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Figure S1. Room-temperature PL spectra of a Ge-doped silica sample
prepared by IH method and a commercial fused quartz sample
(HERALUX-E-LA) measured under So—S1 excitation at 5 eV.
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Figure S2. Temperature dependence of the PL signals of a commercial
fused quartz sample measured under 5-eV excitation. PL intensities of the
S1—So (Is(T)) and the T1—So (I(T)) emission bands peaking at ~4.2 and
~3.1 eV, respectively, are shown as a function of temperature T.

Detailed derivation of Egs. (5)-(8)

According to the emission scheme shown in Fig. 1(a), the kinetic equations for the
respective energy levels can be written as follows:
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where No, N1, and N2 are the population of the So, S1 and T, states, respectively,



When we treat the above equations under the steady state approximation
dNo/dt=dN1/dt=dN»/dt=0, the quantum efficiency n of the S1—>So (ns) and Th—So (nT1)
emission can be represented by
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Under normal excitation conditions, the emission intensity is linearly correlated with .
Accordingly, the resulting emission intensity of the S1—So (Is) and Th—So (I7)
processes are
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where K; and K, are the scaling (temperature independent) constants depending on a
given excitation intensity and the instrumental conditions. Using the functional form of
kisc [see Eq. (4) in the text], Eq. (S6) can be modified into the following form:
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Similarly, Eq. (S7) can be modified into the following form using the functional form of
kYR [see Eq. (3) in the text] and k;gc [see Eq. (4) in the text]:
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From the fits of the data shown in Fig. 2(a) to Egs. (7) and (8), we can obtain the values
of activation energies, i.e., ENRY, ENR2, Q) EQ) along with the parameters related
to the frequency factors, i.e., Ci (i=1-7). The fitted values are shown in Fig. 2(a). It
should be noted, however, that the values of Ci (i=1-7) do not represent the absolute
values of the frequency factors but are the relative values among these frequency
factors.



