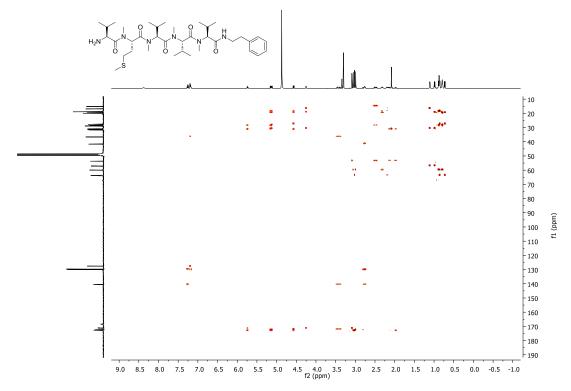


Figure S40. HMBC (methanol-*d*₄) spectrum of 7

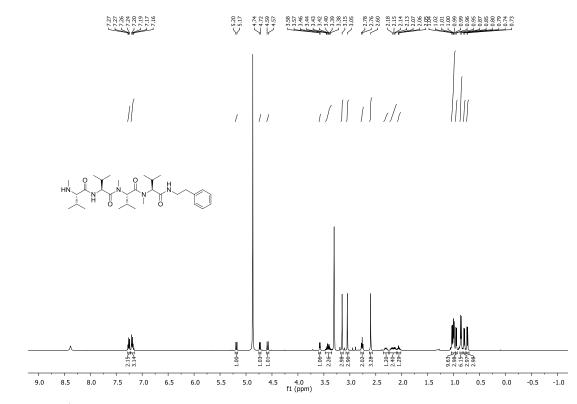


Figure S41. ¹H NMR (500 MHz, methanol-*d*₄) spectrum of 10

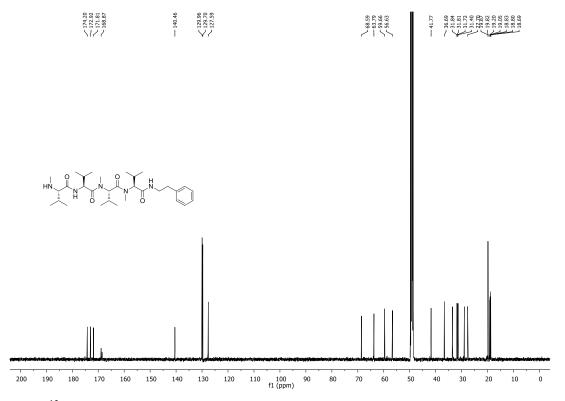


Figure S42. ¹³C NMR (125 MHz, methanol-*d*₄) spectrum of 10

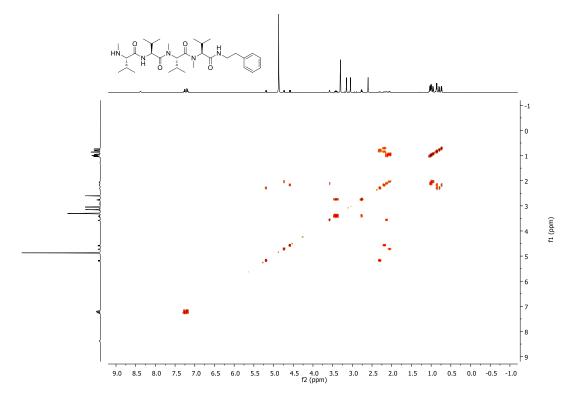


Figure S43. COSY (methanol-d₄) spectrum of 10

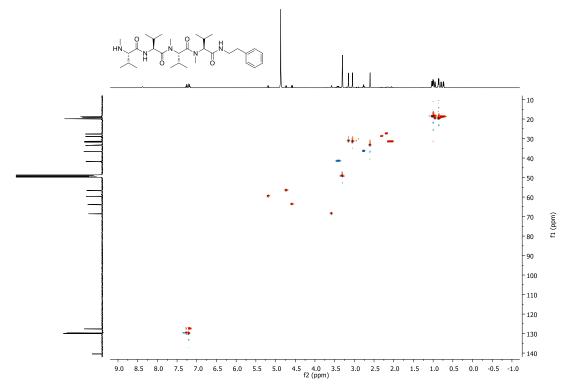


Figure S44. HSQC (methanol- d_4) spectrum of 10

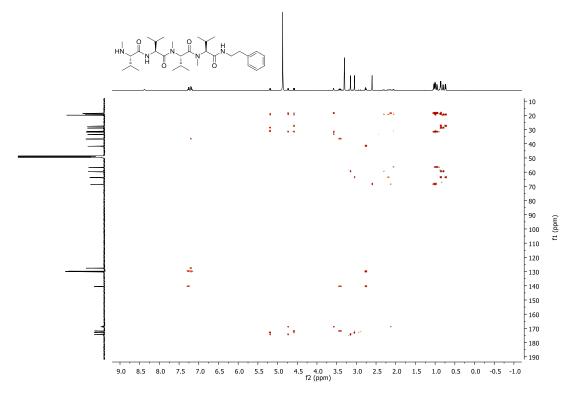


Figure S45. HMBC (methanol-d₄) spectrum of 10

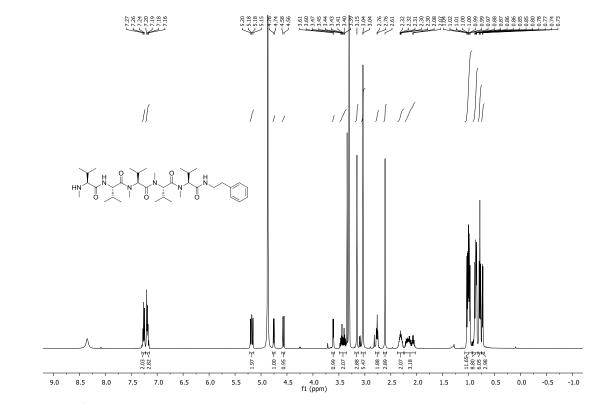


Figure S46. ¹H NMR (500 MHz, methanol-*d*₄) spectrum of **12**

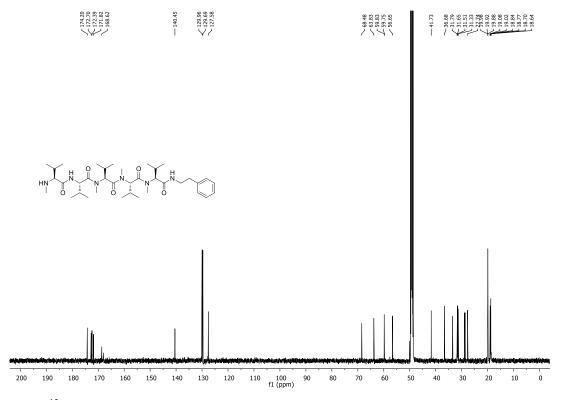


Figure S47. ¹³C NMR (125 MHz, methanol-*d*₄) spectrum of 12

