Supporting Information

On Fe–Fe Dumbbells in the Ideal and Real Structure of FeGa₃

Frank R. Wagner^{1*}, Raul Cardoso-Gil¹, Benoit Boucher¹, Maik Wagner-Reetz¹, Jörg Sichelschmidt¹, Peter Gille², Michael Baenitz¹, Yuri Grin^{1*}

¹ Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden, Germany. ² Ludwig-Maximilians-Universität München, Theresienstraße 41, 80333 München, Germany. Content:

- Results of quantum-chemical calculations.
- Crystallographic data and details of crystal structure refinements.
- · Electron spin resonance (ESR) spectra and remarks.

Table S1. Decomposition of ELI-D topological features for FeGa₃ (attractor) at midpoint r_c of Fe–Fe internuclear line along z(i); $\tilde{Y}^{\alpha}_{D}(\boldsymbol{r}_c) = 1.01$; $\rho_{\alpha}(\boldsymbol{r}_c) = 0.0193$; $\tilde{V}^{\alpha}_{D}(\boldsymbol{r}_c) =$ 52.3.

Spin a	$\frac{\rho^{\prime\prime}}{\rho}$ +	$rac{ ilde{V}_D^{\prime\prime\prime}}{ ilde{V}_D}$ +	$2rac{ ho'}{ ho}rac{ ilde{V}_D}{ ilde{V}_D}$	$= \frac{\widetilde{Y}_D^{\prime\prime}}{\widetilde{Y}_D}$
z(i)	+1.20	-2.96	0	-1.76
x	-0.23	+0.12	0	-0.11
у	-0.15	+0.02	0	-0.13
type	(3, -1)	(3, +1)		(3, -3)
Sum	+0.82	-2.82	0	-2.00

Table S2. Decomposition of ELI-D topological features for Fe₂(CO)₉ (saddle point) at midpoint r_c of Fe–Fe internuclear line along z(i); $\tilde{Y}^{\alpha}_{D}(\mathbf{r}_c) = 0.83$; $\rho_{\alpha}(\mathbf{r}_c) =$ 0.0238; $\tilde{V}^{\alpha}_{D}(\mathbf{r}_c) = 35.0$.

Spin a	$\frac{ ho^{\prime\prime}}{ ho}$ +	$rac{ ilde{V}_D^{\prime\prime\prime}}{ ilde{V}_D}$ +	$2rac{ ho'}{ ho}rac{ ilde{V}_D'}{ ilde{V}_D}$	$= \frac{\widetilde{Y}_D^{\prime\prime}}{\widetilde{Y}_D}$
<i>z</i> (i)	+2.35	-3.38	0	-1.03
x	+0.10	-0.05	0	+0.05
у	+0.10	-0.05	0	+0.05
type	(3, +3)	(3, -3)		(3, +1)
Sum	+2.55	-3.48	0	-0.93

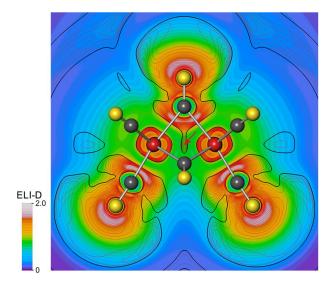


Figure S1. ELI-D slice for Fe₂(CO)₉ using indicated colormap; isolines of the relative ELI-D Laplacian in the range $-2 \le \nabla^2 \widetilde{Y}^{\alpha}_D / \widetilde{Y}^{\alpha}_D \le -0.2$ are shown in red, isoline of $\nabla^2 \widetilde{Y}^{\alpha}_D / \widetilde{Y}^{\alpha}_D = \mathbf{0}$ is shown in black; Fe–Fe bond midpoint with negative ELI-D Laplacian is indicated by a red arrow; Fe, C, and O atoms are shown as red, grey, and yellow spheres, respectively.

