Supporting Information for the manuscript "Efficient Estimation of Formation Enthalpies for Closed-Shell Organic Compounds with Local Coupled-Cluster Methods"

Eugene Paulechka* and Andrei Kazakov*

Thermodynamics Research Center, Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305-3337

E-mail: yauheni.paulechka@nist.gov; andrei.kazakov@nist.gov

1 Regression coefficients for atom-equivalent decomposi-

tions

Table S1: Regression coefficients e_i in Eq. 2 of the main manuscript^a

	С	Н	Ο	Ν	
contributions beyond frozen-core CCSD(T), ΔE^{hoc} (Table 1)					
	3.87	0.02	-0.16	2.33	
deviations from	om canor	nical CC	CSD(T),	$\Delta E^{\rm loc}$ (Table 3)	
DLPNO-CCSD(T)	2.25	-0.64	2.26	2.29	
LCCSD(T)	-0.46	-0.07	-0.32	-0.39	
FNO-CCSD(T)	-0.77	-0.76	-0.52	-0.75	
deviatio	ns from	ZPVE,	ΔE^{ZPVE}	(Table 6) ^{b}	
Ι	0.16	-0.09	-0.14	0.25	
II	0.35	-0.20	-0.24	0.33	
III	0.36	-0.20	-0.26	0.32	
IV	-0.20	0.13	-0.18	-0.12	
\mathbf{V}	-0.19	0.12	-0.16	-0.14	
VI	-0.04	0.03	-0.20	-0.11	
VII	0.38	-0.22	0.19	-0.15	

^{*a*}units are kJ·mol⁻¹; ^{*b*}labels (Roman numerals) are defined in Table 4

2 Enthalpy of formation of phenol

$experiment^c$	-95.7 ± 1.1
L4orig	-92.8
L4	-92.7
aL4	-92.6
aLL4	-92.0
aLFNO4	-91.7
L5	-93.0
aL5	-92.9
aLL5	-91.4
aLFNO5	-91.1
aLL5/5z	-91.8
Dorofeeva & Ryzhova (2016)	-91.8 ± 2.5

Table S2: $\Delta_{\mathbf{f}} H^{\circ}$ of phenol^{*a,b*}

 a units are kJ·mol $^{-1};\ ^b$ method labels are defined in Table 7; c evaluated, Paulechka & Kazakov (2017)

3 Uncertainty of predictions

As discussed by Paulechka and Kazakov (2017), the standard uncertainty of predictions by Eq. (1) can be estimated as

$$u(\Delta_{\rm f} H^{\circ}) = \left[s^2 + \mathbf{nV}\mathbf{n}^{\rm T}\right]^{1/2},\tag{S1}$$

where s is the standard deviation, \mathbf{n} is the row-vector of the atomic type counts in the compound for which the prediction was made, and \mathbf{V} is the covariance matrix:

$$\mathbf{V} = s^2 \left(\mathbf{N}^{\mathbf{T}} \mathbf{N} \right)^{-1}.$$
(S2)

In the above equation, **N** is the $M \times N$ design matrix of the linear least squares problem defined by Eq. (1) and composed of row-vectors of atomic type counts for the compounds in the data set (M is the number of compounds in the data set and N is the number of atomic types). Combining Eqs (S1) and (S2), one can obtain

$$u(\Delta_{\rm f} H^{\circ}) = s \left[1 + \mathbf{n} \left(\mathbf{N}^{\rm T} \mathbf{N} \right)^{-1} \mathbf{n}^{\rm T} \right]^{1/2}.$$
(S3)

Finally, the commonly reported expanded uncertainty (coverage factor of 2, corresponding to 0.95 confidence for normal distribution) is twice of the standard uncertainty,

$$U(\Delta_{\rm f} H^{\circ}) = 2 \times u(\Delta_{\rm f} H^{\circ}). \tag{S4}$$

The listings of $(\mathbf{N}^{\mathbf{T}}\mathbf{N})^{-1}$ matrices for the current data set (Table 8) and different atomic type definitions (Table 9) are given in Tables S3, S4, and S5.

Table S3: Matrix $(\mathbf{N^TN})^{-1}$ from Eq. (S3) for 4-parameter (L4orig, L4, aL4, aL4, and aLFNO4) schemes

	С	Н	0	Ν
С	0.005176	-0.003191	-0.001439	-0.000662
Η	-0.003191	0.002563	-0.000797	-0.001484
Ο	-0.001439	-0.000797	0.037698	-0.009267
Ν	-0.000662	-0.001484	-0.009267	0.103720

Table S4: Matrix $(\mathbf{N}^{T}\mathbf{N})^{-1}$ from Eq. (S3) for 5-parameter (L5 and aL5) schemes

	C_{sat}	$\rm C_{arom} + \rm C_{unsat}$	Н	0	Ν
C _{sat}	0.078065	0.027552	-0.032178	0.010122	0.028529
$C_{arom} + C_{unsat}$	0.027552	0.012045	-0.012089	0.002110	0.008299
Н	-0.032178	-0.012089	0.014091	-0.005395	-0.013093
0	0.010122	0.002110	-0.005395	0.039532	-0.004637
Ν	0.028529	0.008299	-0.013093	-0.004637	0.115411

Table S5: Matrix $(\mathbf{N}^{\mathbf{T}}\mathbf{N})^{-1}$ from Eq. (S3) for 5-parameter (aLL5, aLFNO5, and aLL5/5z) schemes

	$C_{sat} + C_{arom}$	C_{unsat}	Н	0	Ν
$C_{sat}+C_{arom}$	0.005192	0.004619	-0.003151	-0.001375	-0.000708
C_{unsat}	0.004619	0.024944	-0.004601	-0.003730	0.000943
Η	-0.003151	-0.004601	0.002664	-0.000634	-0.001599
0	-0.001375	-0.003730	-0.000634	0.037964	-0.009453
Ν	-0.000708	0.000943	-0.001599	-0.009453	0.103850