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Figure S1. Room-temperature PL spectra of a Ge-doped silica sample 
prepared by IH method and a commercial fused quartz sample 
(HERALUX-E-LA) measured under S0→S1 excitation at 5 eV. 



 

 

 

Detailed derivation of Eqs. (5)-(8) 

According to the emission scheme shown in Fig. 1(a), the kinetic equations for the 
respective energy levels can be written as follows: 

 

𝑑𝑑𝑁𝑁0
𝑑𝑑𝑑𝑑

= −𝛼𝛼𝑁𝑁0 + 𝑘𝑘SR𝑁𝑁1 + �𝑘𝑘TR + 𝑘𝑘TNR�𝑁𝑁2        (S1) 

𝑑𝑑𝑁𝑁1
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝑁𝑁0 − (𝑘𝑘SR + 𝑘𝑘ISC)𝑁𝑁1                               (S2)  

𝑑𝑑𝑁𝑁2
𝑑𝑑𝑑𝑑

= 𝑘𝑘ISC𝑁𝑁1 − (𝑘𝑘TR + 𝑘𝑘TNR)𝑁𝑁2                                 (S3) 

 
where N0, N1, and N2 are the population of the S0, S1 and Tn states, respectively,  

 

Figure S2. Temperature dependence of the PL signals of a commercial 
fused quartz sample measured under 5-eV excitation. PL intensities of the 
S1→S0 (IS(T)) and the T1→S0 (IT(T)) emission bands peaking at ~4.2 and 
~3.1 eV, respectively, are shown as a function of temperature T. 



When we treat the above equations under the steady state approximation 
dN0/dt=dN1/dt=dN2/dt=0, the quantum efficiency η of the S1→S0 (ηS) and Tn→S0 (ηT) 
emission can be represented by 

 

𝜂𝜂S =
𝑘𝑘SR𝑁𝑁1
𝛼𝛼𝑁𝑁0

=
𝑘𝑘SR

𝑘𝑘SR + 𝑘𝑘ISC
                    (S4) 

 

𝜂𝜂T =
𝑘𝑘1𝑁𝑁2
𝛼𝛼𝑁𝑁0

=
𝑘𝑘TR𝑘𝑘ISC

(𝑘𝑘TR + 𝑘𝑘TNR)(𝑘𝑘SR + 𝑘𝑘ISC)
   .                 (S5) 

 

Under normal excitation conditions, the emission intensity is linearly correlated with η. 
Accordingly, the resulting emission intensity of the S1→S0 (IS) and Tn→S0 (IT) 
processes are 

𝐼𝐼S = 𝐾𝐾1
𝑘𝑘SR

𝑘𝑘SR + 𝑘𝑘ISC
  ,          (S6) or (5) 

     

𝐼𝐼T = 𝐾𝐾2
𝑘𝑘TR𝑘𝑘ISC

(𝑘𝑘TR + 𝑘𝑘TNR)(𝑘𝑘SR + 𝑘𝑘ISC)
     (S7) or (6) 

 
where 𝐾𝐾1 and 𝐾𝐾2 are the scaling (temperature independent) constants depending on a 
given excitation intensity and the instrumental conditions. Using the functional form of 
𝑘𝑘ISC [see Eq. (4) in the text], Eq. (S6) can be modified into the following form: 

 

𝐼𝐼S(𝑇𝑇) = 𝐾𝐾1
𝑘𝑘SR

(𝑘𝑘SR + 𝑘𝑘ISC
(1) + 𝐴𝐴ISC

(2) exp(−𝐸𝐸ISC
(2) /𝑘𝑘𝐵𝐵𝑇𝑇) +  𝐴𝐴ISC

(3) exp(−𝐸𝐸ISC
(3) /𝑘𝑘𝐵𝐵𝑇𝑇))

      

= 𝐾𝐾1
1

(1 + (𝑘𝑘ISC
(1) /𝑘𝑘SR) + (𝐴𝐴ISC

(2) /𝑘𝑘SR)exp(−𝐸𝐸ISC
(2) /𝑘𝑘𝐵𝐵𝑇𝑇) + (𝐴𝐴ISC

(3) /𝑘𝑘SR)exp(−𝐸𝐸ISC
(3) /𝑘𝑘𝐵𝐵𝑇𝑇))