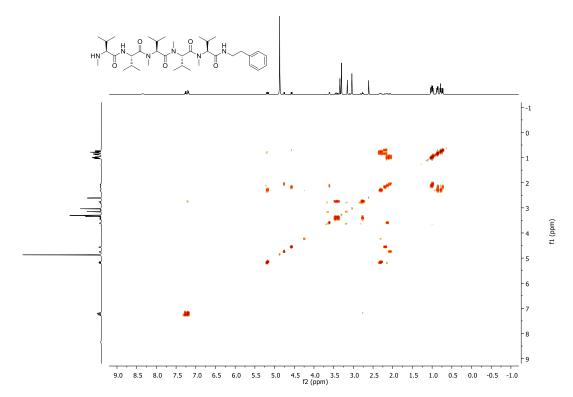


Figure S48. COSY (methanol-d₄) spectrum of 12

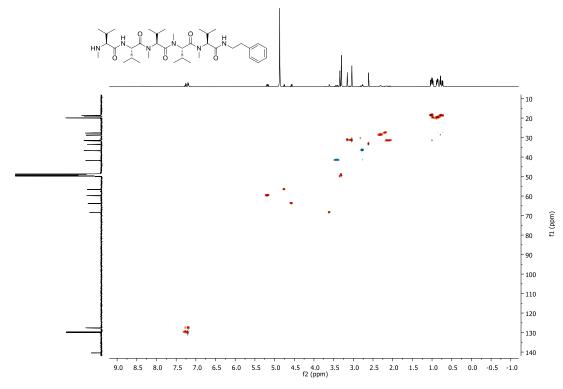


Figure S49. HSQC (methanol-*d*₄) spectrum of 12

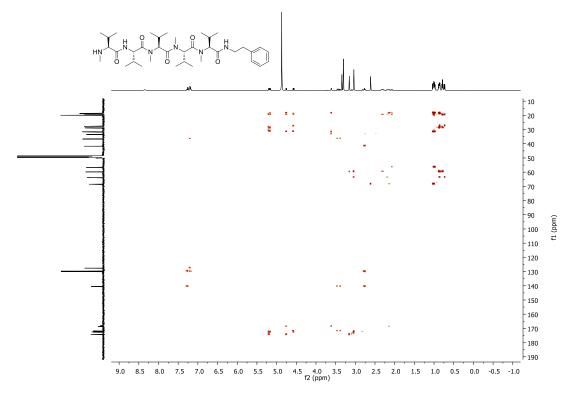


Figure S50. HMBC (methanol-*d*₄) spectrum of 12

References

(1) Wesche, F.; Adihou, H.; Kaiser, A.; Wurglics, M.; Schubert-Zsilavecz, M.; Kaiser, M.; Bode, H. B. *J. Med. Chem.* **2018**, *61*, 3930–3938.

(2) Sable, G. A.; Park, J.; Kim, H.; Lim, S. J.; Jang, S.; Lim, D. Eur. J. Org. Chem. 2015, 7043–7052.

(3) Cai, X.; Nowak, S.; Wesche, F.; Bischoff, I.; Kaiser, M.; Fürst, R.; Bode, H. B. *Nat. Chem.* **2017**, *9*, 379–386.

(4) Schimming O., Fleischhacker F., Nollmann F. I., Bode H. B. *Chembiochem* **2014**, *15*, 1290–1294.