Table S3. Crystallographic data and refinement of the ideal crystal structure of FeGa $_3$ (crystal 1)

labar of jotal of a detail of the	
Molar mass	265.01
Crystal color, shape	Gray, prismatic
Crystal dimensions (mm ³)	0.100 × 0.100 × 0.080
Space group, Z	<i>P</i> 4 ₂ / <i>mnm</i> (no. 136), 4
Lattice parameters (pm)	<i>a</i> = 626.53(1)
(from powder data)	c = 655.85(2)
V (106 pm3), $ ho$ (g cm-3)	257.45(2), 6.84
Diffractometer, detector	Rigaku AFC7, CCD Saturn724+
Radiation	Mo $K\alpha$ (λ = 71.073 pm)
Exposures, steps (degree)	720, $\varphi = 0.5$
Absorption correction	Multi-scan (µ = 379.8 cm ⁻¹)
T _{min} / T _{max}	0.681 / 1.000
20 _{max}	80.5°
<i>hkl</i> range	-11 < <i>h</i> < 8
	-11 < <i>k</i> < 7
	-11 < <i>I</i> < 11
Measured/unique reflections	3059 / 466
R(int)	0.029
Observation criteria	F(hkl) > 4σ F(hkl)
Refinement	Full-matrix least-squares on F ²
	(16 parameters)
R(F), Rw, goodness-of-fit	0.033, 0.036, 1.194
$\Delta \rho_{\min}$, $\Delta \rho_{\max}$ (e Å ⁻³)	-1.84, 2.95

Table S4. Atomic position and anisotropic displacement parameters for FeGa₃.

Atom	Fe	Ga1	Ga2
Site	4f	4 <i>c</i>	8 <i>j</i>
x/a	0.15639(8)	0	0.84433(5)
y/b	x	1⁄2	- <i>x</i>
z/c	0	0	0.23790(7)
s.o.f.	1.0	1.0	1.0
U_{11}	54(2)	124(3)	91(2)
U_{22}	U_{11}	60(2)	U_{11}
U_{33}	46(2)	134(3)	81(2)
U_{12}	-2(2)	18(2)	6(1)
U_{13}	0	0	21(1)
U_{23}	0	0	$-U_{13}$
U(iso/eq)	51(2)	106(2)	88(1)

By considering the strong anisotropy of atomic displacement parameters (ADPs) for the Gal position ($U_{11} \approx U_{33} >> U_{22}$, Table S2) a split model for this Ga site was applied, yielding analogous results as described in the crystal structure refinement of RuGa₃ [50].

Independently, after the refinement considering the 'Fe2' position a further residual maximum in the difference Fourier (coordinates *x y z* = 0 ½ 0.048) was found, close to Ga1. This additional maximum was considered in the refinement and was assigned as 'Ga3'. Both Ga1 and 'Ga3' were isotropically refined, fixing U_{11} for 'Ga3' equal to U_{eq} of Ga2 (90 pm²). The site occupation factor was restrained as the complement for the Ga1 position (Ga1(s.o.f.) + 'Ga3'(s.o.f.) = 1) and with the constrain that 'Fe2'(s.o.f.) = 'Ga3'(s.o.f.). The resulting residual value is higher but still within a satisfactory range ($R_1 = 0.045$) taking into account that some atomic positions were isotropically refined. The crystal structure refinement shows the additional 'Ga3' site splitting parallel to [001] is in direct connection with the presence of 'Fe2' in the neighboring trigonal prism (Ga1–'Fe2' = 237 pm).

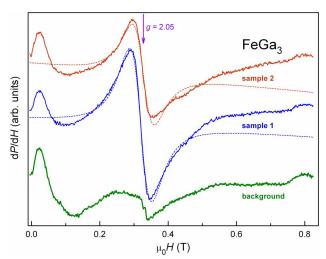


Figure S2. ESR spectra of two FeGa₃ samples and paraffin filled suprasil tube (background).

Figure S2 shows ESR spectra (first derivative of absorbed microwave power, dP/dH, vs. external magnetic field H) of FeGa₃ and a paraffin filled suprasil tube ("background") taken at a microwave frequency of 9.4 GHz and a temperature of 295 K. The two ESR samples of FeGa₃ have comparable masses (11.1 mg and 11.2 mg) and originate from the two batches discussed in this paper, "sample 1" and "sample 2", respectively. The spectra amplitudes of FeGa₃ are normalized to the resonator quality factor which moderately differs for the two samples. Note the considerable background contribution to the FeGa₃ spectra. The dashed lines denote Lorentzian line shapes at a resonance field corresponding to an effective g-value of g = 2.05. This demonstrates the existence of ESR active centers in the two FeGa₃ samples. The intensities of the two Lorentzian lines have a ratio of 2.6, i.e. the concentration of ESRactive centers in sample 1 is considerably higher than in sample 2.

The temperature dependencies of the FeGa₃ ESR parameters are well in agreement with those reported previously¹⁰.

This material is available free of charge via the Internet at http://pubs.acs.org.