        

 



=
𝐶𝐶1

1 + 𝐶𝐶2 exp�−
𝐸𝐸ISC

(2)

𝑘𝑘𝐵𝐵𝑇𝑇
� + 𝐶𝐶3 exp �−

𝐸𝐸ISC
(3)

𝑘𝑘𝐵𝐵𝑇𝑇
�

  ,    (S8) or (7) 

 
where 

𝐶𝐶1 = 𝐾𝐾1𝑘𝑘S
R

𝑘𝑘S
R+𝑘𝑘ISC

(1)  , 

𝐶𝐶2 = 𝐴𝐴ISC
(2)

𝑘𝑘S
R+𝑘𝑘ISC

(1)  ,  

𝐶𝐶3 = 𝐴𝐴ISC
(3)

𝑘𝑘S
R+𝑘𝑘ISC

(1) , 

 

 
Similarly, Eq. (S7) can be modified into the following form using the functional form of 
𝑘𝑘TNR [see Eq. (3) in the text] and 𝑘𝑘ISC [see Eq. (4) in the text]: 

 

𝐼𝐼T(𝑇𝑇) =

𝐾𝐾2
𝑘𝑘T
R(𝑘𝑘ISC

(1) +𝐴𝐴ISC
(2) exp(−𝐸𝐸ISC

(2) /𝑘𝑘𝐵𝐵𝑇𝑇)+ 𝐴𝐴ISC
(3) exp(−𝐸𝐸ISC

(3) /𝑘𝑘𝐵𝐵𝑇𝑇))

�𝑘𝑘T
R+𝐴𝐴T

NR1 exp(−
𝐸𝐸T
NR1

𝑘𝑘𝐵𝐵𝑇𝑇
)+ 𝐴𝐴T

NR2 exp(−𝐸𝐸T
NR2/𝑘𝑘𝐵𝐵𝑇𝑇)��𝑘𝑘S

R+𝑘𝑘ISC
(1) +𝐴𝐴ISC

(2) exp(−𝐸𝐸ISC
(2) /𝑘𝑘𝐵𝐵𝑇𝑇)+ 𝐴𝐴ISC

(3) exp(−𝐸𝐸ISC
(3) /𝑘𝑘𝐵𝐵𝑇𝑇)�

  

 

=
𝐶𝐶4(𝐶𝐶5+𝐶𝐶2 exp�−

𝐸𝐸ISC
(2)

𝑘𝑘𝐵𝐵𝑇𝑇
�+𝐶𝐶3 exp�−

𝐸𝐸ISC
(3)

𝑘𝑘𝐵𝐵𝑇𝑇
�)

(1+𝐶𝐶6 exp�−
𝐸𝐸T
NR1

𝑘𝑘𝐵𝐵𝑇𝑇
�+𝐶𝐶7 exp�−

𝐸𝐸T
NR2

𝑘𝑘𝐵𝐵𝑇𝑇
�)(1+𝐶𝐶2 exp�−

𝐸𝐸ISC
(2)

𝑘𝑘𝐵𝐵𝑇𝑇
�+𝐶𝐶3 exp�−

𝐸𝐸ISC
(3)

𝑘𝑘𝐵𝐵𝑇𝑇
�)

, (S9) or (8) 

 

where 

𝐶𝐶4 = 𝐾𝐾2, 



𝐶𝐶5 =
𝑘𝑘ISC

(1)

𝑘𝑘SR + 𝑘𝑘ISC
(1) , 

𝐶𝐶6 = 𝐴𝐴T
NR1

𝑘𝑘T
R , 

𝐶𝐶7 = 𝐴𝐴T
NR2

𝑘𝑘T
R . 

 
From the fits of the data shown in Fig. 2(a) to Eqs. (7) and (8), we can obtain the values 
of activation energies, i.e., 𝐸𝐸TNR1, 𝐸𝐸TNR2, 𝐸𝐸ISC

(2), 𝐸𝐸ISC
(3), along with the parameters related 

to the frequency factors, i.e., Ci (i=1−7). The fitted values are shown in Fig. 2(a). It 
should be noted, however, that the values of Ci (i=1−7) do not represent the absolute 
values of the frequency factors but are the relative values among these frequency 
factors. 


